JP3998084B2 - 異方性反射のシミュレーション方法、及びシミュレーション装置 - Google Patents

異方性反射のシミュレーション方法、及びシミュレーション装置 Download PDF

Info

Publication number
JP3998084B2
JP3998084B2 JP24067398A JP24067398A JP3998084B2 JP 3998084 B2 JP3998084 B2 JP 3998084B2 JP 24067398 A JP24067398 A JP 24067398A JP 24067398 A JP24067398 A JP 24067398A JP 3998084 B2 JP3998084 B2 JP 3998084B2
Authority
JP
Japan
Prior art keywords
angle
image
scalar field
reflection
dimensional scalar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24067398A
Other languages
English (en)
Other versions
JP2000075780A (ja
Inventor
直樹 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP24067398A priority Critical patent/JP3998084B2/ja
Publication of JP2000075780A publication Critical patent/JP2000075780A/ja
Application granted granted Critical
Publication of JP3998084B2 publication Critical patent/JP3998084B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Description

【0001】
【産業上の利用分野】
本発明は、繊維潜り角の分布を現す二次元スカラ場に基づいて万線パターンを作成し、その万線パターンによってエンボス加工した場合、どのような照り、あるいは照りの移動が発現されるかをシミュレートする異方性反射のシミュレーション方法、及びシミュレーション装置に関する。
【0002】
【従来の技術】
壁紙や床材等の建材の表面装飾や、家具の表面装飾のために用いる化粧シートにおいては、照りと称される光沢模様を表現するために、万線パターンを直接化粧シートにエンボス加工したり、あるいは透明なシートに万線パターンをエンボス加工してエンボスシートを作成し、そのエンボスシートを木目柄等の模様を印刷した化粧シートに貼り付けて積層構造とすることが広く行われている。
【0003】
このように、万線パターンをエンボス加工することによって照り、あるいは照りの移動が表現できる原理は概略次のようである。
図5は、万線パターンをエンボス加工して万線条溝Gが形成されたシートEの斜視図であり、この例では、幅W1の万線条溝GがW2の間隔で多数形成されている。シートEの全体の厚みD1に対して、万線条溝Gは深さD2の溝を形成しており、多数の万線条溝Gがほぼ平行に配置されている。このような万線条溝Gからなるパターンは、幅W1をもった凹部と幅W2をもった凸部との二段階の段差構造を有している。
【0004】
このような万線条溝Gが形成されたシートEは、その表面から得られる反射光の強度が位置によって異なることが知られている。つまり、異方性反射を行うのである。そして、このようなシートEを見る視線を連続的に変化させると、強く反射する箇所、即ち輝度が高く、明るく光る箇所が変化していく。これが照りの移動と称されるものである。
【0005】
さて、上述したような照り、及び照りの移動を表現する万線パターンとしては、エンボス加工を行った場合に、天然の木材が発現するような自然な照り、及び照りの移動を表現できるものが望ましいことは当然である。そこで、天然の木材が照り、及び照りの移動を発現する原理を考えると、それは、木材表面における繊維潜り角に起因していることが知られている。概略説明すると次のようである。
【0006】
図6は、材木板表面の繊維質の配向性と鏡面反射率との関係を説明する図である。いま、材木板100の表面(切断面J)に、図に繊維方向ベクトルF→(電子出願の制約から、本来符号の上部に付記するベクトル記号“→”を符号右側に付記することにする)として示すような配向性をもって繊維Fが配置されているものとする。このとき、切断面Jと繊維Fとのなす角ξは繊維潜り角と呼ばれている。
【0007】
そして、材木板100の上方に仮想光源200(面光源)を仮定し、この仮想光源200から材木板100の表面(切断面J)に対して垂直な光線が照射され、この表面からの拡散反射光および鏡面反射光を観察することを考える。この場合、観察される拡散反射光の強度は、材木板100の表面の木目模様の色成分によって左右され、この拡散反射光による画像は、いわゆる着色された模様として認識されることになる。一方、観察される鏡面反射光の強度W(光沢度)は、繊維潜り角ξによって左右され、通常、図7のグラフに示すような関係となる。より正確には、各部における鏡面反射光強度は、光の照射方向と繊維潜り角ξとの双方によって決定される。即ち、図6に示すように、切断面J上の点Pにおいて、光線方向ベクトルL→と繊維方向ベクトルF→とを図のように定義すれば、両ベクトルの交錯角φによって点Pにおける鏡面反射光強度が決定されることになる。上述の例のように、光線方向ベクトルL→が切断面Jに対して垂直であるモデルの場合、ベクトル交錯角φ=90°−ξとなり、図7のグラフに示すように、φ=90°のときに鏡面反射光強度が最高になり、φ= 0°のときに最低となる。
【0008】
実際の天然木から切り出した材木板の表面に照り模様が見られるのは、切断面上の各部分ごとに異なる繊維潜り角ξが得られるからであり、この部分毎に異なる繊維潜り角ξに基づいて照り模様が現れることになるのである。また、以上のことから、例えば図6において観察位置を変えずに仮想光源200を移動させた場合、あるいは仮想光源200の位置を固定して観察位置を変えた場合には、材木板100の照りが発現する位置が変化することになることは明らかであろう。これが照りの移動である。
【0009】
そこで、近年では、適宜な手法を用いてコンピュータにより繊維潜り角の二次元分布を求めて、繊維潜り角の二次元スカラ場を作成し、その二次元スカラ場に基づいて万線パターンを作成し、その万線パターンを用いてエンボス版を作成してエンボス加工したり、あるいは、天然の木材から各位置での繊維潜り角を抽出して二次元スカラ場を作成し、その二次元スカラ場に基づいて万線パターンを作成し、その万線パターンを用いてエンボス版を作成してエンボス加工したりすることが行われている。
【0010】
なお、繊維潜り角の二次元スカラ場に基づいて万線パターンを作成する方法については種々の方法が考えられる。例えば、一つの方法としては、一つの万線パターンについて始点、及び描画する長さを定め、まず、始点の位置に対応する二次元スカラ場の位置における繊維潜り角の方向に線を適宜な長さだけ描画し、更にその描画した線の終点の位置に対応する二次元スカラ場の位置における繊維潜り角の方向に線を適宜な長さだけ描画していく処理を、定められた長さになるまで繰り返していく方法が考えられる。これにより一つの万線パターンが描画されることになり、このような処理を所望の数の万線パターンについて行えばよい。
【0011】
【発明が解決しようとする課題】
しかしながら、何等かの手法により繊維潜り角の二次元スカラ場を作成したとしても、その二次元スカラ場に基づいて万線パターンを作成し、その万線パターンを用いてエンボス版を作成してエンボス加工を行った場合に、デザイナーが意図する通りの照り、及び照りの移動が得られるかどうかは全く判らず、実際に万線パターンを作成し、エンボス加工を行ってみないと判らないものであった。
しかし、実際にエンボス加工を行わないと作成した二次元スカラ場の良否が判断できないのでは、時間もかかり、作り直し等を行うとコストも高くなってしまう。
【0012】
そこで、本発明は、作成した二次元スカラ場の良否を判断、評価するための異方性反射のシミュレーション方法、及びシミュレーション装置を提供することを目的とするものである。
【0013】
【課題を解決するための手段】
上記の目的を達成するために、請求項1記載の異方性反射のシミュレーション方法は、各画素位置(x,y)に対して繊維潜り角ξが書き込まれた二次元スカラ場に基づいて作成した万線パターンをエンボス加工したシートに現れる照り、及び照りの移動をシミュレーションするための異方性反射のシミュレーション方法であって、仮想的な光源からの光が各画素位置(x,y)に対して、各画素位置(x,y)での法線から反時計回りにδの角度方向から入射するとしたときの、前記二次元スカラ場の各画素位置(x,y)からの異方性反射による反射強度L c (x,y)を、θ=δ−ξで与えられる角度θの関数として定義し、その定義した関数に基づいて角度δのときの二次元スカラ場の各画素位置(x,y)での異方性反射の反射光強度 c (x,y)を求めて照り画像を作成し、その照り画像と下絵画像とを合成して表示する処理を、前記角度δを順次変更しながら行うことを特徴とする。
【0014】
請求項2記載の異方性反射のシミュレーション装置は、各画素位置(x,y)に対して繊維潜り角ξが書き込まれた二次元スカラ場に基づいて作成した万線パターンをエンボス加工したシートに現れる照り、及び照りの移動をシミュレーションするための異方性反射のシミュレーション装置であって、仮想的な光源からの光が各画素位置(x,y)に対して、各画素位置(x,y)での法線から反時計回りにδの角度方向から入射するとしたときの、前記二次元スカラ場の各画素位置(x,y)からの異方性反射による反射強度L c (x,y)を、θ=δ−ξで与えられる角度θの関数として定義する手段と、前記手段によって定義した関数に基づいて角度δのときの二次元スカラ場の各画素位置(x,y)での異方性反射の反射光強度 c (x,y)を求めて照り画像を作成し、その照り画像と下絵画像とを合成して表示する処理を、前記角度δを順次変更しながら行う手段とを備えることを特徴とする。
【0015】
【発明の実施の形態】
以下、図面を参照しつつ発明の実施の形態について説明する。
図1は本発明に係る異方性反射のシミュレーション装置の一実施形態を示す図であり、図中、1は二次元スカラ場入力装置、2はパラメータ設定装置、3は画像入力装置、4はレンダリング処理装置、5は画像合成装置、6は画像表示装置を示す。
【0016】
まず、図1に示す構成の各装置の概略について説明する。
二次元スカラ場画像入力装置1は、繊維潜り角の二次元分布を表している二次元スカラ場を入力するものである。この二次元スカラ場の入力は、当該二次元スカラ場がフロッピーディスク等の適宜な記憶媒体に記憶されている場合には、当該記憶媒体から読み出せばよく、また、二次元スカラ場を生成する装置とネットワークで接続されている場合には、このネットワークを介して取り込めばよい。なお、入力される二次元スカラ場は各画素に対して繊維潜り角が書き込まれたものであることは当然であり、どのような方法で作成されたものでもよい。
【0017】
パラメータ設定装置2は、二次元スカラ場入力装置1から入力した二次元スカラ場の異方性反射のシミュレーションをレンダリング処理により行うための種々のパラメータを設定するためのものであり、例えば、仮定するエンボス製品の反射特性を規定する鏡面反射光の強度c、その鋭さn、レンダリング処理を行う際に用いる仮想的な光源からの光の入射角度dirL 、その入射光強度I、二次元スカラ場の(x,y)の位置にある画素からの異方性反射による反射強度Lc(x,y)を定義する関数あるいはグラフ、画像合成装置5によって合成された画像に加えるノイズ量D、そのノイズ量Dに乗算する乱数rnd(-1≦rnd≦+1)、及びシミュレーションの結果を画像表示装置6に表示する際の表示画像サイズ、後述するステップS6の判断処理で用いる終了条件等の設定を行う。このパラメータ設定装置2は、キーボード等で構成できる。
【0018】
上記のパラメータのうち、二次元スカラ場の(x,y)の位置にある画素からの異方性反射による反射強度Lc(x,y)については、ここでは次の式で定義するものとする。
Lc(x,y)=c・cosnθ・l …(1)
ここで、θは、二次元スカラ場の位置(x,y)における繊維の法線方向ベクトルと、当該位置における仮想的な光源からの光の正反射方向ベクトルとのなす角度であるが、図4を参照して説明すると次のようである。
いま、図4に示すように、木材中にPQで示す方向に延びている繊維があるとし、この繊維が図のPで示す位置で木材表面に現れているとすると、図の線分PQと木材表面とのなす角度がP点での繊維潜り角ξとなる。従って、P点における当該繊維の法線方向ベクトルは図のm→で示すようになる。図4において破線で示すものは、点Pから木材表面に立てた垂線、即ちP点での法線である。
さて、図4において、図の矢印で示すように、仮想的な光源からの光が、P点での法線から反時計回りにδの角度方向から入射したとすると、P点における仮想的な光源からの光の正反射ベクトルk→は、図に示すように、P点での法線から時計回りにδの角度方向を向く。従って、(1) 式のθは、二次元スカラ場の位置(x,y)における繊維の法線方向ベクトルと、当該位置における仮想的な光源からの光の正反射方向ベクトルとのなす角度であるから、(1) 式の演算を行うには図中のθの角度を求めればよいことになるが、図から明らかなように
θ=δ−ξ …(2)
で求めることができる。なお、(2) 式によりθを求めるについては、それぞれの角度は、それぞれの基準位置からの角度を正負を含めて使用することは当然である。
ところで、図4の角度δは、仮想的な光源からの光の入射角度dirL と関係する角度であるが、必ずしもdirL と同じ値ではなく、当該入射角度dirL がどのような角度として定義されるかによって異なる。即ち、例えば、仮想的な光源からの光の入射角度dirL が木材表面から反時計回りに測った角度として定義される場合には、δ=dirL+90° となり、また、仮想的な光源からの光の入射角度dirL が木材表面から時計回りに測った角度として定義される場合には、δ=dirL−90° となり、更に、仮想的な光源からの光の入射角度dirL が木材表面の各位置における法線方向から反時計回りに測った角度として定義される場合には、δ=dirL となる。この点については以下同じである。なお、以下においては、仮想的な光源からの光の入射角度dirL は、木材表面から反時計回りに測った角度として定義するものとする。
【0019】
以上のようにして異方性反射による反射強度Lc(x,y)を演算するのであるが、ここでは二次元スカラ場の(x,y)の位置にある画素からの異方性反射による反射光は白色であるとする。従って、上式により得られる反射強度Lc(x,y)は輝度値となる。
【0020】
なお、二次元スカラ場の(x,y)の位置にある画素からの異方性反射による反射強度Lc(x,y)を定義するについては、上述したように適宜な関数を用いる他にも、図2(a),(b),(c)に示すように、所望の形状のグラフによって定義することも可能である。
【0021】
画像入力装置3は、レンダリング処理装置4によって得られた、二次元スカラ場の各位置からの異方性反射による反射強度を表す画像と合成するための下絵画像を入力するための装置である。この下絵画像としては、任意の画像を用いることができるが、二次元スカラ場入力装置1から入力した二次元スカラ場に基づいて作成した万線パターンをエンボス加工する化粧シートに用いる絵柄とするのが望ましい。この下絵画像の入力は、当該下絵画像がフロッピーディスク等の適宜な記憶媒体に記憶されている場合には、当該記憶媒体から読み出せばよく、また、適宜な画像処理装置とネットワークで接続されている場合には、このネットワークを介して取り込めばよい。
【0022】
レンダリング処理装置4は、二次元スカラ場入力装置1から入力された二次元スカラ場に対して、パラメータ設定装置2で設定されたパラメータによりレンダリング処理を施し、二次元スカラ場の各位置からの異方性反射による反射強度を表す画像を作成するためのものである。
【0023】
画像合成装置5は、レンダリング処理装置4によって作成された、二次元スカラ場の各位置からの異方性反射による反射強度を表す画像と、画像入力装置3から入力された下絵画像を合成するための装置であり、この画像合成装置5で合成された画像は、カラーCRT等で構成される画像表示装置6に表示される。
【0024】
なお、これらの二次元スカラ場入力装置1、パラメータ設定装置2、画像入力装置3、レンダリング処理装置4、画像合成装置5、及び画像表示装置6の各構成要素は、いずれもコンピュータを利用して構築される構成要素であり、最終的に、このコンピュータによって、繊維潜り角の二次元分布を表している二次元スカラ場に基づいて万線パターンを生成し、その万線パターンをエンボス加工したシートに現れる照り、及び照りの移動の様子がシミュレーションされることになる。
【0025】
以下、図1に示す異方性反射のシミュレーション装置の動作について、図3に示すフローチャートを参照して、異方性反射のシミュレーション方法と共に説明する。
【0026】
まず、パラメータ設定装置2により所定のパラメータを設定し、二次元スカラ場入力装置1から繊維潜り角の二次元分布を表している二次元スカラ場を入力し、更に画像入力装置3から下絵画像を入力する(ステップS1)。二次元スカラ場入力装置1から入力された二次元スカラ場はレンダリング処理装置4に与えられ、画像入力装置3から入力された下絵画像は画像合成装置5に与えられる。また、ここでは、パラメータの設定としては、上述したように、仮定するエンボス製品の反射特性を規定する鏡面反射光の強度c、その鋭さn、レンダリング処理を行う際に用いる仮想的な光源からの光の入射角度dirL 、その入射光強度l、二次元スカラ場の(x,y)の位置にある画素からの異方性反射による反射強度Lc(x,y) を定義する上記の(1) 式の関数、画像合成装置5によって合成された画像に加えるノイズ量D、そのノイズ量Dに乗算する乱数rnd(-1≦rnd≦+1)、及びシミュレーションの結果を画像表示装置6に表示する際の表示画像サイズ、後述するステップS6の判断処理で用いる終了条件等の設定を行う。これらの設定されたパラメータのうち、表示画像サイズ、ノイズ量D、乱数rndについては画像合成装置5に与えられ、また、ノイズ量D及び乱数rndを除くパラメータはレンダリング処理装置4に与えられる。
【0027】
二次元スカラ場及び設定されたパラメータを受けると、レンダリング処理装置4は、まず、二次元スカラ場の画素数と、パラメータ設定装置2から与えられた表示画像の画素数とを一致させる。二次元スカラ場の画素数が表示画像の画素数より大きい場合には所定の間引き法により間引いて両者の画素数を一致させ、二次元スカラ場の画素数が表示画像の画素数より少ない場合には所定の補間法により補間して両者の画素数を一致させる。
また、画像合成装置5も、下絵画像を受けると同様にして下絵画像の画素数を表示画像の画素数に一致させる。
【0028】
そして、二次元スカラ場の画素数と表示画像の画素数とを一致させると、レンダリング処理装置4は、まず dirL= 0(ステップS2)としてレンダリング処理を行う(ステップS3)。即ち、二次元スカラ場の一つの画素位置(x,y)に着目して、当該画素位置における繊維潜り角と、仮想的な光源からの光の入射角dirL とに基づいて、上述したようにしてθを求め、そのθを用いて上記の(1) 式によって、当該画素位置における異方性反射の反射強度Lc(x,y) を計算する処理を、二次元スカラ場の全ての画素位置について行うのである。この処理によって、二次元スカラ場の各画素位置には、各画素位置における繊維潜り角に応じた反射強度が与えられることになるので、この場合には dirL= 0としたときの二次元スカラ場の各画素位置からの異方性反射による反射強度を表す画像が作成されることになる。そして、この画像は dirL= 0としたときの二次元スカラ場によって発現される照りを表す画像に他ならない。従って、以下においてはステップS3のレンダリング処理によって作成される画像を照り画像と称することにする。
【0029】
このようにして dirL= 0のときの照り画像を作成すると、レンダリング処理装置4は当該照り画像を画像合成装置5に与える。画像合成装置5は、レンダリング処理装置4から与えられた照り画像と、画像入力装置3から与えられた下絵画像とを合成する(ステップS4)。その画像の合成は、例えば次のように行われる。
【0030】
下絵画像の(x,y)の位置にある画素の赤色成分の値をr、緑色成分の値をg、青色成分の値をbとし、照り画像の当該画素位置における反射強度、即ち輝度値をLc とすると、当該画素位置における画像合成後の赤色成分の値r′、緑色成分の値g′、青色成分の値b′を、それぞれ、
r′=r+Lc +D・rnd …(3)
g′=g+Lc +D・rnd …(4)
b′=b+Lc +D・rnd …(5)
で定める。ここで、D、rndはそれぞれパラメータ設定装置2で設定されたノイズ量、乱数である。なお、(3) 〜(5) 式の結果、r′、g′、b′の値が正規化された範囲を越える場合には正規化された最大とする。即ち、例えば、合成画像の各色成分の値が 0〜 255の範囲であるとすると、r′、g′、b′の値が 255の値を越えた場合には 255となされるのである。
【0031】
このように、照り画像と下絵画像とを合成するに際して、乱数を乗算したノイズ成分を加えることは有効である。この乗算値に応じて、照りがくっきりしたり、ぼやけたりするからであり、従って、ノイズ量Dの値を任意に定めることによって種々の質感を表現することが可能となるからである。
【0032】
このようにして照り画像と下絵画像とを合成すると、画像合成装置5は合成した画像を画像表示装置6に与える。そして、画像表示装置6はその合成画像を表示する(ステップS5)。このことによってオペレータは、dirL = 0のときの照りを表す画像を観察することができる。
【0033】
次に、レンダリング処理装置4は終了条件が満足されたか否かを判断する(ステップS6)。この終了条件は適宜に定めることができる。例えば、ステップS7で仮想的な光源からの光の入射角度 dirLを更新しながら順次シミュレーションを行っていき、角度θ= 360°の場合についてのシミュレーションが終了した時点で自動的に当該シミュレーションの処理を終了させるようにしてもよい。またパラメータ設定装置2からシミュレーションの終了を入力するようにしてもよい。
【0034】
ステップS6で終了条件が満足されたのであれば当該シミュレーションの処理は終了となるが、そうでなければステップS7において仮想的な光源からの光の入射角度 dirLを△φだけ更新して、ステップS3〜S5の処理を行う。この△φは任意に定めることができ、レンダリング処理装置4に固定的に設定されていてもよく、パラメータ設定装置2によって設定可能としてもよい。
【0035】
このように、仮想的な光源からの光の入射角度 dirLを変化させていくことは、相対的には、当該二次元スカラ場に基づいて万線パターンを生成し、その生成した万線パターンを用いてエンボス版を作成してエンボス加工した化粧シートに当てる光線方向の角度を一定にしておいて視線を順次変化させていくことと同じであり、あるいは、光線方向の角度及び視線を一定にしておいて、当該エンボス加工されたシートを回転させていくこととも同じであり、従って、このことによって、当該二次元スカラ場に基づいて万線パターンを生成し、その生成した万線パターンを用いてエンボス版を作成してエンボス加工した化粧シートにおいて、どのような照りの移動が発現されるかをシミュレーションすることができるものである。
【0036】
以上の処理を、ステップS6でyesと判断されるまで繰り返し行うと、画像表示装置6には、ステップS7において仮想的な光源からの光の入射角度 dirLが更新されるのに伴って、照りが移動していく様子がアニメーション的に表示されることになる。
【0037】
以上のようであるので、この異方性反射のシミュレーション装置によれば、繊維潜り角の二次元分布を表している二次元スカラ場を用いて、当該二次元スカラ場に基づいて万線パターンを生成し、その生成した万線パターンを用いてエンボス版を作成してエンボス加工した化粧シートにおいて、どのような照りの移動が発現されるかというシミュレーションを、実際に二次元スカラ場から万線パターンを作成することなく、二次元スカラ場から直接行うことができるのであり、従来のように実際に万線パターンからエンボス版を作ってエンボス加工するという作業を行うことなく、作成した二次元スカラ場の良否判断、評価を行うことができる。
また、照り画像は下絵画像と合成されて表示されるので、オペレータは実際に製品になった場合のイメージを容易に把握することができる。
【0038】
なお、パラメータ設定装置2で設定したパラメータは実際にエンボス製品を製造する工程に反映することができる。例えば、仮定するエンボス製品の反射特性を規定する鏡面反射光の強度c、及びその鋭さnは、エンボス加工を施すシートの材料を選択する際等に反映することができる。
【0039】
また、ノイズ量D及び乱数rndについては、例えば、実際に化粧シートに印刷する画像に加えるノイズ量に反映させることもでき、あるいは、二次元スカラ場に基づいて万線パターンを生成する際に各万線パターンに与える揺らぎの大きさに反映させることもできる。後者については次のようである。即ち、二次元スカラ場に基づいて万線パターンを生成する際に万線パターンに揺らぎを与えると、その揺らぎの程度に応じて照りの様子が変化し、質感が異なってくることが知られており、従って二次元スカラ場に基づいて万線パターンを生成する際に、各万線パターンに与える揺らぎの大きさを、ノイズ量Dと乱数rndの乗算値による影響と同程度とすることによって、シミュレーション結果と同様なエンボス製品が得られることになるのである。
【0040】
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく種々の変形が可能である。
【図面の簡単な説明】
【図1】 本発明に係る異方性反射のシミュレーション装置の一実施形態を示す図である。
【図2】 二次元スカラ場の(x,y)の位置にある画素からの異方性反射による反射強度Lc(x,y)の定義の仕方の例を示す図である。
【図3】 図1に示す異方性反射のシミュレーション装置の動作を説明するためのフローチャートである。
【図4】 (1) 式のθと、繊維潜り角ξ、及び仮想的な光源からの光の入射角度との関係を説明するための図である。
【図5】 万線パターンがエンボス加工されたシートの表面に形成された万線条溝Gの構造を示す斜視図である。
【図6】 一般的な材木板における繊維方向ベクトルF→と光線方向ベクトルL→との関係を示す側断面図である。
【図7】 一般的な材木板におけるベクトル交錯角φ(繊維潜り角ξ)と鏡面反射光強度Wとの関係を示すグラフである。
【符号の説明】
1…二次元スカラ場入力装置、2…パラメータ設定装置、3…画像入力装置、4…レンダリング処理装置、5…画像合成装置、6…画像表示装置。

Claims (2)

  1. 各画素位置(x,y)に対して繊維潜り角ξが書き込まれた二次元スカラ場に基づいて作成した万線パターンをエンボス加工したシートに現れる照り、及び照りの移動をシミュレーションするための異方性反射のシミュレーション方法であって、
    仮想的な光源からの光が各画素位置(x,y)に対して、各画素位置(x,y)での法線から反時計回りにδの角度方向から入射するとしたときの、前記二次元スカラ場の各画素位置(x,y)からの異方性反射による反射強度L c (x,y)を、θ=δ−ξで与えられる角度θの関数として定義し、その定義した関数に基づいて角度δのときの二次元スカラ場の各画素位置(x,y)での異方性反射の反射光強度 c (x,y)を求めて照り画像を作成し、その照り画像と下絵画像とを合成して表示する処理を、前記角度δを順次変更しながら行うことを特徴とする異方性反射のシミュレーション方法。
  2. 各画素位置(x,y)に対して繊維潜り角ξが書き込まれた二次元スカラ場に基づいて作成した万線パターンをエンボス加工したシートに現れる照り、及び照りの移動をシミュレーションするための異方性反射のシミュレーション装置であって、
    仮想的な光源からの光が各画素位置(x,y)に対して、各画素位置(x,y)での法線から反時計回りにδの角度方向から入射するとしたときの、前記二次元スカラ場の各画素位置(x,y)からの異方性反射による反射強度L c (x,y)を、θ=δ−ξで与えられる角度θの関数として定義する手段と、
    前記手段によって定義した関数に基づいて角度δのときの二次元スカラ場の各画素位置(x,y)での異方性反射の反射光強度 c (x,y)を求めて照り画像を作成し、その照り画像と下絵画像とを合成して表示する処理を、前記角度δを順次変更しながら行う手段と
    を備えることを特徴とする異方性反射のシミュレーション装置。
JP24067398A 1998-08-26 1998-08-26 異方性反射のシミュレーション方法、及びシミュレーション装置 Expired - Fee Related JP3998084B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24067398A JP3998084B2 (ja) 1998-08-26 1998-08-26 異方性反射のシミュレーション方法、及びシミュレーション装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24067398A JP3998084B2 (ja) 1998-08-26 1998-08-26 異方性反射のシミュレーション方法、及びシミュレーション装置

Publications (2)

Publication Number Publication Date
JP2000075780A JP2000075780A (ja) 2000-03-14
JP3998084B2 true JP3998084B2 (ja) 2007-10-24

Family

ID=17063012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24067398A Expired - Fee Related JP3998084B2 (ja) 1998-08-26 1998-08-26 異方性反射のシミュレーション方法、及びシミュレーション装置

Country Status (1)

Country Link
JP (1) JP3998084B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4916858B2 (ja) * 2006-12-07 2012-04-18 豊田通商株式会社 意匠加工シミュレーションプログラム、意匠加工シミュレーション方法及び意匠加工シミュレーション装置
JP5104040B2 (ja) * 2007-05-29 2012-12-19 大日本印刷株式会社 媒体、媒体作製装置、媒体作製方法及びそのプログラム

Also Published As

Publication number Publication date
JP2000075780A (ja) 2000-03-14

Similar Documents

Publication Publication Date Title
US10540810B2 (en) System and method of rendering a graphical object with modification in structure
US20020030681A1 (en) Method for efficiently calculating texture coordinate gradient vectors
CN101226644B (zh) 空间二维图像的光影跟踪方法
JP4402224B2 (ja) 立体模様を有するシートおよびその製造方法
US10475230B2 (en) Surface material pattern finish simulation device and surface material pattern finish simulation method
JP3998084B2 (ja) 異方性反射のシミュレーション方法、及びシミュレーション装置
US6753875B2 (en) System and method for rendering a texture map utilizing an illumination modulation value
JP4456070B2 (ja) 光反射強度計算回路
JP4693555B2 (ja) 表面に繊維シートを張り付けた三次元仮想物体に基づく二次元画像生成方法および生成装置
Min et al. Digital imaging methods for painting analysis: the application of RTI and 3D scanning to the study of brushstrokes and paintings
JP4172556B2 (ja) 二次元スカラ場デザイン方法及びそのシステム
Spence et al. Real‐time per‐pixel rendering of textiles for virtual textile catalogues
GB2341529A (en) Three-dimensional embroidery design simulator
JP4305884B2 (ja) ヘアラインデータの作成方法及び装置
Öhrn Different mapping techniques for realistic surfaces
KR20030083962A (ko) 3차원 렌더링 이미지에 쉐이딩 효과를 적용하는 방법 및이를 구현한 프로그램을 저장한 정보저장매체
Rushmeier The perception of simulated materials
Ji et al. Improved gloss depiction using the empirical highlight un-distortion method for 3D image-warping-based stereo rendering
JP3285142B2 (ja) エンボスシート、化粧シート及び万線パターンを作成するための方法、そのための装置
JP4440373B2 (ja) 木理モデリング装置
Alda Advanced Shaders
Zhang et al. Stylized line rendering for three-dimensional models
Clement et al. Adaptable aging factory for multiple objects and colorations
Ďurikovič et al. Modelling and Production Design of Lithophanes Showing the Sparkling Effect
Lorig Advanced image synthesis—shading

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees