JP3997258B2 - プラズマ処理装置及びプラズマ処理方法 - Google Patents

プラズマ処理装置及びプラズマ処理方法 Download PDF

Info

Publication number
JP3997258B2
JP3997258B2 JP10045698A JP10045698A JP3997258B2 JP 3997258 B2 JP3997258 B2 JP 3997258B2 JP 10045698 A JP10045698 A JP 10045698A JP 10045698 A JP10045698 A JP 10045698A JP 3997258 B2 JP3997258 B2 JP 3997258B2
Authority
JP
Japan
Prior art keywords
plasma
density
mirror
laser light
processing chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10045698A
Other languages
English (en)
Other versions
JPH11201899A (ja
Inventor
俊夫 後藤
勝 堀
昌文 伊藤
信雄 石井
聡 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Tokyo Electron Ltd
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Tokyo Electron Ltd
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Tokyo Electron Ltd, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Priority to JP10045698A priority Critical patent/JP3997258B2/ja
Publication of JPH11201899A publication Critical patent/JPH11201899A/ja
Application granted granted Critical
Publication of JP3997258B2 publication Critical patent/JP3997258B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば半導体ウエハに対してプラズマ処理を行うプラズマ処理装置及びプラズマ処理方法に関する
【0002】
【従来の技術】
半導体ウエハ(以下「ウエハ」という)の製造工程において、プラズマを用いて成膜やエッチングを行うプラズマ処理技術があり、プラズマを発生させる手法としては、電子サイクロトロン共鳴を利用するECR方式、一対の平板を対向させてその間に電力を印加する平行平板方式、ヘリコン波方式及びICP方式などがある。このようなプラズマ処理において、プラズマ中のラジカルが重要な役割を果たしていると考えられている。このため例えば特開平9−199485号公報には、赤外半導体レ−ザ光のスペクトル変化を検出して処理室内のラジカルの密度を測定し、その測定値に基づいてマイクロ波の出力を制御する技術が記載されている。
【0003】
【発明が解決しようとする課題】
しかしながら例えばウエハの中央のラジカル密度を測定して中央部の膜厚やエッチング加工形状を精度良く得られても、ウエハ上の他の部位のラジカル密度を考慮しなければ面内均一性の確保という観点からは十分な制御手法とはいえないという課題がある。例えばウエハの中央のラジカル密度が局所的に所定値から外れたときに他の部位のラジカル密度は所定値であったとしたら、局所的な情報によりかえって制御が乱れてしまい、面内均一性が悪くなるという懸念もある。
【0004】
またレ−ザ光をプラズマに照射し、分子がその光を吸収して蛍光を発することを利用して(この方法は一般的にはLIF法;Laser Induced Fluorescenceと呼ばれている)、蛍光を計測しその計測値に基づいてラジカル密度を推定することも考えられるが、この手法は計測値の信頼性が高くないので正確なプロセス制御ができないし、また光らないあるいは光っていないラジカル密度の推定ができないという課題がある。
【0005】
本発明はこのような事情の下になされたものであり、その目的は、プラズマ中のラジカルなどの粒子の密度分布に基づいてプロセス条件を制御することにより被処理基板に対して面内均一性の高い処理を行うことのできるプラズマ処理装置及びプラズマ処理方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、処理ガスをプラズマ化して得たプラズマにより処理室内の被処理基板を処理するプラズマ処理装置において、
前記処理室の外部に設けられたレ−ザ光出力部と、
このレ−ザ光出力部からのレ−ザ光を反射し、その位置に応じて前記処理室内に、被処理基板の面方向に並ぶレ−ザ光の複数の光路を形成するようにその位置が可変できる可動ミラ−を含むミラ−部と、
前記可動ミラ−が各位置に設定されることにより順次形成された複数の光路を通ってきたレ−ザ光を受光し、各光路ごとにレ−ザ光の減衰量に基づいて処理ガス中の特定の粒子の密度を検出するための粒子密度検出部と、
この粒子密度検出部により検出された各光路ごとの粒子密度の最大値と最小値との差に基づいて、前記処理室内の圧力を制御する手段と、を備えたことを特徴とする。
【0007】
この発明において、例えば可動ミラ−は回転自在な回転ミラ−により構成され、この回転ミラ−を各回転位置に順次設定して、前記レ−ザ光出力部からのレ−ザ光を前記複数の光路に順次通過させることができる。またミラ−部は、回転ミラ−からのレ−ザ光を反射して夫々光路を形成するための複数の固定ミラ−を含む構成とすることができる。更にはまた測定室内の各光路を通ってきたレ−ザ光を夫々検出部に反射させるための複数のミラ−を設ける構成とすることもできる。
【0009】
特定の粒子は例えばラジカルまたは分子である。なおプラズマにより行う処理とは、例えば成膜処理やエッチング処理などを挙げることができる。
【0010】
更に他の発明は、処理ガスをプラズマ化して得たプラズマにより処理室内の被処理基板を処理するプラズマ処理方法において、
処理室内に、被処理基板の面方向に並ぶ複数の光路を形成してこれら光路にレ−ザ光を通過させ、各光路ごとにレ−ザ光の減衰量を求めると共にこれら減衰量に基づきプラズマ中の特定の粒子についてプラズマ中の特定の粒子の密度を各光路ごとに検出する工程と、
この工程にて検出された各光路ごとの粒子密度の最大値と最小値との差に基づいて、前記処理室内の圧力を制御する工程と、を備えたことを特徴とする。
【0011】
【発明の実施の形態】
図1及び図2は、本発明の測定装置をECR(電子サイクロトロン共鳴)プラズマ装置の処理室内のラジカルを測定するための装置として構成した実施の形態を示す図である。まずプラズマ装置に関連する部分について簡単に述べると、図中1は横断面が正方形の処理室(特許請求の範囲の測定室に相当する)であり、この処理室1内にはウエハWをほぼ水平に載置するための載置台11が設けられている。処理室1の上面中央部には導波管12が接続されており、この導波管12からマイクロ波及び例えばAr(アルゴン)ガスが処理室1内に導入されるようになっている。
【0012】
載置台11の上方にはこれと対向し、周方向に沿ってガス孔(図示せず)を備えたリング状のガス供給部13が設けられ、ガス供給部13からのガスがガス孔から内方側に噴出するようになっている。また処理室1の底部には例えば2個所において排気管14が接続されており、更に処理室1の上下には夫々電磁コイル15、16が設けられている。
【0013】
次に測定装置に関連する部分について述べると、処理室1の外側には赤外半導体レーザ光を出力するためのレーザー光出力部20をなす赤外半導体レーザ光出力装置と、このレーザ光出力部20から出力されるレーザ光の光路である4本の光路L1〜L4を形成するためのミラー部2と、前記レーザ光出力部からのレーザ光を受光してその強度を検出し、処理室1内の光路を通ったことによるレ−ザ光の減衰量に基づいて処理室1内のラジカルの密度(絶対密度)を求める検出部3と、前記光路L1〜L4を通って処理室1から出たレーザ光を夫々検出部3に反射させるための4個の受光側ミラー41〜44とが設けられている。なお処理室1の側壁のうちレーザ光の光路L1〜L4となる部分は例えば透明ガラスにより構成されている。
【0014】
前記ミラー2は、図3に示すように回転機構21によりほぼ鉛直な軸のまわりに回転可能な可動ミラ−である回転ミラー22と、レーザ光出力部20から出力されたレーザ光を反射して前記回転ミラー22に入光させるためのミラー23と、このミラー23から回転ミラー22を介して入光されたレーザ光を反射して、夫々前記4本の光路を形成するミラー(発光側ミラー)M1〜M4とを備えている。
【0015】
前記検出部3は、受光した波数νcのレーザ光の強度I(νc)を求めると共にこの強度I(νc)と予め分かっている発光側ミラーで反射されたレーザ光の強度I0 (νc)とに基づいてラジカルの個数(絶対密度)を求める機能を持っている。具体的には、例えば下記の(数1)式に基づいて求める。
【数1】
Figure 0003997258
ただしnは絶対密度(個/cm3 )、νcは測定波数(cm-1)、Sはνcにおけるラインストレングス(cm/個)、Tは分子の並進温度(K)、Mは分子の質量(g/mol)、Lは吸収長(処理室1内における光路長:cm)であり、νcはCF2 の吸収波数例えば1132.7532cm-1を用いている。この式は、スペクトルの形をドップラーラインシェイブと仮定して求めた式である。
【0016】
次に上述実施の形態の作用について述べる。電磁コイル15、16によりウエハWの全面においてほぼ垂直に磁力線が通るようにミラー磁界が形成され、マイクロ波Mと磁界とにより電子サイクロトロン共鳴が起こってArガス及びガス供給部13からのガス例えばC4 8 ガスがプラズマ化される。図1の点線で囲まれる領域は青白く光っているいわば濃いプラズマが発生している領域である。
【0017】
そしてレーザ光出力部20によりレーザ光がミラー23、回転ミラー22、ミラーM1を介して光路L1を通るように回転ミラー22の回転位置を設定しておき、CF2 ラジカルの吸収波数である1132.7532cm-1の赤外半導体レーザ光をレーザ光出力部20から出力する。これによってレーザ光出力部20よりのレーザ光が光路L1を通り、ミラー41を介して検出部3にて受光される。検出部3は受光したレーザ光の強度を検出し、レ−ザ光の減衰量に応じたCF2 ラジカルの密度(絶対密度)を求める。
【0018】
次に回転ミラー22を、光路L2が形成されるように、つまりミラー23からのレーザ光が回転ミラー22及びミラーM2を介して光路L2を通るように回転位置を設定し、同様にしてCF2 ラジカルの密度を求める。更に回転ミラー22を順次回転させて同様にして光路L3及びL4に対応するCF2 ラジカルの密度を求める。さてここで得られた密度は処理室1内の各光路L1(L2、L3、L4)における平均密度であるが、例えば図4(a)に示すように処理室1内の密度分布を仮定して(黒丸同士、白丸同士は同じ密度であり、かつ黒丸、白丸は互いに異なる密度である)密度の対称性と密度の連続性などから適当な演算を施してコンピュ−タ解析により処理室1の平面方向の密度分布を求めることができる。
【0019】
また処理室1が円筒状であればア−ベル変換などを行うことによって求めることができる。即ち図4(b)に示すように同心円状の密度が等しいとして取扱うと、(数式2)が成り立つ。
【0020】
【数2】
Figure 0003997258
図4(b)は、同心円状に複数(N個)のリング状領域に分割し、各リング状領域の中ではラジカル密度が等しく、その中を光が矢印のように透過している様子を概念的に示している。I(y)は各y位置において求めた平均密度を処理室の中心からY軸に沿って壁面まで積分した値であり、rは処理室の中心からの半径方向の距離、ε(r)は半径方向の密度分布、Rは処理室の半径(処理室の壁面でラジカル密度がゼロになるとして取り扱っている)である。数2式を逆変換すれば(数式3)が得られ、半径方向の密度分布が求められる。
【0021】
【数3】
Figure 0003997258
従って光路L1(L2、L3、L4)の方向をX方向とすれば、これら光路L1(L2、L3、L4)に直交する方向即ちY方向におけるCF2 ラジカルの密度分布が得られる。具体的には、I(y)を求めるためのプロット(光路に沿って夫々求めたラジカル平均密度の値)は光路の数だけとなるので上述の場合4個となり、この4個の値をなめらかな曲線となるように補間してyの値を増やすことによりI(y)を求める。従って光路の数を増やせばI(y)はより精度よく求まる。そしてこのI(y)をyで微分し、(数3)式に入れて積分すればε(r)が求まる。なお本発明では、前記光路と直交する方向にも光路を形成し、X,Y方向の光路がクロスする点の密度をコンピュ−タトモグラフィ(断層撮影)と同様な手法で求めるようにしてもよい。
【0022】
この実施の形態によれば、プラズマが発生している処理室1について、回転ミラー22を用い、その回転位置に対応して処理室1内に複数の光路を形成しているため、ラジカルの密度分布を測定することができる。従ってプラズマの状態を調べることができ、更にCF2 ラジカルがフッ素化カーボン膜(フルオロカ−ボン膜)の成膜や例えばシリコン酸化膜のエッチングのメカニズムに関連していて、CF2 ラジカルの密度と膜厚や加工形状との面内均一性とが関連していると考えられることから、例えば後述の実施の形態のように測定結果をプロセス条件にフィードバックすることにより処理の均一性の向上に役立たせることもできる。
【0023】
なお出力部20の出力窓を処理室1と対向させ、レーザ光出力部20をY方向に移動させることは理論上可能であるがレーザ光出力部20例えば赤外半導体レーザ光出力装置は、およそ2m程度もある大型の大重量物であるため、これを動かす移動機構を組み立てることは、移動機構が非常に大掛りになり、レーザ光出力部が大型であることと相俟ってスペース的に無理があるし、コスト的にも無理があり、現実には実施できない。
【0024】
ただしレーザ光を検出する側においては、例えばミラー41〜44を用いずに図5に示すようにレ−ル3aに沿って検出部3をY方向に移動させてもよい。またミラーM1〜M4及びミラ−23を用いずにレーザ光出力部20と回転ミラー22とを組み合わせ、回転ミラー22を既述の図2のミラ−23の位置に置くと共に回転させて処理室1内に複数の光路を形成するようにしてもよいし、あるいはまた図6に示すようにガイドレール24に沿ってY方向に移動自在な基台25の上にミラー26を載せ、基台25をY方向に移動させてミラー26の位置を変え、こうして光路L1〜L4を形成するようにしてもよい。この場合ミラー26は可動ミラーに相当する。なお光路の数は4個に限定されるものではない。
【0025】
更に本発明ではCF2 ラジカルに限らず他のラジカル例えばCFやCF3 ラジカルの密度分布を測定するようにしてもよいし、ラジカル以外の粒子、例えばイオン、原子、分子などを測定するようにしてもよく、あるいはガス中の粒子に限らず液体中のイオン、原子、分子などの粒子を測定するようにしてもよい。そしてまたレ−ザ光としては赤外半導体レ−ザ光に限らず例えば可視領域や紫外領域などのレ−ザ光であってもよい。
以下にC4 8 ガスを用いてプラズマを発生させ、CF2 のラジカルの密度について測定した結果を実施例1〜3に、またCFラジカルの密度について測定した結果を実施例4、5に夫々記載し、更にSiF4 ガスを用いてプラズマを発生させSiF4 分子の密度について測定した結果を実施例6に示す。
【0026】
(実施例1)
図1の装置において処理室1として例えば一辺が50cm、高さ50cmの角筒状のものを用い、8インチサイズのウエハWを例えばECRポイントの下方約13cmの位置に載置した。マイクロ波の周波数及びパワーは夫々2.45GHz及び1000Wとし、磁場についてはECRポイントにおいて875G(ガウス)の強さとなるように設定すると共にウエハW上で直径約25cmのプラズマ(濃いプラズマ)が閉じ込められるようにミラー磁場を形成した。C4 8 ガスは流量60sccmでガス供給部13から導入した。
【0027】
処理室1内における圧力を4.0Pa、1.3Pa及び0.4Paの3通りに設定し、各圧力下においてウエハWから1cm上方の位置に、CF2 ラジカルの吸収波数である1132.7532cm-1のレーザ光を通してCF2 ラジカルの密度分布を求めたところ図7に示す結果が得られた。この結果から、圧力が高い程CF2 ラジカルの密度が高くなると共にウエハW面上に比べて処理室1の内壁に近いところの方が前記密度が高く、またウエハW面上における前記密度の均一性は圧力が低い程高いことが分かる。
【0028】
(実施例2)
処理室1内の圧力を1.3Paに設定し、マイクロ波のパワーを500W、1000W及び2500Wの3通りに設定し、各条件下においてCF2 ラジカルの密度分布を求めたところ図8に示す結果が得られた。他の条件は実施例1と同様である。この結果からマイクロ波パワーが大きい程CF2 ラジカルの密度が低くなることが分かった。またウエハW面上における前記密度の均一性は、どの条件下においてもほぼ同じであった。
【0029】
(実施例3)
処理室1内の圧力を1.3Paに、マイクロ波パワーを1000Wに夫々設定し、C4 8 ガスの流量を30sccm,60sccm及び150sccmの3通りに設定し、各条件下においてCF2 ラジカルの密度分布を求めたところ図9に示す結果が得られた。他の条件は実施例1と同様である。この結果からC4 8 ガスの流量を多くするとCF2 ラジカルの密度が大きくなり、また流量によってウエハW面上の密度の均一性が左右されることが分かった。なおウエハW面上に比べて処理室1の内壁面近傍の方がCF2 ラジカルの密度が大きい理由は、ウエハW面上の方がプラズマの電気的な衝撃によりCF2 ラジカルの分離が促進され、また壁面近傍では、壁面に付着した反応生成物とフッ素とが反応してCF2 ラジカルが生成されることが一因と考えられる。
【0030】
(実施例4)
CFラジカルの吸収波数である1108.6702cm-1のレーザ光を通してCFラジカルの密度分布を求めた他は、実施例1と同様にして測定を行い、CFラジカルの密度分布の圧力依存性を求めた。この場合も処理室1内における圧力を実施例1と同様に4.0Pa、1.3Pa及び0.4Paの3通りに設定している。結果は図10に示す通りである。この結果から、圧力が高い程CFラジカルの密度が低くなり、実施例1と比べるとCF2 ラジカルの場合とは逆の傾向にあることが分かる。またウエハW面上における前記密度の均一性は、0.4Pa及び4.0Paの圧力よりも1.3Paの圧力の方が高い。
【0031】
(実施例5)
CFラジカルの吸収波数である1108.6702cm-1のレーザ光を通してCFラジカルの密度を求めた他は実施例2と同様にして測定を行い、CF2 ラジカルの密度分布のマイクロ波パワー依存性を求めた。この場合もマイクロ波パワーを実施例3と同様に500w、1000w及び2500wの3通りに設定している。結果は図11に示す通りである。
この結果からマイクロ波パワーが大きい程CFラジカルの密度が高くなり、実施例3と比べるとCF2 ラジカルの場合と逆の傾向にあることがわかる。またマイクロ波パワーの増加に伴って、壁近傍のCFラジカルの密度がウエハW中心付近に比べて増加している。これは先の実施例3のところで考察した理由、及び処理室1上部からのCFラジカルの回り込みなどが考えられる。更にウエハW面上における前記密度の均一性はマイクロ波パワーが2500wの場合に比べて、1000w、500wの場合の方が高い。
以上の結果からラジカル密度の圧力依存性及びマイクロ波パワー依存性は、ラジカル種によって異なることが分かり、その原因はプラズマの電気的な衝撃によるラジカルの分離の程度や壁面におけるラジカルの生成の程度がラジカルによって異なるからであると推測される。
【0032】
(実施例6)
処理室1内にC4 8 ガスの代りにSiF4 ガスを90sccmの流量で導入し、処理室1内の圧力を1.3Paに設定した。そしてマイクロ波のパワーを0w、1000w、1500w及び2500wの4通りに設定し、SiF4 分子の吸収波数である1032.131cm-1のレーザ光を通し、SiF4 分子の密度分布のマイクロ波パワー依存性を求めた。他の条件は実施例1と同じである。結果は図12に示す通りである。この結果からマイクロ波パワーが大きい程、SiF4 の解離が進んで全体のSiF4 分子密度が小さくなっていることが分かる。またマイクロ波パワーをかけたときには壁面に比べて中央部の分子密度が大きくなっているが、これはウエハWの中心に近い程プラズマエネルギーが大きく、SiF4 の解離が促進されていることに基づくものと考えられる。
なお本発明者は、SiF4 分子における上記波数に対応するラインストレングスSの値を把握していなかったが、次のようにしてSを求めた。即ちマイクロ波パワーを印加しないときには、SiF4 ガスを理想気体とみなし、圧力、温度、体積が分かっているので気体の状態方程式(PV=nRT)からSiF4 の密度nが求まる。室温で1.3Paの条件下ではnは3.2×1014cm-3であった。従ってこのときにk(νc)を求めれば、先の(数1)式からSが求まり、Sは3.5×10-20 cm/個であった。このようにしてSが分かれば、マイクロ波パワーを印加したときにK(νc)を求めればnが求まる。
【0033】
次に上述の測定装置を組み込んだ基板処理装置の実施の形態であるECRを利用したプラズマ処理装置について図13〜図15を参照しながら説明する。この装置は筒状の第1の真空室51と、レーザ光の透過窓52aを備えた第2の真空室52とからなる真空容器2を備え、高周波電源部53からのマイクロ波が導波管54及び透過窓55を介して真空容器2の上端から真空容器2内に導入されるように構成されている。56、57は夫々主電磁コイル及び補助電磁コイルであり、これら電磁コイル56、57によりミラー磁場が形成される。なお電磁コイルは導波管54の周囲を巻装するように設けられていてもよい。61、62は夫々ガス供給ノズル及びリング状のガス供給部であり、ガス供給ノズル61からは例えばArガスが供給されると共に、ガス供給部62からは成膜を行う場合には例えばC4 8 ガス及びC2 4 ガスが、またエッチングを行う場合にはCF系のガスが夫々供給される。63はウエハ載置台、64は排気管、65は載置台63にバイアス電力を印加するためのバイアス電源部である。
【0034】
そして真空容器2の外部には、図9に示すように既述のラジカル測定装置が設けられており、例えばウエハWの中心端から周縁部に亘って4本の光路L1〜L4が形成される。図14において31はラジカル密度検出部、32はラジカルの密度分布解析部であり、密度分布解析部32は、ラジカル密度検出部31で検出した各光路L1〜L4ごとのラジカル密度に基づいてその密度分布を解析する機能を持っている。密度分布を解析するとは、例えば各光路L1〜L4ごとのラジカル密度の最大値と最小値との差を求めることやあるいは既述の密度分布のグラフを作成することなどを意味し、前者の場合にはその差に基づいてプロセス条件を変える場合に役立てられ、後者の場合にはプラズマの状態を後で解析する場合などに用いられる。
【0035】
図15は、図13に示すプラズマ処理装置において、密度分布解析部32で解析された結果に基づいてリアルタイムでプロセス条件を制御するための装置を示す図である。図15において7は主制御部、71は高周波電源部53の電力をパルス変調するためのパルス発生器である。マイクロ波があるデューティ比のパルスでパルス変調されているとすると、主制御部7は密度分布解析部32から得られた例えばラジカルの密度の最大値と最小値との差Δdに応じた制御信号をパルス発生器71に出力し、前記デューティー比を調整する。なおマイクロ波は例えばTMモ−ドあるいはTEモ−ドで導かれる。
【0036】
マイクロ波をパルス変調することによりプラズマの電子温度を制御することができ、これによりラジカル例えばCF2 ラジカルの密度を制御できるため、特定のラジカルの密度分布に基づいて前記デューティー比を制御すれば、ウエハ面内におけるラジカルの密度をきめ細かく制御することができ、この結果ウエハW上の膜厚やエッチングの加工形状について高い面内均一性を確保することができる。この例ではC4 8 ガス及びC2 2 ガスによりフッ素化カーボン膜が得られ、その膜厚の面内均一性が向上する。なおデューティー比の制御の手法としては、ラジカル密度が予め定めた上限設定値を越えたときや下限設定値以下になったときにデューティー比を変えるための制御信号を出力するようにしてもよいし、上述の制御と組み合わせてもよい。またマイクロ波を制御するについては、デュ−ティ比の制御に限らずパワ−(電力値)や壁面温度を制御するようにしても良い。
【0037】
更に密度分布解析部32の解析結果に基づいて主制御部7から出力される制御信号は、電磁コイル56、57を夫々制御する電流制御部72、73に与え、励磁電流を調整して磁界の強さや磁力線の形状を変えるようにしてもよい。
また前記制御信号はガス供給部62に送られるガスの流量を調整するための流量調整部72に与え、ガスの総流量や混合比を調整するようにしてもよいし、排気管64に設けられた排気量調整部例えばバタフライ弁の開度を調整して処理室1内の圧力を調整するようにしてもよい。
そしてまたバイアス電源部65についても、電力値を制御してもよいし、パルス発生部76でパルス変調する場合には前記制御信号によりパルス発生部76を介してデューティー比を制御するようにしてもよく、この場合には特にウエハW上の薄膜のエッチングを行う場合に有効である。
【0038】
このようにウエハWの面方向におけるラジカルの密度分布を測定し、その測定結果に基づいてリアルタイムでマイクロ波、圧力及びガス流量などのプロセス条件を制御すれば、ラジカルの密度分布をきめ細かく制御することができる。ここでウエハWの処理の状態例えば膜厚の均一性やエッチング加工の均一性についてはプラズマ中のラジカルと関連していることから、例えばプロセス条件を目標値に設定した場合にも、ラジカルの密度分布が変化したときには、その密度分布に基づいて目標値を変更するといったきめ細かい制御を行うことができるので、結果としてプラズマ処理の面内均一性を向上させることができ、ウエハの大口径化が進む中で、スループットの向上を図る上で有効な手法である。
ここで本発明は、フッ素化カ−ボン膜の成膜に限らず、例えばSiF4 ガスを前記ガス供給部62から、また酸素ガス及びアルゴンガスを前記ガス供給ノズル61から夫々真空容器2内に導入し、SiOF膜を成膜する場合に、SiF4 分子の密度を検出し(実施例6で記載したようにSiF4 分子の密度は測定できる)、その検出結果に基づいてプロセズ条件を制御するようにしてもよい。またCF系のガスでSiO2 膜をエッチングする場合にはSiF4 が発生するので、SiF4 の密度に基づいてプロセズ条件を制御してエッチングを行うようにしてもよい。
【0039】
以上において本発明は、ECR以外のヘリコン波タイプのもの、平行平板タイプのもの、ICP(誘導結合プラズマ)タイプのものなどにも用いることができ、更に成膜やエッチング以外のプラズマ処理例えばレジストの灰化処理(アッシング)などにも適用することができる。またプラズマ処理以外にも処理ガスを用いて基板を処理する他の装置例えば熱CVD装置などに対しても適用することができる。
【0040】
【発明の効果】
本発明によれば、ミラーを動かして測定室内に複数の光路を形成しているため、大掛かりな装置とすることなく測定室中のラジカル、イオン、原子あるいは分子などの粒子の密度分布を測定することができ、例えばプラズマの状態をより正確に把握できるなどの効果がある。
【0041】
また本発明の処理装置によれば、上述の測定装置を用いて処理室内のラジカルなどの密度分布を測定し、その結果に基づいてプロセス条件を制御しているため、きめ細かい制御を行うことができ、その結果基板上の処理の面内均一性を向上させることができる。
【0042】
更に本発明のプラズマ処理方法によれば、ラジカルの密度分布に基づいてプロセス条件を制御しているため、プラズマの状態をきめ細かく制御でき、基板上の処理の面内均一性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の測定装置に係る実施の形態を示す縦断側面図である。
【図2】本発明の測定装置に係る実施の形態を示す横断平面図である。
【図3】上記実施の形態で用いられる可動ミラーを示す斜視図である。
【図4】ラジカル密度分布の推定のためのモデルの例を示す説明図である。
【図5】本発明の測定装置に係る他の実施の形態を示す横断平面図である。
【図6】本発明の測定装置に係る更に他の実施の形態を示す横断平面図である。
【図7】圧力を変えたときにおける処理室内の位置とCF2 ラジカル密度との関係を示す特性図である。
【図8】マイクロ波パワーを変えたときにおける処理室内の位置とCF2 ラジカル密度との関係を示す特性図である。
【図9】ガスの流量を変えたときにおける処理室内の位置とCF2 ラジカル密度との関係を示す特性図である。
【図10】圧力を変えたときにおける処理室内の位置とCFラジカル密度との関係を示す特性図である。
【図11】マイクロ波パワーを変えたときにおける処理室内の位置とCFラジカル密度との関係を示す特性図である。
【図12】マイクロ波パワーを変えたときにおける処理室内の位置とSiF4 分子密度との関係を示す特性図である。
【図13】本発明の処理装置に係る実施の形態を示す縦断側面図である。
【図14】本発明の処理装置に係る実施の形態を示す横断平面図である。
【図15】本発明の処理装置に係る実施の形態を示すブロック図である。
【符号の説明】
1 処理室
2 ミラー部
W 半導体ウエハ
20 レーザ光出力部
22,26 回転ミラー
25 基台
M1〜M4、23 ミラー
3 検出部
41〜44 ミラー
L1〜L4 光路
5 真空容器
53 高周波電源部
61 ガスノズル
62 ガス供給部
65 バイアス電源部
31 ラジカル密度検出部
32 密度分布解析部
7 主制御部
71、76 パルス発生部
72、73 電流制御部
74 流量制御部
75 圧力調整部

Claims (8)

  1. 処理ガスをプラズマ化して得たプラズマにより処理室内の被処理基板を処理するプラズマ処理装置において、
    前記処理室の外部に設けられたレ−ザ光出力部と、
    このレ−ザ光出力部からのレ−ザ光を反射し、その位置に応じて前記処理室内に、被処理基板の面方向に並ぶレ−ザ光の複数の光路を形成するようにその位置が可変できる可動ミラ−を含むミラ−部と、
    前記可動ミラ−が各位置に設定されることにより順次形成された複数の光路を通ってきたレ−ザ光を受光し、各光路ごとにレ−ザ光の減衰量に基づいて処理ガス中の特定の粒子の密度を検出するための粒子密度検出部と、
    この粒子密度検出部により検出された各光路ごとの粒子密度の最大値と最小値との差に基づいて、前記処理室内の圧力を制御する手段と、を備えたことを特徴とするプラズマ処理装置。
  2. 可動ミラ−は回転自在に設けられた回転ミラ−により構成され、この回転ミラ−を各回転位置に順次設定して、前記レ−ザ光出力部からのレ−ザ光を前記複数の光路に順次通過させることを特徴とする請求項1記載のプラズマ処理装置。
  3. ミラ−部は、回転ミラ−からのレ−ザ光を反射して夫々光路を形成するための複数の固定ミラ−を含むことを特徴とする請求項2記載のプラズマ処理装置。
  4. 測定室内の各光路を通ってきたレ−ザ光を夫々検出部に反射させるための複数のミラ−が設けられていることを特徴とする請求項1ないしのいずれか一つに記載のプラズマ処理装置。
  5. 特定の粒子はラジカルまたは分子であることを特徴とする請求項1ないしのいずれか一つに記載のプラズマ処理装置。。
  6. 被処理基板をプラズマにより処理するとは、被処理基板に対して成膜を行うことである請求項1ないしのいずれか一つに記載のプラズマ処理装置。
  7. 被処理基板をプラズマにより処理するとは、被処理基板に対してエッチングを行うことである請求項1ないしのいずれか一つに記載のプラズマ処理装置。
  8. 処理ガスをプラズマ化して得たプラズマにより処理室内の被処理基板を処理するプラズマ処理方法において、
    処理室内に、被処理基板の面方向に並ぶ複数の光路を形成してこれら光路にレ−ザ光を通過させ、各光路ごとにレ−ザ光の減衰量を求めると共にこれら減衰量に基づきプラズマ中の特定の粒子についてプラズマ中の特定の粒子の密度を各光路ごとに検出する工程と、
    この工程にて検出された各光路ごとの粒子密度の最大値と最小値との差に基づいて、前記処理室内の圧力を制御する工程と、を備えたことを特徴とするプラズマ処理方法。
JP10045698A 1997-11-11 1998-03-27 プラズマ処理装置及びプラズマ処理方法 Expired - Fee Related JP3997258B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10045698A JP3997258B2 (ja) 1997-11-11 1998-03-27 プラズマ処理装置及びプラズマ処理方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32704697 1997-11-11
JP9-327046 1997-11-11
JP10045698A JP3997258B2 (ja) 1997-11-11 1998-03-27 プラズマ処理装置及びプラズマ処理方法

Publications (2)

Publication Number Publication Date
JPH11201899A JPH11201899A (ja) 1999-07-30
JP3997258B2 true JP3997258B2 (ja) 2007-10-24

Family

ID=26441481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10045698A Expired - Fee Related JP3997258B2 (ja) 1997-11-11 1998-03-27 プラズマ処理装置及びプラズマ処理方法

Country Status (1)

Country Link
JP (1) JP3997258B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6887341B2 (en) * 2001-11-13 2005-05-03 Tokyo Electron Limited Plasma processing apparatus for spatial control of dissociation and ionization
KR100429761B1 (ko) * 2002-03-13 2004-05-03 한국수력원자력 주식회사 광섬유로 전송되는 레이저를 이용한 원자밀도 측정장치
JP3671222B2 (ja) * 2002-05-29 2005-07-13 独立行政法人産業技術総合研究所 ラジカル種の分析方法及び分析装置
KR101446553B1 (ko) * 2007-12-26 2014-10-06 주식회사 뉴파워 프라즈마 멀티 레이저 스캐닝 라인을 갖는 다중 유도 결합 이중플라즈마 반응기
JP2011119030A (ja) * 2008-03-26 2011-06-16 Nagoya Univ コンビナトリアル式プラズマプロセス試験方法及び傾斜プラズマ発生装置
JP6076895B2 (ja) * 2013-12-27 2017-02-08 三菱重工業株式会社 ガス成分濃度分布測定装置及び排ガス脱硝システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184372A (ja) * 1984-09-28 1986-04-28 Hitachi Condenser Co Ltd 蒸発量モニタ
JPH06101071A (ja) * 1992-09-18 1994-04-12 Hitachi Ltd マイクロ波プラズマ処理方法と装置
JP3951003B2 (ja) * 1995-11-17 2007-08-01 俊夫 後藤 プラズマ処理装置および方法

Also Published As

Publication number Publication date
JPH11201899A (ja) 1999-07-30

Similar Documents

Publication Publication Date Title
EP0478283B1 (en) Microwave plasma processing method and apparatus
US4970435A (en) Plasma processing apparatus
KR101633937B1 (ko) Dc 및 rf 하이브리드 처리 시스템
US7989364B2 (en) Plasma oxidation processing method
US11056322B2 (en) Method and apparatus for determining process rate
EP1086481A1 (en) Chamber having improved process monitoring window
Curley et al. Surface loss rates of H and Cl radicals in an inductively coupled plasma etcher derived from time-resolved electron density and optical emission measurements
US5804033A (en) Microwave plasma processing method and apparatus
JP3951003B2 (ja) プラズマ処理装置および方法
JP3997258B2 (ja) プラズマ処理装置及びプラズマ処理方法
O’Neill et al. Ultraviolet absorption spectroscopy for the detection of CF2 in high‐density plasmas
Giapis et al. Limits to ion energy control in high density glow discharges: measurement of absolute metastable ion concentrations
Akimoto et al. Oxide etching using surface wave coupled plasma
US20210142991A1 (en) Apparatus with optical cavity for determining process rate
Akimoto et al. Reactive ion etching lag on high rate oxide etching using high density plasma
JP3563214B2 (ja) プラズマエッチング方法
JP3199306B2 (ja) プラズマ処理装置および方法
KR100263406B1 (ko) 플라즈마처리의종점검지방법및장치
Kanoh et al. Microwave-excited large-area plasma source using a slot antenna
Oshio et al. Run‐to‐Run Evolution of Fluorocarbon Radicals in C 4 F 8 Plasmas Interacting with Cold and Hot Inner Walls
JPH0917598A (ja) Ecrプラズマ加工装置およびecrプラズマ生成方法
Nakamura et al. Spatial distribution of the absolute densities of CF x radicals in fluorocarbon plasmas determined from single-path infrared laser absorption and laser-induced fluorescence
Nakagawa et al. CF and CF2 Radical Densities in 13.56-MHz CHF3/Ar Inductively Coupled Plasma
Nakamura et al. Spatial Distribution Measurement of Absolute Densities of CF and CF 2 Radicals in a High Density Plasma Reactor Using a Combination of Single-Path Infrared Diode Laser Absorption Spectroscopy and Laser-Induced Fluorescence Technique
Benck et al. Ion energy distribution and optical measurements in high-density, inductively coupled C 4 F 6 discharges

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees