JP3706513B2 - Method of manufacturing torsional vibration damper for internal combustion engine - Google Patents

Method of manufacturing torsional vibration damper for internal combustion engine Download PDF

Info

Publication number
JP3706513B2
JP3706513B2 JP34999999A JP34999999A JP3706513B2 JP 3706513 B2 JP3706513 B2 JP 3706513B2 JP 34999999 A JP34999999 A JP 34999999A JP 34999999 A JP34999999 A JP 34999999A JP 3706513 B2 JP3706513 B2 JP 3706513B2
Authority
JP
Japan
Prior art keywords
fan
metal
inertia mass
rubber
mounting plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34999999A
Other languages
Japanese (ja)
Other versions
JP2001165243A (en
Inventor
英夫 青木
正一 上山
Original Assignee
冨士自動車興業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 冨士自動車興業株式会社 filed Critical 冨士自動車興業株式会社
Priority to JP34999999A priority Critical patent/JP3706513B2/en
Publication of JP2001165243A publication Critical patent/JP2001165243A/en
Application granted granted Critical
Publication of JP3706513B2 publication Critical patent/JP3706513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Description

【0001】
【発明の属する技術分野】
この発明は内燃機関用ねじり振動緩衝器の製造方法、詳しくは耐久性に富む内燃機関用ねじり振動緩衝器を能率的に製造する方法に関するものである。
【0002】
【従来の技術】
ディ−ゼルエンジンなどねじり振動の大きな内燃機関の場合、ねじり振動緩衝器(ト−ションダンパ−)をそのクランクシャフトの一端に取付け、ねじり振動を緩衝吸収することが行われている。この内燃機関用ねじり振動緩衝器は図1に示す様に、内燃機関のクランクシャフトの一端に固定される円板状の取付板1と、この取付板1の外径より小さく、この取付板1の表裏両面に同心円状に接着された環状のゴム製弾性体2と、このゴム製弾性体2を表裏両面から挟む様に接着された径の大きな金属製慣性質量体6とからなり、取付板1と金属製慣性質量体6との間に形成されている空間15内に粘性液体16を封入したものである。なお、図中37は粘性液体注入孔であり、空間15内に粘性液体16を注入した後は埋栓38で封止される。又、40は溶接箇所を示す。
【0003】
これをディ−ゼルエンジンなど内燃機関のクランクシャフトの一端に取付けると、取付板1はクランクシャフトに直結されている為、回転振動を伴いながら回転するが、ゴム製弾性体2を介して取付板1に接続されている金属製慣性質量体6は慣性によってなめらかに回転しようとするので、この金属製慣性質量体6と取付板1の運動の差をゴムの弾性力及び粘性液体16のせん断抵抗によって吸収し、ねじり振動を緩和させようとするものである。
【0004】
【発明が解決しようとする課題】
この内燃機関用ねじり振動緩衝器においては、粘性液体16を封入する為、取付板1と金属製慣性質量体6との間に空間15が形成されており、従来の製造方法においては、この空間15を形成するには2回に分けてゴムの加硫成形を行うことが必要であった。即ち、図2に示す様に、まず始めに取付板1の表裏にゴム製弾性体2を加硫接着し、次に、図3に示す様に、金属製慣性質量体6をその両側から加硫接着する。その後、金属製慣性質量体6,6の接合部の外周39を溶接し、粘性液体注入孔37から空間15内に粘性液体16を注入して図1に示す様な内燃機関用ねじり振動緩衝器としていたのである。金属製慣性質量体6とゴム製弾性体2とは金属及びゴムという材質の違いにより、加硫接着の際、温度膨張係数において10倍程の違いが生ずる。この為、加硫の際に熱を加えると、金属製慣性質量体6とゴム製弾性体2の接着面でゴムにすべりが生じてしまうことは避けられなかった。加硫接着中にすべりが生じると、当然接着に悪影響が生じる。一般的には内周側に比べ、外周側の方がすべりが大きい為、外周部において接着不良が生じやすい。この発明は内燃機関用ねじり振動緩衝器において、この金属製慣性質量体6とゴム製弾性体2との間に接着不良が生じることなく、確実強固に両者が接着した品質の高い内燃機関用ねじり振動緩衝器を能率よく製造出来る方法を提供せんとするものである。
【0005】
【課題を解決するための手段】
この発明は、円板状をなした取付板1の表裏に、前記取付板1の外径より大きな外径を有した環状体をその半径方向に分割した外観を呈する扇形をなし、内縁が上方に屈曲せしめられてつば部17となっている扇状スペ−サ−18を、前記つば部17がそれぞれ表裏方向を向く様に放射状にすき間なく配列し、前記扇状スペ−サ−18の内径より小さな内径で扇状スペ−サ−18の外径とほぼ同じ外径を有した肉厚環状をなし、上面19が平坦状に形成され、下面の外径寄りの位置に幅の広い環状突条20が形成された金属製慣性質量体6を、その環状突条20をその内周壁21が扇状スペ−サ−18のつば部17の内側に密着する様に扇条スペ−サ−18に圧接させ、有底筒形をなし、筒内部に加硫成形用ゴム生地23を充填できる様になっており、底面外側には前記金属製慣性質量体6の内径より若干小さな径を有し、扇状スペ−サ−18と金属製慣性質量体6の厚さ合計と一致する厚さを有する円柱状押圧体25を同心円状に形成した加硫成形型22を、その円柱状押圧体25が取付板1の中央部に、本体底面26の外側部分が金属製慣性質量体6の上面にそれぞれ密着する様に表裏から圧接し、金属製慣性質量体6の内径側下面とこれに対向した取付板1の上面との間に形成されている環状の空間に加硫成形型22の本体底面26に設けられたベントホ−ル27を通して、加硫成形用ゴム生地23を圧入加熱して取付板1の表裏に環状ゴム製弾性体2を加硫成形し、この加硫成形型22を取付板1及び金属製慣性質量体6から分離した後、金属製慣性質量体6の環状突条20の下面と扇状スペ−サ−18の上面との間に、つば部17の高さ以上のギャップ30が出来る様に、金属製慣性質量体6をそれぞれ表裏方向に強制的に引き離し、この引き離しによって形成されたギャップ30から扇状スペ−サ−18を金属製慣性質量体6外に撤去し、その後、ゴム製弾性体2の弾性的収縮力によって金属製慣性質量体6を元の位置に戻させ、一対の金属製慣性質量体6の間に形成される外周縁のすき間を覆う様に、その外周縁に金属帯体12を囲繞せしめてその接合面を溶接し、しかる後に扇状スペ−サ−18の撤去跡に形成された環状の空間15に粘性液体16を封入して内燃機関用ねじり振動緩衝器を製造することにより、上記課題を解決した。
【0006】
【発明の実施の形態】
この発明に係る内燃機関用ねじり振動緩衝器の製造方法についての説明に先立ち、図4を参照しながら、この発明によって製造された内燃機関用ねじり振動緩衝器の構成について説明する。図4はその断面図であり、図中1は円板状をなした取付板で、その表裏両面にはゴム製弾性体2が同心円状に固定されている。このゴム製弾性体2には前記取付板1より外径が小さい肉厚環状をなし、その内周縁上面には上方に立上った突起条3が、その外側には平坦部4がそれぞれ一体的に形成されており、外周縁下部には内径方向に向って円弧状にえぐられたオ−バ−ハング溝5が形成されている。一方、図中6は金属製慣性質量体であり、その内径は前記ゴム製弾性体2の内径より大きく、その外径は前記取付板1の外径より大きく、肉の厚い環状をなしている。そして、この金属製慣性質量体6は肉厚の小さい内径側部分7と肉厚の大きな外径側部分8とが段差9によって一体的に形成されており、内径側部分7の下面10は前記ゴム製弾性体2の上面及びその外周縁の形状に一致する凹面形状となっており、外周側部分8には幅の広い環状突条20が形成されており、外周側部分8の厚さは対向する取付板1表面との間に空隙14が生じる程度となっている。又、この金属製慣性質量体6の外周縁下端には凹穿溝11が形成されている。そして、この金属製慣性質量体6は前記ゴム製弾性体2をその表裏から挟み込む様に、これに強固に加硫接着され、対向した凹穿溝11,11の間には図5に示す様な金属帯材12が囲繞せしめられ、この金属帯材12の両端突き合せ部41,41及び側縁の接合部13は溶接され、この金属帯材12によって一対の金属製慣性質量体6,6の外周は気密状態を保って結合されている。そして、前記オ−バ−ハング溝5及び空隙14によって形成される環状の空間15内には粘性液体16が封入されている。37は金属製慣性質量体6の上面から裏面にかけてあけられた粘性液体注入孔、38はこれを封止する埋栓である。なお、金属帯材12は、凹穿溝11内において金属製慣性質量体6の外周を囲繞しているが、図6に示すものの様に、凹穿溝11を特に形成せず、金属製慣性質量体6の外周に図7に示す様な金属環材36を直接嵌め込み、その接合箇所を溶接する場合もある。
【0007】
ここにおいて、この内燃機関用ねじり振動緩衝器の製造方法の一実施形態について図面を参照しながら説明する。まずはじめに、図8に示す平面図、図9に示す断面図の様に、取付板1の周縁部の表裏に、扇形をなし、内縁が上方に屈曲されてつば部17となっている扇状スペ−サ−18を前記つば部17がそれぞれ取付板1の表裏方向を向く様に放射状にすき間なく配置する。なお、この扇状スペ−サ−18の外径は前記取付板1の外径より大きく形成されている。次に、図10に示す様に、前記扇状スペ−サ−18の内径より小さな内径で扇状スペ−サ−18の外径とほぼ同じ外径を有する肉厚環状をなし、上面19が平坦状に形成され、下面の外径よりの位置に幅の広い環状突条20が形成された金属製慣性質量体6を、その環状突条20の内周壁21が扇状スペ−サ−18のつば部17の内側に密着する様に扇状スペ−サ−18にかぶせ、その上から図11に示す様に加硫成形型22を圧接する。
【0008】
加硫成形型22は、有底筒形をなし、筒内部は加硫成形用ゴム生地23を充填するポット部24となっており、底面外側には前記金属製慣性質量体6の内径よりわずかに小さい径を有し、扇状スペ−サ−18と金属製慣性質量体6の厚さ合計と一致する厚さを有する円柱状押圧体25が同心円状に一体的に形成されており、この円柱状押圧体25の側面と本体底面26との間にはベントホ−ル27が連通せしめられている。更に、この加硫成形型22のポット部24には加硫成形用ゴム生地23を押圧するピストン28が挿入されており、このピストン28の上端には加硫プレス用熱板29が取付けられており、このピストン28に押圧力及び加硫用の熱が加えられる様になっている。そして、この一対の加硫成形型22,22を金属製慣性質量体6にその表裏から圧接し、ピストン28を加熱しつつスライドさせると、ポット部24中に充填されている加硫成形用ゴム生地23はベントホ−ル27を通り、図12に示す様に、金属製慣性質量体6の内径側下面10、これに対向した取付板の上面及び円柱状押圧体25の側壁との間に形成される環状の空間に流れ込み、加圧及び加熱によって取付板1及び金属製慣性質量体6に強固に接着したゴム製弾性体2が形成される。この実施の形態においては、加硫成形用ゴム生地23に約150℃の熱を加えながら、約49000N(50t)の圧力で空間内に圧送し、約15分間この加熱加圧を継続した。
【0009】
この様にしてゴム製弾性体2の加硫成形を完了した後、図13に示す様に、加硫成形型22を取付板1及び金属製慣性質量体6から分離せしめ、更に扇状スペ−サ−18を取付板1と金属製慣性質量体6との間から撤去する。しかし、この扇状スペ−サ−18の内側にはつば部17があり、このつば部17は金属製慣性質量体6の内側面に引っかかっているのでそのままでは外側に引き抜くことは不可能なので、金属製慣性質量体6を図14に示す様に強制的に表裏方向へ引き離し、取付板1の表面と金属製慣性質量体6との間に形成されるギャップ30を通して、この扇状スペ−サ−18の撤去を行う。この金属製慣性質量体6の引き離しは凹穿溝11の段差部にフックをかけて引っ張るなど適宜手段を用いて実施しても良いが、この引き離しには約9800N(10t)もの力が必要であり、無理に力を加えると金属製慣性質量体6が変形したり、歪んでしまうおそれがある。従って、図15に示す様に金属製慣性質量体6の表面からその内側にかけてあらかじめめねじ31を設けておき、加硫成形時にはボルト(図示省略)で栓をしておき加硫成形完了後にこのボルトをはずし、めねじ31に金具32を螺合し、この金具32を利用して強制的に引き離す様にすれば金属製慣性質量体6の変形や歪みを防ぐことが出来る。
【0010】
なお、ゴム製弾性体2は取付板1と金属製慣性質量体6に強固に接着しているので、この金属製慣性質量体6の引き離しの際には図14及び図15に示す様にゴム製弾性体2の内周壁43、外周壁44は共に大きくくびれることになる。このとき、あまり引き離し量が多過ぎるとゴム製弾性体2に裂け目が生じたり剥れが生じる恐れがあるので、引き離し量は環状突条20の高さの70〜80%にとどめるべきである。なお、ゴム製弾性体2の材質、硬度、形状によっても引き離し量の限界に差が生じることはもちろんである。そして、この扇状スペ−サ−18の撤去が終ると、図16に示す様にこの扇状スペ−サ−18の撤去跡には環状の空間15が形成される。
【0011】
その後、図17に示す様に一対の金属製慣性質量体6,6の外周対向面のすき間を覆う様に金属帯材12をその凹穿溝11内に嵌め込み、その両端突き合せ部及び側縁接合部を気密を保つ様に溶接して一対の金属製慣性質量体6,6の結合を完成させる。更にその後、扇状スペ−サ−18の撤去跡に形成された環状の空間15にあらかじめ設けられている粘性液体注入孔37から粘性液体33を注入し、この注入後粘性液体注入孔37を埋栓38で封止して内燃機関用ねじり緩衝器を完成させる。なお、上記実施の形態においては金属帯材12を用いて一対の金属製慣性質量体6,6の結合を行ったが、図7に示す様な金属環材36を用い、この金属環材36を金属製慣性質量体6,6の外周に嵌め込み、接合部を溶接することによってその結合を行う様にしても良いが、この場合には溶接時の熱収縮に十分な注意を払う必要がある。
【0012】
又、上記製造方法によってゴム製弾性体2の加硫成形を行った場合、ゴム製弾性体2の内周壁43にはベントホ−ル27の跡42が残ってしまうが、これを防ぐ為には加硫成形型22による加硫成形が終了した後、図18に示す様に別の加硫成形型34をセットして再度加圧と加熱を行えばベントホ−ル27の跡42は消えて平滑な内周壁面とすることができる。又、この加硫成形型34をセットする前に、図19に示す様にゴム製弾性体2の内周壁43にカバ−ゴム35をセットし、その外側から加硫成形型34による加硫成形を行っても良い。図20はこの様にして製造した内燃機関用ねじり振動緩衝器の断面図である。又、この場合にはゴム製弾性体2の本体に天然ゴムなどの振動に強い素材を、カバ−ゴム35にブチルゴムなどの耐熱性、耐候性に富む素材をそれぞれ用いることができ、全体としてより耐久性にすぐれた製品を得ることができる。
【0013】
更に、図21に示すものの様に、ベントホ−ル27の取付位置自体を変え、金属製慣性質量体6の内径側部分7に設けられた透孔45を通して加硫成形用ゴム生地23を圧入する様にしても良く、この様にした場合には金属製慣性質量体6に透孔45をあける手間はかかるが、ゴム製弾性体2の周壁にベントホ−ル跡が残ることはなくなり、図18に示す様な処理は不要となる。
【0014】
【発明の効果】
この発明に係る内燃機関用ねじり振動緩衝器の製造方法は上述の通りの構成を有するものであり、ゴム製弾性体2は取付板1と金属製慣性質量体6との間に一回の加硫成形によって形成される為、従来の製造方法によって作られたものの様にゴムと金属の温度膨張係数の違いによって接着面にすべりが生じるおそれはなく、より確実強固な接着となり、耐久性にすぐれた品質の一定した内燃機関用ねじり振動緩衝器を得ることができる。ちなみに、加硫成形を2回に分けて行う従来タイプの内燃機関用ねじり緩衝器における破断力は、約117600N(12t)であったが、この発明に係る方法によって製造した内燃機関用ねじり振動緩衝器におけるそれは約196000N(20t)であり、この点からも本件発明のものの方が耐久性にすぐれていることは明らかである。
【図面の簡単な説明】
【図1】 内燃機関用ねじり振動緩衝器の従来例の断面図。
【図2】 その製造の一工程を示す断面図。
【図3】 その製造の一工程を示す断面図。
【図4】 この発明に係る方法によって製造された内燃機関用ねじり振動緩衝器の断面図。
【図5】 図4に示す実施形態において用いる金属帯材12の斜視図。
【図6】 他の実施形態の断面図。
【図7】 図6に示す実施形態において用いる金属環材36の斜視図。
【図8】 この発明に係る内燃機関用ねじり振動緩衝器の製造方法の一実施形態の最初の工程を説明する為の取付板1と扇状スペ−サ−18の平面図。
【図9】 同じくその断面図。
【図10】 同じく、次の工程を示す取付板1、扇状スペ−サ−18、金属製慣性質量体6が組合された状態の断面図。
【図11】 同じく、更に次の工程を示す加硫成形型22を取付けた状況の断面図。
【図12】 同じく、加硫成形用ゴム生地23を圧入している状況の断面図。
【図13】 同じく、加硫成形型22を取りはずした状況の断面図。
【図14】 同じく、扇状スペ−サ−18を撤去する為、金属製慣性質量体6を引き離した状態の断面図。
【図15】 同じく、金具32を用いた場合の断面図。
【図16】 同じく、扇状スペ−サ−18の撤去後の状況を示した断面図。
【図17】 同じく、一対の金属製慣性質量体6,6の結合封止状況を説明する為の断面図。
【図18】 他の実施形態を示す断面図。
【図19】 更に、他の実施形態を示す断面図。
【図20】 更に、他の実施形態を示す断面図。
【図21】 更に、他の実施形態を示す断面図。
【符号の説明】
1 取付板
2 ゴム製弾性体
3 突起条
4 平坦部
5 オ−バ−ハング溝
6 金属製慣性質量体
7 内径側部分
8 外径側部分
9 段差
10 下面
11 凹穿溝
12 金属帯材
13 接合部
14 空隙
15 空間
16 粘性液体
17 つば部
18 扇状スペ−サ−
19 上面
20 環状突条
21 内周壁
22 加硫成形型
23 加硫成形用ゴム生地
24 ポット部
25 円柱状押圧体
26 本体底面
27 ベントホ−ル
28 ピストン
29 加硫プレス用熱板
30 ギャップ
31 めねじ
33 粘性液体
34 加硫成形型
35 カバ−ゴム
36 金属環材
37 粘性液体注入孔
38 埋栓
39 外周
40 溶接箇所
41 両端突き合せ部
42 ベントホ−ルの跡
43 ゴム製弾性体2の内周壁
44 ゴム製弾性体2の外周壁
45 透孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a torsional vibration damper for an internal combustion engine, and more particularly to a method for efficiently producing a torsional vibration damper for an internal combustion engine that is rich in durability.
[0002]
[Prior art]
In the case of an internal combustion engine having a large torsional vibration such as a diesel engine, a torsional vibration damper (torsion damper) is attached to one end of the crankshaft to absorb and absorb the torsional vibration. As shown in FIG. 1, the torsional vibration damper for an internal combustion engine includes a disc-shaped mounting plate 1 fixed to one end of a crankshaft of the internal combustion engine, and an outer diameter of the mounting plate 1. An annular rubber elastic body 2 concentrically bonded to both front and back surfaces of the metal, and a large-diameter metal inertia mass body 6 bonded so as to sandwich the rubber elastic body 2 from both the front and back surfaces. 1 and a viscous liquid 16 is enclosed in a space 15 formed between the metal inertia mass body 6. In the figure, reference numeral 37 denotes a viscous liquid injection hole, which is sealed with a plug 38 after the viscous liquid 16 is injected into the space 15. Reference numeral 40 denotes a welding location.
[0003]
When this is attached to one end of a crankshaft of an internal combustion engine such as a diesel engine, the mounting plate 1 is directly connected to the crankshaft, so that it rotates with rotational vibration. Since the metal inertia mass body 6 connected to 1 tends to rotate smoothly due to inertia, the difference in motion between the metal inertia mass body 6 and the mounting plate 1 is determined by the elastic force of rubber and the shear resistance of the viscous liquid 16. To absorb torsional vibration.
[0004]
[Problems to be solved by the invention]
In this torsional vibration damper for an internal combustion engine, a space 15 is formed between the mounting plate 1 and the metal inertia mass body 6 in order to enclose the viscous liquid 16. In the conventional manufacturing method, this space is formed. In order to form 15, it was necessary to perform rubber vulcanization molding in two steps. That is, as shown in FIG. 2, first, the rubber elastic body 2 is vulcanized and bonded to the front and back of the mounting plate 1, and then the metal inertia mass body 6 is applied from both sides thereof as shown in FIG. Sulfur bond. Thereafter, the outer periphery 39 of the joint portion of the metal inertia mass bodies 6 and 6 is welded, and the viscous liquid 16 is injected into the space 15 from the viscous liquid injection hole 37, and the torsional vibration damper for the internal combustion engine as shown in FIG. It was. The metal inertia mass body 6 and the rubber elastic body 2 have a difference of about 10 times in the coefficient of thermal expansion during vulcanization bonding due to the difference in material between metal and rubber. For this reason, when heat is applied during vulcanization, it is inevitable that the rubber slips on the bonding surface between the metal inertia mass body 6 and the rubber elastic body 2. If slipping occurs during vulcanization bonding, the bonding will naturally be adversely affected. In general, since the slip on the outer peripheral side is larger than that on the inner peripheral side, poor adhesion tends to occur in the outer peripheral portion. The present invention relates to a torsional vibration damper for an internal combustion engine. A high-quality torsion for an internal combustion engine in which both the metal inertial mass body 6 and the rubber elastic body 2 are securely bonded together without causing defective bonding. It is intended to provide a method for efficiently producing a vibration damper.
[0005]
[Means for Solving the Problems]
The present invention has a fan-like shape in which a circular body having an outer diameter larger than the outer diameter of the mounting plate 1 is divided in the radial direction on the front and back of the mounting plate 1 having a disk shape, and the inner edge is upward. The fan-shaped spacers 18 bent into the flange portions 17 are radially arranged so that the flange portions 17 face each other in the front and back directions, and are smaller than the inner diameter of the fan-shaped spacers 18. A thick annular ring having an outer diameter that is substantially the same as the outer diameter of the fan-shaped spacer 18 is formed, the upper surface 19 is formed flat, and a wide annular ridge 20 is formed at a position near the outer diameter of the lower surface. The formed metal inertia mass body 6 is brought into pressure contact with the fan spacer 18 so that the annular protrusion 20 is in close contact with the inner side of the flange portion 17 of the fan spacer 18. It has a bottomed cylindrical shape and can be filled with rubber fabric 23 for vulcanization molding inside the cylinder. A cylindrical shape having a diameter slightly smaller than the inner diameter of the metal inertia mass body 6 on the outer side of the bottom surface and having a thickness corresponding to the total thickness of the fan-shaped spacer 18 and the metal inertia mass body 6. The vulcanization mold 22 in which the pressing body 25 is formed concentrically, the cylindrical pressing body 25 is in close contact with the central portion of the mounting plate 1, and the outer portion of the main body bottom surface 26 is in close contact with the upper surface of the metal inertia mass body 6. In such a manner, the main body bottom surface 26 of the vulcanization mold 22 is provided in an annular space formed between the lower surface on the inner diameter side of the metal inertia mass body 6 and the upper surface of the mounting plate 1 facing the metal inertia mass body 6. The rubber material 23 for vulcanization molding is press-fitted and heated through the vent hole 27 to vulcanize the annular rubber elastic body 2 on the front and back of the mounting plate 1, and the vulcanization mold 22 is attached to the mounting plate 1 and the metal. After separating from the inertial mass body 6, the annular ridge 2 of the metal inertial mass body 6 The metal inertia mass bodies 6 are forcibly separated in the front and back directions so that a gap 30 higher than the height of the collar portion 17 is formed between the lower surface of the fan and the upper surface of the fan-shaped spacer 18. The fan-shaped spacer 18 is removed from the formed gap 30 to the outside of the metal inertial mass 6, and then the metal inertial mass 6 is returned to the original position by the elastic contraction force of the rubber elastic body 2. The metal band 12 is surrounded by the outer peripheral edge so as to cover the gap between the outer peripheral edges formed between the pair of metal inertia mass bodies 6, and the joint surface is welded, and then the fan-shaped spacer is formed. The above problem was solved by manufacturing a torsional vibration damper for an internal combustion engine by enclosing the viscous liquid 16 in an annular space 15 formed in 18 removal marks.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Prior to the description of the method for manufacturing the torsional vibration damper for the internal combustion engine according to the present invention, the configuration of the torsional vibration damper for the internal combustion engine manufactured according to the present invention will be described with reference to FIG. FIG. 4 is a cross-sectional view thereof, in which 1 is a disc-shaped mounting plate, and rubber elastic bodies 2 are fixed concentrically on both front and back surfaces. The rubber elastic body 2 has a thick annular shape having an outer diameter smaller than that of the mounting plate 1, and a protrusion 3 rising upward is formed on the upper surface of the inner peripheral edge, and a flat portion 4 is integrally formed on the outer side thereof. An overhang groove 5 is formed in the lower part of the outer peripheral edge. The overhang groove 5 is formed in a circular arc shape in the inner diameter direction. On the other hand, 6 is a metal inertia mass body, the inner diameter is larger than the inner diameter of the rubber elastic body 2, the outer diameter is larger than the outer diameter of the mounting plate 1, and forms a thick ring. . In this metal inertia mass body 6, a small-diameter inner diameter side portion 7 and a large-thickness outer diameter side portion 8 are integrally formed by a step 9, and the lower surface 10 of the inner diameter side portion 7 It has a concave shape that matches the shape of the upper surface of the rubber elastic body 2 and its outer peripheral edge. A wide annular ridge 20 is formed on the outer peripheral side portion 8, and the thickness of the outer peripheral side portion 8 is as follows. It is the grade which the space | gap 14 arises between the mounting plate 1 surfaces which oppose. A concave groove 11 is formed at the lower end of the outer peripheral edge of the metal inertia mass body 6. The metal inertia mass body 6 is firmly vulcanized and bonded to the rubber elastic body 2 so as to sandwich the rubber elastic body 2 from the front and back sides, and the gap between the opposed recessed grooves 11 and 11 is as shown in FIG. A metal strip 12 is surrounded, and both end butted portions 41 and 41 and side edge joints 13 of the metal strip 12 are welded. A pair of metal inertia mass bodies 6 and 6 are welded by the metal strip 12. The outer peripheries are joined in an airtight state. A viscous liquid 16 is enclosed in an annular space 15 formed by the overhang groove 5 and the gap 14. Reference numeral 37 denotes a viscous liquid injection hole formed from the upper surface to the back surface of the metal inertia mass body 6, and 38 denotes a plug for sealing the viscous liquid injection hole. The metal strip 12 is surrounds the outer periphery of the metal inertial mass 6 in凹穿groove 11, as those shown in FIG. 6, no particular form凹穿groove 11, made of metal In some cases , a metal ring member 36 as shown in FIG. 7 is directly fitted on the outer periphery of the inertial mass body 6 and the joint portion is welded .
[0007]
Here, an embodiment of a method for manufacturing the torsional vibration damper for an internal combustion engine will be described with reference to the drawings . First, as shown in the plan view of FIG. 8 and the cross-sectional view of FIG. 9, a fan-shaped spacer is formed in which a fan shape is formed on the front and back of the peripheral portion of the mounting plate 1 and the inner edge is bent upward to form a flange portion 17. The spacers 18 are arranged radially without gaps so that the flange portions 17 face the front and back directions of the mounting plate 1, respectively. The outer diameter of the fan-shaped spacer 18 is larger than the outer diameter of the mounting plate 1. Next, as shown in FIG. 10, a thick ring having an inner diameter smaller than the inner diameter of the fan-shaped spacer 18 and substantially the same outer diameter as the fan-shaped spacer 18 is formed, and the upper surface 19 is flat. The metal inertia mass body 6 is formed with a wide annular ridge 20 formed at a position smaller than the outer diameter of the lower surface, and the inner peripheral wall 21 of the annular ridge 20 is a flange portion of the fan-shaped spacer 18. The fan-shaped spacer 18 is covered so as to be in close contact with the inner side of 17 and the vulcanization mold 22 is pressed from above as shown in FIG.
[0008]
The vulcanization mold 22 has a bottomed cylindrical shape, and the inside of the cylinder is a pot portion 24 that is filled with a rubber material 23 for vulcanization molding. The outer side of the bottom is slightly smaller than the inner diameter of the metal inertia mass body 6. A cylindrical pressing body 25 having a small diameter and a thickness that matches the total thickness of the fan-shaped spacer 18 and the metal inertia mass body 6 is integrally formed concentrically. A vent hole 27 is connected between the side surface of the columnar pressing body 25 and the main body bottom surface 26. Further, a piston 28 that presses the rubber material 23 for vulcanization molding is inserted into the pot portion 24 of the vulcanization mold 22, and a vulcanizing press hot plate 29 is attached to the upper end of the piston 28. The piston 28 is applied with a pressing force and heat for vulcanization. Then, when the pair of vulcanization molds 22 and 22 are pressed against the metal inertia mass body 6 from the front and back sides and the piston 28 is slid while heating, the vulcanization molding rubber filled in the pot portion 24 is obtained. The dough 23 passes through the vent hole 27 and is formed between the lower surface 10 on the inner diameter side of the metal inertia mass body 6, the upper surface of the mounting plate facing this, and the side wall of the cylindrical pressing body 25 as shown in FIG. The rubber elastic body 2 that flows into the annular space and is firmly bonded to the mounting plate 1 and the metal inertia mass body 6 by pressurization and heating is formed. In this embodiment, while applying heat of about 150 ° C. to the rubber material 23 for vulcanization molding, it was pumped into the space at a pressure of about 49000 N (50 t), and this heating and pressurization was continued for about 15 minutes.
[0009]
After completing the vulcanization molding of the rubber elastic body 2 in this manner, as shown in FIG. 13, the vulcanization mold 22 is separated from the mounting plate 1 and the metal inertia mass body 6, and further, a fan-shaped spacer. -18 is removed from between the mounting plate 1 and the metal inertia mass body 6. However, there is a collar portion 17 inside the fan-shaped spacer 18, and since this collar portion 17 is caught on the inner side surface of the metal inertia mass body 6, it cannot be pulled out as it is. As shown in FIG. 14, the inertial mass body 6 is forcibly pulled away from the front and back sides, and this fan-shaped spacer 18 is passed through a gap 30 formed between the surface of the mounting plate 1 and the metal inertial mass body 6. Remove. The metal inertia mass body 6 may be separated by using an appropriate means such as hooking the stepped portion of the concave groove 11 to pull it, but this separation requires a force of about 9800 N (10 t). There is a possibility that the metal inertia mass body 6 may be deformed or distorted if force is applied forcibly. Therefore, as shown in FIG. 15, a female screw 31 is provided in advance from the surface of the metal inertia mass body 6 to the inside thereof, and is plugged with a bolt (not shown) at the time of vulcanization molding, and this vulcanization molding is completed after completion of the vulcanization molding. If the bolts are removed, the metal fittings 32 are screwed onto the female threads 31, and the metal 32 is forcibly pulled apart, deformation and distortion of the metal inertia mass body 6 can be prevented.
[0010]
Since the rubber elastic body 2 is firmly bonded to the mounting plate 1 and the metal inertia mass body 6, when the metal inertia mass body 6 is pulled away, the rubber elastic body 2 is rubber as shown in FIGS. 14 and 15. Both the inner peripheral wall 43 and the outer peripheral wall 44 of the elastic body 2 are greatly constricted. At this time, if the amount of separation is too large, the rubber elastic body 2 may be split or peeled off. Therefore, the amount of separation should be limited to 70 to 80% of the height of the annular ridge 20. It goes without saying that the limit of the amount of separation varies depending on the material, hardness, and shape of the rubber elastic body 2. When the removal of the fan-shaped spacer 18 is completed, an annular space 15 is formed in the removed trace of the fan-shaped spacer 18 as shown in FIG.
[0011]
Thereafter, as shown in FIG. 17, the metal strip 12 is fitted into the concave groove 11 so as to cover the gaps between the outer peripheral facing surfaces of the pair of metal inertia mass bodies 6 and 6, and both end butted portions and side edges thereof are covered. The joint is welded so as to keep hermeticity, and the connection of the pair of metal inertia mass bodies 6 and 6 is completed. Thereafter, the viscous liquid 33 is injected from the viscous liquid injection hole 37 provided in advance in the annular space 15 formed in the removal space of the fan-shaped spacer 18, and the viscous liquid injection hole 37 is plugged after this injection. Sealing at 38 completes the torsional shock absorber for the internal combustion engine. In the above embodiment, the pair of metal inertia mass bodies 6 and 6 are coupled using the metal strip 12, but the metal ring 36 as shown in FIG. May be fitted to the outer periphery of the inertial mass bodies 6 and 6 made of metal and the joints are welded, but in this case, it is necessary to pay sufficient attention to the heat shrinkage during welding. .
[0012]
Further, when the rubber elastic body 2 is vulcanized by the above manufacturing method, the trace 42 of the vent hole 27 remains on the inner peripheral wall 43 of the rubber elastic body 2. After the vulcanization molding by the vulcanization mold 22 is completed, if another vulcanization mold 34 is set and pressurization and heating are performed again as shown in FIG. 18, the trace 42 of the vent hole 27 disappears and becomes smooth. The inner peripheral wall surface can be used. Before setting the vulcanization mold 34, as shown in FIG. 19, the cover rubber 35 is set on the inner peripheral wall 43 of the rubber elastic body 2, and the vulcanization molding by the vulcanization mold 34 is performed from the outside. May be performed. FIG. 20 is a cross-sectional view of the torsional vibration damper for the internal combustion engine manufactured as described above. In this case, the rubber elastic body 2 can be made of a material resistant to vibration such as natural rubber, and the cover rubber 35 can be made of a material having high heat resistance and weather resistance such as butyl rubber. Products with excellent durability can be obtained.
[0013]
Further, as shown in FIG. 21, the mounting position itself of the vent hole 27 is changed, and the rubber material 23 for vulcanization molding is press-fitted through the through hole 45 provided in the inner diameter side portion 7 of the metal inertia mass body 6. In this case, it takes time to open the through hole 45 in the metal inertia mass body 6, but the vent hole mark does not remain on the peripheral wall of the rubber elastic body 2, and FIG. The processing as shown in is not required.
[0014]
【The invention's effect】
The method for manufacturing a torsional vibration damper for an internal combustion engine according to the present invention has the configuration as described above, and the rubber elastic body 2 is applied between the mounting plate 1 and the metal inertia mass body 6 once. Because it is formed by sulfur molding, there is no risk of slipping on the adhesive surface due to the difference in the thermal expansion coefficient between rubber and metal unlike those made by conventional manufacturing methods, resulting in more reliable and strong adhesion and excellent durability. A torsional vibration damper for an internal combustion engine with a constant quality can be obtained. Incidentally, the breaking force in the conventional type torsion buffer for the internal combustion engine in which the vulcanization molding is divided into two times is about 117600 N (12 t), but the torsional vibration buffer for the internal combustion engine manufactured by the method according to the present invention is used. It is about 196000 N (20 t) in the vessel, and it is clear from this point that the product of the present invention is more durable.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a conventional example of a torsional vibration damper for an internal combustion engine.
FIG. 2 is a cross-sectional view showing one process of the manufacturing.
FIG. 3 is a cross-sectional view showing one process of the manufacturing.
FIG. 4 is a cross-sectional view of a torsional vibration damper for an internal combustion engine manufactured by the method according to the present invention.
5 is a perspective view of a metal strip 12 used in the embodiment shown in FIG.
FIG. 6 is a cross-sectional view of another embodiment.
7 is a perspective view of a metal ring member 36 used in the embodiment shown in FIG.
FIG. 8 is a plan view of the mounting plate 1 and the fan-shaped spacer 18 for explaining the first step of one embodiment of the method of manufacturing the torsional vibration damper for the internal combustion engine according to the present invention.
FIG. 9 is a sectional view of the same.
FIG. 10 is a cross-sectional view showing a state in which the mounting plate 1, the fan-shaped spacer 18, and the metal inertia mass body 6 are combined in the same manner, showing the next step.
FIG. 11 is a cross-sectional view of a situation where a vulcanization mold 22 is attached, showing the next step.
FIG. 12 is a cross-sectional view showing a state where a rubber material for vulcanization molding 23 is press-fitted in the same manner.
FIG. 13 is a cross-sectional view of the vulcanization mold 22 removed in the same manner.
FIG. 14 is a cross-sectional view showing a state where the metal inertia mass body 6 is pulled apart in order to remove the fan-shaped spacer 18.
FIG. 15 is a cross-sectional view when a metal fitting 32 is used.
FIG. 16 is a cross-sectional view showing the situation after the fan-shaped spacer 18 is removed.
FIG. 17 is a cross-sectional view for explaining the joint sealing state of a pair of metal inertia mass bodies 6 and 6 in the same manner.
FIG. 18 is a cross-sectional view showing another embodiment.
FIG. 19 is a cross-sectional view showing still another embodiment.
FIG. 20 is a cross-sectional view showing still another embodiment.
FIG. 21 is a cross-sectional view showing another embodiment.
[Explanation of symbols]
1 Mounting plate
2 Rubber elastic body
3 protrusions
4 flat part
5 Overhang groove
6 Inertial mass body made of metal
7 Inner diameter side
8 Outer diameter side
9 Step 10 Lower surface 11 Recessed groove 12 Metal strip 13 Joint 14 Space 15 Space 16 Viscous liquid 17 Collar 18 Fan-shaped spacer
19 upper surface 20 annular protrusion 21 inner peripheral wall 22 vulcanization mold 23 rubber material for vulcanization molding 24 pot part 25 cylindrical pressing body 26 bottom surface of main body 27 vent hole 28 piston 29 hot plate for vulcanization press 30 gap 31 female thread 33 Viscous liquid 34 Vulcanization molding die 35 Cover rubber 36 Metal ring material 37 Viscous liquid injection hole 38 Embedding 39 Outer periphery 40 Welded portion 41 Both ends butted portion 42 Trace of vent hole 43 Inner peripheral wall 44 of rubber elastic body 2 44 Outer peripheral wall of rubber elastic body 2 45 Through hole

Claims (5)

円板状をなした取付板1の表裏に、前記取付板1の外径より大きな外径を有した環状体をその半径方向に分割した外観を呈する扇形をなし、内縁が上方に屈曲せしめられてつば部17となっている扇状スペ−サ−18を、前記つば部17がそれぞれ表裏方向を向く様に放射状にすき間なく配列し、前記扇状スペ−サ−18の内径より小さな内径で扇状スペ−サ−18の外径とほぼ同じ外径を有した肉厚環状をなし、上面19が平坦状に形成され、下面の外径寄りの位置に幅の広い環状突条20が形成された金属製慣性質量体6を、その環状突条20をその内周壁21が扇状スペ−サ−18のつば部17の内側に密着する様に扇状スペ−サ−18に圧接させ、有底筒形をなし、筒内部に加硫成形用ゴム生地23を充填できる様になっており、底面外側には前記金属製慣性質量体6の内径より若干小さな径を有し、扇状スペ−サ−18と金属製慣性質量体6の厚さ合計と一致する厚さを有する円柱状押圧体25を同心円状に形成した加硫成形型22を、その円柱状押圧体25が取付板1の中央部に、本体底面26の外側部分が金属製慣性質量体6の上面にそれぞれ密着する様に表裏から圧接し、金属製慣性質量体6の内径側下面とこれに対向した取付板1の上面との間に形成されている環状の空間に加硫成形型22の本体底面26に設けられたベントホ−ル27を通して、加硫成形用ゴム生地23を圧入加熱して取付板1の表裏に環状ゴム製弾性体2を加硫成形し、この加硫成形型22を取付板1及び金属製慣性質量体6から分離した後、金属製慣性質量体6の環状突条20の下面と扇状スペ−サ−18の上面との間に、つば部17の高さ以上のギャップ30が出来る様に、金属製慣性質量体6をそれぞれ表裏方向に強制的に引き離し、この引き離しによって形成されたギャップ30から扇状スペ−サ−18を金属製慣性質量体6外に撤去し、その後、ゴム製弾性体2の弾性的収縮力によって金属製慣性質量体6を元の位置に戻させ、一対の金属製慣性質量体6の間に形成される外周縁のすき間を覆う様に、その外周縁に金属帯体12を囲繞せしめてその接合面を溶接し、しかる後に扇状スペ−サ−18の撤去跡に形成された環状の空間15に粘性液体16を封入することを特徴とする内燃機関用ねじり振動緩衝器の製造方法。On the front and back of the mounting plate 1 in the form of a disk, a fan-like shape having an appearance obtained by dividing an annular body having an outer diameter larger than the outer diameter of the mounting plate 1 in the radial direction is formed, and the inner edge is bent upward. The fan-shaped spacers 18 that are the flange portions 17 are arranged radially so that the flange portions 17 face the front and back sides, and the fan-shaped spacer 18 has an inner diameter smaller than the inner diameter of the fan-shaped spacer 18. A metal having a thick annular shape having an outer diameter substantially the same as the outer diameter of the sensor 18, the upper surface 19 formed flat, and a wide annular protrusion 20 formed at a position near the outer diameter of the lower surface The inertial mass body 6 is brought into pressure contact with the fan-shaped spacer 18 so that the annular ridge 20 thereof is in close contact with the inner side of the flange portion 17 of the fan-shaped spacer 18 to form a bottomed cylindrical shape. None, inside the cylinder can be filled with rubber fabric 23 for vulcanization molding, A cylindrical pressing body 25 having a diameter slightly smaller than the inner diameter of the metal inertia mass body 6 on the outside and having a thickness that matches the total thickness of the fan-shaped spacer 18 and the metal inertia mass body 6 is provided. The vulcanization mold 22 formed concentrically is viewed from the front and back so that the cylindrical pressing body 25 is in close contact with the center portion of the mounting plate 1 and the outer portion of the main body bottom surface 26 is in close contact with the upper surface of the metal inertia mass body 6. A vent hole provided on the bottom surface 26 of the main body 26 of the vulcanization mold 22 in an annular space formed between the lower surface on the inner diameter side of the metal inertia mass body 6 and the upper surface of the mounting plate 1 opposed thereto. The rubber dough 23 for vulcanization molding is press-fitted and heated through a lug 27 to vulcanize and mold the elastic body 2 made of an annular rubber on the front and back of the mounting plate 1. After the separation from the lower surface of the annular ridge 20 of the metal inertia mass body 6 and the fan The metal inertia mass bodies 6 are forcibly separated in the front and back directions so that a gap 30 higher than the height of the flange portion 17 is formed between the upper surface of the spacer 18 and the gap formed by this separation. The fan-shaped spacer 18 is removed from the metal inertia mass body 6 from 30, and then the metal inertia mass body 6 is returned to the original position by the elastic contraction force of the rubber elastic body 2. The metal strip 12 is surrounded by the outer peripheral edge so as to cover the gap between the outer peripheral edges formed between the inertial mass bodies 6 and the joint surface is welded, and then the fan-shaped spacer 18 is removed. A method of manufacturing a torsional vibration damper for an internal combustion engine, wherein a viscous liquid 16 is sealed in an annular space 15 formed in the above. 加硫成形型22によって取付板1の表裏にゴム製弾性体2を加硫成形した後、ベントホ−ルを有しない別の加硫成形型34をゴム製弾性体2の内周壁に接する様に取付板1の表裏から再度押圧せしめ、一定時間加圧及び加熱することにより、ベントホ−ル跡を消去せしめることを特徴とする請求項記載の内燃機関用ねじり振動緩衝器の製造方法。After the rubber elastic body 2 is vulcanized and molded on the front and back of the mounting plate 1 by the vulcanization mold 22, another vulcanization mold 34 having no vent hole is brought into contact with the inner peripheral wall of the rubber elastic body 2. again allowed pressed from both sides of the mounting plate 1, by a certain time pressure and heat, Bentoho - the process according to claim 1 torsional vibration damper for an internal combustion engine, wherein the allowed to erase Le trace. ゴム製弾性体2の内周壁と加硫成形型34との間にカバ−ゴム35を介在させ、このカバ−ゴム35をゴム製弾性体2の内周壁に加硫接着せしめることを特徴とする請求項記載の内燃機関用ねじり振動緩衝器の製造方法。A cover rubber 35 is interposed between the inner peripheral wall of the rubber elastic body 2 and the vulcanization mold 34, and the cover rubber 35 is vulcanized and bonded to the inner peripheral wall of the rubber elastic body 2. A method for manufacturing a torsional vibration damper for an internal combustion engine according to claim 2 . 金属製慣性質量体6の上面から内側にかけてめねじ31を形成し、このめねじ31に引っ張り用の金具32を螺合させ、この引っ張り用金具32を引っ張ることにより、一対の金属製慣性質量体6,6を引き離して扇状スペ−サ−18を引き抜くことを特徴とする請求項記載の内燃機関用ねじり振動緩衝器の製造方法。A female thread 31 is formed from the upper surface to the inner side of the metal inertia mass body 6, a pulling metal fitting 32 is screwed onto the female screw 31, and the pulling metal fitting 32 is pulled to thereby form a pair of metal inertia mass bodies. fan space and pull the 6,6 - the process according to claim 1, torsional vibration damper for an internal combustion engine, wherein the withdrawal of the service -18. ゴム製弾性体2の本体を天然ゴムで、カバーゴム35をブチルゴムで形成することを特徴とする請求項3記載の内燃機関用ねじり振動緩衝器の製造方法。  4. A method of manufacturing a torsional vibration damper for an internal combustion engine according to claim 3, wherein the main body of the rubber elastic body 2 is made of natural rubber and the cover rubber 35 is made of butyl rubber.
JP34999999A 1999-12-09 1999-12-09 Method of manufacturing torsional vibration damper for internal combustion engine Expired - Fee Related JP3706513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34999999A JP3706513B2 (en) 1999-12-09 1999-12-09 Method of manufacturing torsional vibration damper for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34999999A JP3706513B2 (en) 1999-12-09 1999-12-09 Method of manufacturing torsional vibration damper for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001165243A JP2001165243A (en) 2001-06-19
JP3706513B2 true JP3706513B2 (en) 2005-10-12

Family

ID=18407556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34999999A Expired - Fee Related JP3706513B2 (en) 1999-12-09 1999-12-09 Method of manufacturing torsional vibration damper for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3706513B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448786B1 (en) * 2001-12-19 2004-09-16 현대자동차주식회사 variable inertia type torsional vibration damper
KR100448787B1 (en) * 2001-12-19 2004-09-16 현대자동차주식회사 variable inertia type torsional vibration damper
JP3998586B2 (en) * 2003-02-07 2007-10-31 日野自動車株式会社 Torsional damper and manufacturing method thereof
JP4703461B2 (en) * 2006-03-29 2011-06-15 冨士自動車興業株式会社 Method of manufacturing torsional vibration damper for internal combustion engine
JP2008057582A (en) * 2006-08-29 2008-03-13 Bridgestone Corp Torsional damper

Also Published As

Publication number Publication date
JP2001165243A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
CN101187424B (en) Hole plug
JPS5950368B2 (en) "Filter" for transmission fluid and its manufacturing method
JPS5915297B2 (en) Method and apparatus for depositing gasket bands
JP3706513B2 (en) Method of manufacturing torsional vibration damper for internal combustion engine
JPH0332843Y2 (en)
US2444904A (en) Bonded rubber joint for couplings and the like and method of making the same
JP3588350B2 (en) Method of manufacturing torsional vibration damper for internal combustion engine
JPS62231725A (en) Manufacture of piston ring
JPH0427382B2 (en)
JP4703461B2 (en) Method of manufacturing torsional vibration damper for internal combustion engine
US4073047A (en) Method of making vibration damper
JP2791387B2 (en) Infusion bag and manufacturing method thereof
JP3282918B2 (en) Retainer-integrated sealing device and method of manufacturing the same
FR2620077A1 (en) PROCESS FOR THE MANUFACTURE OF PROTECTIVE ORGAN COVERS FOR MOTOR VEHICLE ENGINES BY SUCCESSIVE INJECTIONS OF POLYMER AND ELASTOMER AND COVER OBTAINED BY THIS PROCESS
JPH0314969A (en) Sealing device and its manufacture
JPH023068B2 (en)
JPH0149615B2 (en)
JPH066310B2 (en) Baking-molded product manufacturing method
JPH01188768A (en) Manufacture for sealing device and molding tool thereof
JPH0727133Y2 (en) Mold
JP3347211B2 (en) Method of manufacturing seat ring for mechanical seal
JPH02240460A (en) Insert molded product and molding method thereof
JPS6138267A (en) Manufacture of oil seal
JPS6252687B2 (en)
JPH0532454Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050729

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees