JP3993662B2 - Rubber CVJ boots - Google Patents

Rubber CVJ boots Download PDF

Info

Publication number
JP3993662B2
JP3993662B2 JP12064697A JP12064697A JP3993662B2 JP 3993662 B2 JP3993662 B2 JP 3993662B2 JP 12064697 A JP12064697 A JP 12064697A JP 12064697 A JP12064697 A JP 12064697A JP 3993662 B2 JP3993662 B2 JP 3993662B2
Authority
JP
Japan
Prior art keywords
rubber
boot
thick
peripheral surface
cvj
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12064697A
Other languages
Japanese (ja)
Other versions
JPH10325464A (en
Inventor
聡 太田
Original Assignee
キーパー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キーパー株式会社 filed Critical キーパー株式会社
Priority to JP12064697A priority Critical patent/JP3993662B2/en
Publication of JPH10325464A publication Critical patent/JPH10325464A/en
Application granted granted Critical
Publication of JP3993662B2 publication Critical patent/JP3993662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Diaphragms And Bellows (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、等速ジョイントのように作動角をもって回転する2軸に蛇腹部両端の固定部によって装着されてグリース保持及び防塵等のために使用されるゴム製CVJブーツに関する。さらに詳述すると、本発明はブーツを取り付けようとする部分(本明細書ではブーツ取付部と呼ぶ)の外周面の輪郭形状(横断面の外輪郭)が非円形とされた相手部材例えばトリポードジョイントのようなものに装着されるゴム製CVJブーツに関する。
【0002】
【従来の技術】
外周面の輪郭形状が真円でなく非円形のブーツ取付部を有する相手部材例えばトリポードジョイントに装着するCVJブーツは、その固定部に内方へ突出する厚肉部分を設けて相手部材の外周面の輪郭に沿う形状とされている。これは、トリポードタイプの等速ジョイントの場合、ブーツ取付部には周方向に等間隔で3箇所の凹部が形成されておりブーツ取付部の横断面の輪郭形状が非円形になっていることからCVJブーツの固定部の内周側をそれに合わせて突出させる必要があることと、この固定部は全周で均一な締め付けを可能とするために外周の輪郭を真円形に成形しなければならないこととによるものである。
【0003】
【発明が解決しようとする課題】
しかしながら、上述したゴム製CVJブーツでは、固定部に厚肉部分を有しているので、成形時の加硫時間が厚肉部分で要する加硫時間に支配され、時間がかかってしまう問題を有している。即ち、CVJブーツの生産性が悪くなる。
【0004】
また、固定部に厚肉部分とそれよりも肉薄の部分とが存在するため、それらの境界部分ではバンド等で締め付け難くなるので、締付力にばらつきが生じ、シール性が低下する虞がある。
【0005】
そこで、本発明は、ゴム製CVJブーツの固定部の厚肉部分の加硫時間を短縮してCVJブーツ全体の生産性を向上できると共に、バンド等での締付力が均一となるゴム製CVJブーツを提供することを目的とする。
【0006】
【課題を解決するための手段】
かかる目的を達成するため、請求項1の発明は、大径側固定部の内周面側に内方へ突出する厚肉部分を備え、外周面の輪郭形状が非円形の相手側部材の大径側ブーツ取付部に装着されるゴム製CVJブーツにおいて、厚肉部分のみの外周面に形成された凹部を有するようにしている。
【0007】
したがって、加硫の際には、厚肉部分の凹部を形成する成形型の一部が厚肉部分の中に挿入された状態のまま存在するので、厚肉部分は内外から同時に加熱され、加硫を進行させる。
【0008】
さらに、凹部は固定部の外周面に形成されているので、締付バンドの締め付けにより固定部の外周面に生ずるゴムのよれが凹部によって吸収される。しかも、凹部は固定部の外周面に形成されているので、成形外型のキャビティ面に凸部が形成されることになる。このため、型抜きは容易に行われる。
【0009】
また、請求項2のゴム製CVJブーツでは、各厚肉部分の容積がほぼ同じ大きさとなるように凹部形成されている。したがって、各厚肉部分に形成される凹部の数や形状や深さ方向の相違に拘わらず、締付バンドの締め付けにより潰れ代が移動してゴムの分布がほぼ均一となる。また、各厚肉部分での加硫時間にもばらつきが生じない。
【0010】
さらに、請求項3のゴム製CVJブーツでは、固定部の横断面における凹部の底面と厚肉部分の内周面とが同じ曲率中心の円弧であるようにしている。したがって、厚肉部分の内周面と凹部の底面との間の肉厚がほぼ均一となり、この部分での締め付け力が均一となる。
【0011】
また、請求項4のゴム製CVJブーツでは、凹部の深さ方向はゴム製CVJブーツの成形型の型抜き方向であるようにしている。したがって、ゴム製CVJブーツを加硫後に型開きする際は、型開き方向と凹部の深さ方向とが一致しているため、凹部を成形する成形型の凸部を製品に引っかけることなく抜き出すことができる。
【0012】
【発明の実施の形態】
以下、本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。図1に自動車用トリポードジョイント3に使われるゴム製CVJブーツ(以下、単に「ブーツ」と略す)の一実施形態を示す。このブーツ1は、大径側固定部4の内周面4a側に内方へ突出する厚肉部分5を備え、外周面の輪郭形状が非円形に形成されている相手側部材、即ちトリポードジョイント3の大径側のブーツ取付部2に装着可能とされたものである。ブーツ取付部2に装着される大径側固定部4には内方へ突出する厚肉部分5と均一肉厚で円筒状の肉薄部分とが交互に形成されて内周面4aがブーツ取付部2の外周面に沿う形状に成形されている。そして、このブーツ1の厚肉部分5のみの外周面5aには、凹部(以下、「ピン穴」と呼ぶ)6が形成されている。
【0013】
ブーツ1は、蛇腹部7と、蛇腹部7の一端に配置されて等速ジョイント3の外輪部8に嵌合される大径側固定部4と、蛇腹部7の他端に配置されて等速ジョイント3の回転軸部9に嵌合される小径側固定部10とにより構成されている。大径側固定部4及び小径側固定部10は、それぞれ締付バンド11により相手側部材たる等速ジョイント3側に締め付けられて固定される。
【0014】
大径側固定部4には、径方向内側に突出し等速ジョイント3の大径側ブーツ取付部2となる外輪部8の凹部8aに適合する厚肉部分5が一体成形されている。各厚肉部分5は、外輪部8の各凹部8aに対応する位置、即ち大径側固定部4の周方向に等間隔で3箇所に設けられている。また、大径側固定部4の横断面の外周面の輪郭は、全周に亘って均一な締め付けを行うことができるように真円形とされている。
【0015】
各厚肉部分5のみの外周面5aにはピン穴6が形成されている。このピン穴6は例えば円柱形状の穴であり、大径側固定部4の中心に向けて放射状に配置され、厚肉部分5の厚さの半分よりやや深く形成されている。このピン穴6の深さと加硫時間並びにシール性との間には関係があることを本発明者等は実験により確認した。この実験によると、ピン穴6を設けない場合に比べると、ピン穴6を設けその深さを深くする程加硫時間は短くなるが、ある深さを越えるとシール性が劣化する。そこで、ピン穴6の深さLは厚肉部分の厚さTの50〜70%とすることが好ましい。この場合、シール性を損なうことなく加硫時間を短くできる。勿論、この値は、ピン穴6の形状や配置位置によっても左右されることは言うまでもない。
【0016】
また、各厚肉部分5に設けられるピン穴6は、その容積をほぼ同じくするように形成することが好ましい。この場合、バンド締付時のピン穴6の潰れが同じになるので、締付力が不均一になることを防ぎ得る上に加硫時間も均一なものとなる。
【0017】
上述したブーツ1を製造する手順を以下に説明する。まず、クロロプレンゴムやシリコンゴム等に加硫剤やその他の必要添加物等を混練した未加硫ゴム材料を加熱した金型に射出する。金型12は、例えば図2に示すように、上型13及び下型14からなる外型15とコア型16とからなる。また、上型13及び下型14の厚肉部分5を成形する部位には、それぞれキャビティ内に突出するピン17,18が埋め込まれている。ここで、上側13のピン17は上型13に対して固定されている。また、下型14のピン18,18は、それぞれ外部に連通するピン出入孔14aを通して下型14に対して出し入れ自在に挿入されている。このため、このピン18,18はキャビティの厚肉部分5を成形する部分に出没可能とされている。また、図示していないが、ピン18,18のキャビティ側の先端がキャビティ内で所定長さ、例えばピン17がキャビティ内に突出するのと同じ長さだけ突出した状態で金型12の外側に押し戻されないようにロックするロック手段が設けられている。
【0018】
そして、外型15とコア型16とを合わせて、ピン18,18をキャビティ内にピン17の突出量と同等だけ突出させてロック手段によりロックする。この状態でキャビティ内に未加硫状態のゴムを射出する。このとき、外型15及びコア型16は予め加熱されているので、キャビティ内のゴムは加熱成形されて加硫される。
【0019】
ここで、キャビティの各厚肉部分5を成形する部位にはピン17,18がそれぞれ突出しているので、厚肉部分5のゴムは外型15及びコア型16により周囲から加熱されるのに加えて各ピン17,18により内部からも加熱される。したがって、厚肉部分5に迅速に熱が与えられ、厚肉部分5の加硫時間を短縮することができる。
【0020】
そして、加硫後はピン18をキャビティ内から引き抜いて退避させた後、外型15の型割りを行う。このとき、ピン18の長手方向と型開き方向とが異なっても、型割りの際にピン18が引っかかりとなって型割りを妨げたり、製品のピン穴6部分を傷付けたりすることがない。また、外型15を三つ割りする必要はなく、単純に二つ割りするだけで製品を取り出すことができる。
【0021】
なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、図3に示すように、1つの厚肉部分5に対して複数のピン穴6を形成することもある。この場合、ピン穴6としての比表面積を大きくできるので、厚肉部分5の内部により多くの熱を短時間で与えることができ、加硫時間をさらに短縮することができる。
【0022】
また、同図に示すように、ピン穴6の深さ方向を型抜き方向に合わせて厚肉部分5に対して傾斜させることもできる。この場合、図4に示すように、金型12のキャビティに突出するピン17,19を全て固定ピンとしても、加硫後に型割りを行う際に、全てのピン17,19がピン穴6に引っかかることなく容易に抜き取ることができる。このため、ブーツ1の製造の作業性を向上させることができる。
【0023】
しかも、ピン穴6が厚肉部分5に対して斜め方向に形成されるので、厚肉部分5に垂直に形成した場合に比べてより深いピン穴6とすることができる。このため、同じ穴形であってもより広い面積でピン19と厚肉部分5との接触を行うことができ、所定の加熱量を与えるために少数、例えば1つのピン穴6のみを設ければ良く、部品点数を低減することができる。
【0024】
また、ピン穴6の形状及び本数等は特に限定されるものではないが、図5に示すようにピン穴6の底面形状を厚肉部分5の内周面4aと同じ曲率中心の円弧即ち同心円状にすることにより、ピン穴6の底面と厚肉部分5の内周面4aとの間の肉厚tを均一にすることが好ましい。この場合、ブーツ1を等速ジョイント3に装着してバンドで締め付けると、図6に示すように、ピン穴6は完全に潰れることがなく、内方へ膨らむような形で僅かに潰れる。したがって、この部分でのブーツ1自体による締め付け力は中央部分が僅かに大きくなる。一方、締付バンド11による締め付けは、ピン穴6部分では締付バンド11とブーツ1とが直接接触しないので、他の部分に比べて中央部分の締付力が弱くなるものと考えられる。したがって、ブーツ1自体の締付力と締付バンド11による締付力とを合わせた総合的な締付力は、均一化される。これにより、ブーツ1の大径側固定部4の全周に亘る均一なシール性を得ることができる。
【0025】
また、図7に示すように、各厚肉部分5に複数のピン穴6を形成すると共に、各ピン穴6の底面をその厚肉部分5の内周面4aと同心円状に形成することもできる。この場合も、ブーツ1を等速ジョイント3に装着して締付バンド11を取り付けたときに固定部4の全周に亘り締め付け力が均一になるので、均一なシール性を得ることができる。
【0026】
さらに、上述した各実施形態では厚肉部分5の凹部として円柱形状のピン穴6を形成しているが、これには限られない。例えば、半球状、半円筒状、直方体形状、角錐状、角柱状等の種々の形状の穴を必要に応じて採用することも可能であるし、また図8に示すように固定部4の端面に達する軸方向の溝6’あるいは図示していないが円周方向の溝とすることもできる。いずれの場合にも、ブーツ1の溝6’を加熱されたピンが形成することにより厚肉部分5の加硫時間を短縮することができる。
【0027】
ところで、上述した各実施形態では、大径側固定部4の周方向に等間隔で3箇所に厚肉部分5を形成しているが、厚肉部分5の個数や位置は特に限定されるものではない。また、厚肉部分5の形状も特に限定されるものではない。
【0028】
【実施例】
図9に示すように、厚さTの厚肉部分5に対し、直径を締付バンド11により締め付けられても、ピン穴6がつぶれないようにバンド幅に対し60〜80%に設定したピン穴6を1箇所設けたブーツ1について、ピン穴6の深さLと厚肉部分5の厚さTとの比L/Tを10〜90%の範囲で変えて、ピン穴6を形成しない場合と比べた加硫時間及びシール性との相関関係を実験により求めた。その結果を図10及び表1に示す。
【0029】
【表1】

Figure 0003993662
図10及び表1から明らかなように、深さ比L/Tが50〜70%のときに加硫時間の短縮と良好なシール性とを得ることができた。したがって、厚肉部分5に形成するピン穴6は深さ比L/Tを50〜70%とすることが好ましいことが判明した。なお、深さ比L/Tが80%を越えるとシール性が劣るのは、ピン穴6を形成した部分の肉厚が薄くなりすぎてバンドの締め付けにより変形してしまうためと考えられる。
【0030】
【発明の効果】
以上の説明より明らかなように、請求項1の発明によると、厚肉部分のみの外周面に形成された凹部を有するようにしているので、加硫の際には、厚肉部分の凹部を形成する成形型の一部が厚肉部分の中に挿入された状態のまま存在し、厚肉部分は内外から同時に加熱され、加硫を進行させる。このため、厚肉部分の加硫時間が短縮され、ゴム製CVJブーツの製造時間の短縮を図ることができ、作業性を向上させることができる。
【0031】
しかも、ピン穴は固定部の外周面に形成されているので、締付バンドの締め付けにより固定部の外周面に生ずるゴムのよれを吸収して、締付力の低下を防止することができる。
【0032】
さらに、ピン穴は固定部の外周面に形成されているので、成形する外型のキャビティ面に凸部が形成されることになる。このため、金型の型抜きを容易に行うことができるので、作業性を向上させることができる。
【0033】
また、請求項2のゴム製CVJブーツでは、各厚肉部分の容積がほぼ同じ大きさになるように凹部を形成しているので、各厚肉部分に形成される凹部の数や形状や深さ方向の相違に拘わらず、締付バンドの締め付けによりつぶれ代が移動してゴムの分布をほぼ均一とすることができる。これにより、固定部によるブーツ取付部への締め付け力を周方向に均一にすることができ、固定部の全周に亘って均一なシール性を得ることができる。加えて、各厚肉部分での加硫時間にばらつきが少なくなり、より一層加硫時間の短縮化を可能とする。
【0034】
さらに、請求項3のゴム製CVJブーツによると、凹部の底面と厚肉部分の内周面との間の肉厚をほぼ均一な厚さとできるので、この部分での締め付け力が均一となる。これにより、固定部の全周に亘って均一なシール性を得ることができる。
【0035】
また、請求項4のゴム製CVJブーツによると、凹部の深さ方向が成形型の型割り方向と一致するようにしているので、ブーツ加硫後に型開きする際は、凹部を成形する型の一部・凸部が凹部に引っかかることなく抜き出すことができる。このため、金型の型開き作業を容易に行うことができると共に、製品を型開きの際に傷付けることがない。
【図面の簡単な説明】
【図1】本発明に係るゴム製CVJブーツを示す図であり、(a)は縦断面側面図、(b)は正面図である。
【図2】ゴム製CVJブーツを製造する金型を示す横断面図である。
【図3】ゴム製CVJブーツの他の実施形態を示す正面図である。
【図4】図3に示すゴム製CVJブーツを製造する金型を示す横断面図である。
【図5】ゴム製CVJブーツの別の実施形態を示す一部省略の正面図である。
【図6】図5に示すゴム製CVJブーツを等速ジョイントに装着した状態を示す一部省略の正面図である。
【図7】ゴム製CVJブーツのさらに別の実施形態を示す正面図である。
【図8】ゴム製CVJブーツのさらに他の実施形態を示す正面図であり、(a)は縦断面側面図、(b)は正面図である。
【図9】厚肉部分の各部の寸法を示す縦断面側面図である。
【図10】深さ比と加硫時間との相関関係を示すグラフである。
【符号の説明】
1 ゴム製CVJブーツ
2 ブーツ取付部
3 等速ジョイント(相手側部材)
4 大径側固定部
5 厚肉部分
5a 厚肉部分の外周面
6 ピン穴(凹部)
6’溝(凹部)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rubber CVJ boot which is mounted on two shafts rotating at an operating angle like a constant velocity joint by fixing parts at both ends of a bellows part and used for grease retention, dust prevention and the like. More specifically, the present invention relates to a mating member such as a tripod joint in which the contour shape (outer contour of the cross section) of the outer peripheral surface of the portion to which the boot is to be attached (referred to herein as the boot attachment portion) is non-circular. The present invention relates to a rubber CVJ boot to be attached to such a thing.
[0002]
[Prior art]
A counterpart member having a non-circular boot mounting portion whose outer peripheral surface has a non-circular contour shape, such as a CVJ boot to be mounted on a tripod joint, is provided with a thick portion protruding inwardly at its fixed portion, and the outer peripheral surface of the counterpart member It is made into the shape along the outline. This is because, in the case of a tripod type constant velocity joint, three recesses are formed at equal intervals in the circumferential direction in the boot mounting portion, and the contour shape of the cross section of the boot mounting portion is non-circular. It is necessary to project the inner peripheral side of the fixed part of the CVJ boot according to it, and the fixed part must be formed into a perfect circle on the outer periphery in order to enable uniform tightening on the entire periphery. It is due to.
[0003]
[Problems to be solved by the invention]
However, since the rubber CVJ boot described above has a thick portion at the fixed portion, the vulcanization time at the time of molding is governed by the vulcanization time required at the thick portion, which takes time. is doing. That is, the productivity of the CVJ boot is deteriorated.
[0004]
In addition, since there is a thick part and a thinner part in the fixing part, it becomes difficult to tighten with a band or the like at the boundary part thereof, and thus there is a possibility that the tightening force varies and the sealing performance is deteriorated. .
[0005]
Therefore, the present invention can improve the productivity of the entire CVJ boot by shortening the vulcanization time of the thick part of the fixed portion of the rubber CVJ boot, and can make the tightening force uniform in the band or the like. The aim is to provide boots.
[0006]
[Means for Solving the Problems]
In order to achieve such an object, the invention of claim 1 is provided with a thick portion that protrudes inwardly on the inner peripheral surface side of the large-diameter side fixing portion, and the outer member has a non-circular contour shape. in rubber CVJ boots mounted on the diameter boot mounting portion, and the so that the have a recess formed on the outer peripheral surface of the thick part only.
[0007]
Therefore, during vulcanization, a part of the mold that forms the concave portion of the thick part remains in the thick part, so that the thick part is heated from inside and outside at the same time. The sulfur is advanced.
[0008]
Furthermore, since the concave portion is formed on the outer peripheral surface of the fixed portion, the rubber twist generated on the outer peripheral surface of the fixed portion by the tightening of the fastening band is absorbed by the concave portion. And since the recessed part is formed in the outer peripheral surface of a fixing | fixed part, a convex part will be formed in the cavity surface of a shaping | molding outer mold | type. For this reason, die cutting is easily performed.
[0009]
Further, in the rubber CVJ boot according to the second aspect, the concave portion is formed so that the volume of each thick portion is substantially the same. Therefore, regardless of the number, shape, and depth direction of the concave portions formed in each thick portion, the crushing margin moves by tightening the tightening band, and the rubber distribution becomes substantially uniform. Moreover, there is no variation in the vulcanization time in each thick part.
[0010]
Furthermore, in the rubber-made CVJ boot according to claim 3, the bottom surface of the concave portion and the inner peripheral surface of the thick portion in the cross section of the fixed portion are arcs having the same center of curvature. Therefore, the thickness between the inner peripheral surface of the thick portion and the bottom surface of the concave portion is substantially uniform, and the tightening force at this portion is uniform.
[0011]
Further, in the rubber CVJ boot according to claim 4, the depth direction of the concave portion is set to the die cutting direction of the molding die of the rubber CVJ boot. Therefore, when the mold is opened after vulcanizing the rubber CVJ boot, the mold opening direction and the depth direction of the concave portion coincide with each other, so that the convex portion of the mold for molding the concave portion is extracted without being caught on the product. Can do.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the configuration of the present invention will be described in detail based on an example of an embodiment shown in the drawings. FIG. 1 shows an embodiment of a rubber CVJ boot (hereinafter simply referred to as “boot”) used in an automobile tripod joint 3. This boot 1 is provided with a thick-walled portion 5 projecting inwardly on the inner peripheral surface 4a side of the large-diameter side fixing portion 4, and a counterpart member having a non-circular contour shape on the outer peripheral surface, that is, a tripod joint. 3 can be attached to the boot mounting portion 2 on the large diameter side. On the large-diameter side fixing portion 4 attached to the boot mounting portion 2, thick portions 5 projecting inward and thin portions having a uniform thickness and a cylindrical shape are alternately formed, and the inner peripheral surface 4a is the boot mounting portion. 2 is formed into a shape along the outer peripheral surface. A recess (hereinafter referred to as “pin hole”) 6 is formed on the outer peripheral surface 5 a of only the thick portion 5 of the boot 1.
[0013]
The boot 1 includes a bellows portion 7, a large-diameter fixing portion 4 that is disposed at one end of the bellows portion 7 and is fitted to the outer ring portion 8 of the constant velocity joint 3, and is disposed at the other end of the bellows portion 7. It is comprised by the small diameter side fixing | fixed part 10 fitted by the rotating shaft part 9 of the speed joint 3. As shown in FIG. The large-diameter side fixing portion 4 and the small-diameter side fixing portion 10 are fastened and fixed to the constant velocity joint 3 side as a counterpart member by a fastening band 11.
[0014]
The large-diameter side fixing portion 4 is integrally formed with a thick portion 5 that protrudes inward in the radial direction and that fits into the recess 8 a of the outer ring portion 8 that becomes the large-diameter side boot mounting portion 2 of the constant velocity joint 3. The thick portions 5 are provided at three positions at equal intervals in the circumferential direction of the large-diameter side fixing portion 4 corresponding to the concave portions 8 a of the outer ring portion 8. Moreover, the outline of the outer peripheral surface of the cross section of the large-diameter side fixing portion 4 is a perfect circle so that uniform tightening can be performed over the entire circumference.
[0015]
A pin hole 6 is formed in the outer peripheral surface 5a of each thick portion 5 only . The pin holes 6 are, for example, cylindrical holes, are arranged radially toward the center of the large-diameter side fixing portion 4, and are formed slightly deeper than half the thickness of the thick portion 5. The present inventors have confirmed through experiments that there is a relationship between the depth of the pin hole 6 and the vulcanization time and sealability. According to this experiment, as compared with the case where the pin hole 6 is not provided, the vulcanization time is shortened as the pin hole 6 is provided and the depth thereof is increased. However, when the depth is exceeded, the sealing performance is deteriorated. Therefore, the depth L of the pin hole 6 is preferably 50 to 70% of the thickness T of the thick portion. In this case, the vulcanization time can be shortened without impairing the sealing performance. Of course, it goes without saying that this value also depends on the shape and arrangement position of the pin hole 6.
[0016]
Moreover, it is preferable to form the pin hole 6 provided in each thick part 5 so that the volume may be substantially the same. In this case, since the pin hole 6 is crushed at the time of band tightening, it is possible to prevent the tightening force from becoming non-uniform and to make the vulcanization time uniform.
[0017]
A procedure for manufacturing the above-described boot 1 will be described below. First, an unvulcanized rubber material obtained by kneading a vulcanizing agent or other necessary additives in chloroprene rubber or silicon rubber is injected into a heated mold. For example, as shown in FIG. 2, the mold 12 includes an outer mold 15 including an upper mold 13 and a lower mold 14 and a core mold 16. Further, pins 17 and 18 projecting into the cavities are embedded in the portions of the upper mold 13 and the lower mold 14 where the thick portions 5 are to be molded. Here, the pin 17 on the upper side 13 is fixed to the upper mold 13. Further, the pins 18 and 18 of the lower mold 14 are inserted into the lower mold 14 so as to be freely inserted and removed through the pin access holes 14a communicating with the outside. For this reason, these pins 18 and 18 can be made to appear in the part which molds the thick part 5 of a cavity. Although not shown, the tips of the pins 18 and 18 on the cavity side protrude outside the mold 12 by a predetermined length within the cavity, for example, the same length as the pin 17 protrudes into the cavity. Locking means for locking so as not to be pushed back is provided.
[0018]
Then, the outer die 15 and the core die 16 are combined, and the pins 18 and 18 are projected into the cavity by the same amount as the protruding amount of the pin 17 and locked by the locking means. In this state, unvulcanized rubber is injected into the cavity. At this time, since the outer die 15 and the core die 16 are heated in advance, the rubber in the cavity is thermoformed and vulcanized.
[0019]
Here, since the pins 17 and 18 protrude from the portions where the thick portions 5 of the cavity are molded, the rubber of the thick portion 5 is heated from the surroundings by the outer die 15 and the core die 16. The pins 17 and 18 are also heated from the inside. Therefore, heat is quickly given to the thick part 5 and the vulcanization time of the thick part 5 can be shortened.
[0020]
After vulcanization, the pin 18 is pulled out from the cavity and retracted, and then the outer mold 15 is divided. At this time, even if the longitudinal direction of the pin 18 is different from the mold opening direction, the pin 18 is not caught during the mold division and the mold division is not hindered, and the pin hole 6 portion of the product is not damaged. Further, it is not necessary to divide the outer mold 15 into three parts, and the product can be taken out simply by dividing it into two parts.
[0021]
The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, as shown in FIG. 3, a plurality of pin holes 6 may be formed for one thick portion 5. In this case, since the specific surface area as the pin hole 6 can be increased, more heat can be given to the inside of the thick portion 5 in a short time, and the vulcanization time can be further shortened.
[0022]
Moreover, as shown in the figure, the depth direction of the pin hole 6 can be inclined with respect to the thick portion 5 in accordance with the die cutting direction. In this case, as shown in FIG. 4, even if all the pins 17 and 19 protruding into the cavity of the mold 12 are fixed pins, all the pins 17 and 19 are inserted into the pin holes 6 when the mold is divided after vulcanization. It can be easily extracted without being caught. For this reason, workability | operativity of manufacture of the boot 1 can be improved.
[0023]
Moreover, since the pin hole 6 is formed in an oblique direction with respect to the thick part 5, the pin hole 6 can be made deeper than when formed perpendicular to the thick part 5. For this reason, even with the same hole shape, the pin 19 and the thick portion 5 can be contacted in a wider area, and only a small number, for example, one pin hole 6 can be provided to give a predetermined heating amount. The number of parts can be reduced.
[0024]
Further, the shape and number of the pin holes 6 are not particularly limited. As shown in FIG. 5, the bottom shape of the pin holes 6 is an arc having the same center of curvature as the inner peripheral surface 4 a of the thick portion 5, that is, concentric circles. It is preferable to make the wall thickness t uniform between the bottom surface of the pin hole 6 and the inner peripheral surface 4a of the thick portion 5 by making it into a shape. In this case, when the boot 1 is attached to the constant velocity joint 3 and tightened with a band, as shown in FIG. 6, the pin hole 6 is not completely crushed but is slightly crushed so as to swell inward. Therefore, the tightening force by the boot 1 itself at this portion is slightly increased at the central portion. On the other hand, the tightening with the tightening band 11 is considered that the tightening band 11 and the boot 1 are not in direct contact with each other in the pin hole 6 portion, and therefore, the tightening force at the center portion is weaker than the other portions. Therefore, the total tightening force that combines the tightening force of the boot 1 itself and the tightening force of the tightening band 11 is made uniform. Thereby, the uniform sealing performance over the perimeter of the large diameter side fixing | fixed part 4 of the boot 1 can be obtained.
[0025]
In addition, as shown in FIG. 7, a plurality of pin holes 6 are formed in each thick portion 5, and the bottom surface of each pin hole 6 is formed concentrically with the inner peripheral surface 4 a of the thick portion 5. it can. Also in this case, when the boot 1 is attached to the constant velocity joint 3 and the tightening band 11 is attached, the tightening force is uniform over the entire circumference of the fixed portion 4, so that uniform sealing performance can be obtained.
[0026]
Furthermore, in each embodiment mentioned above, although the cylindrical pin hole 6 is formed as a recessed part of the thick part 5, it is not restricted to this. For example, holes having various shapes such as a hemispherical shape, a semicylindrical shape, a rectangular parallelepiped shape, a pyramid shape, a prismatic shape, and the like can be adopted as necessary. Further, as shown in FIG. It is also possible to use an axial groove 6 ′ that reaches or a circumferential groove (not shown). In any case, the vulcanization time of the thick portion 5 can be shortened by forming a heated pin in the groove 6 ′ of the boot 1.
[0027]
By the way, in each embodiment mentioned above, although the thick part 5 is formed in three places at equal intervals in the circumferential direction of the large diameter side fixing | fixed part 4, the number and position of the thick part 5 are specifically limited. is not. Further, the shape of the thick portion 5 is not particularly limited.
[0028]
【Example】
As shown in FIG. 9, the pin set to 60 to 80% of the band width so that the pin hole 6 does not collapse even if the diameter is tightened by the tightening band 11 with respect to the thick part 5 having the thickness T. For the boot 1 provided with one hole 6, the ratio L / T between the depth L of the pin hole 6 and the thickness T of the thick portion 5 is changed within a range of 10 to 90%, and the pin hole 6 is not formed. The correlation between the vulcanization time and the sealing performance compared with the case was obtained by experiments. The results are shown in FIG.
[0029]
[Table 1]
Figure 0003993662
As is apparent from FIG. 10 and Table 1, when the depth ratio L / T is 50 to 70%, shortening of the vulcanization time and good sealability could be obtained. Accordingly, it has been found that the pin hole 6 formed in the thick portion 5 preferably has a depth ratio L / T of 50 to 70%. The reason why the sealing performance is inferior when the depth ratio L / T exceeds 80% is considered to be that the thickness of the portion where the pin hole 6 is formed becomes too thin and is deformed by tightening of the band.
[0030]
【The invention's effect】
As apparent from the above description, according to the invention of claim 1, since the so that the have a recess formed on the outer peripheral surface of the thick part only, during vulcanization, the thick part A part of the mold that forms the recess exists in a state of being inserted into the thick part, and the thick part is simultaneously heated from inside and outside to advance vulcanization. For this reason, the vulcanization time of the thick portion is shortened, the production time of the rubber CVJ boot can be shortened, and workability can be improved.
[0031]
In addition, since the pin hole is formed on the outer peripheral surface of the fixing portion, it is possible to absorb the rubber twist generated on the outer peripheral surface of the fixing portion due to the tightening of the tightening band, thereby preventing a decrease in the tightening force.
[0032]
Furthermore, since the pin hole is formed on the outer peripheral surface of the fixed portion, a convex portion is formed on the cavity surface of the outer mold to be molded. For this reason, the mold can be easily removed from the mold, so that workability can be improved.
[0033]
In the rubber CVJ boot according to claim 2, since the concave portions are formed so that the volume of each thick portion is substantially the same, the number, shape and depth of the concave portions formed in each thick portion. Regardless of the difference in direction, the crushing allowance is moved by tightening the tightening band, and the rubber distribution can be made substantially uniform. Thereby, the fastening force to the boot attachment part by the fixing part can be made uniform in the circumferential direction, and uniform sealing performance can be obtained over the entire circumference of the fixing part. In addition, there is less variation in the vulcanization time in each thick part, and the vulcanization time can be further shortened.
[0034]
Furthermore, according to the rubber CVJ boot of claim 3, the thickness between the bottom surface of the recess and the inner peripheral surface of the thick portion can be made substantially uniform, so that the tightening force at this portion becomes uniform. Thereby, a uniform sealing performance can be obtained over the entire circumference of the fixed portion.
[0035]
Further, according to the rubber CVJ boot of claim 4, since the depth direction of the concave portion coincides with the mold dividing direction of the molding die, when the mold is opened after vulcanization of the boot, the mold for molding the concave portion is used. A part or convex part can be extracted without being caught in the concave part. Therefore, the mold opening operation of the mold can be easily performed, and the product is not damaged when the mold is opened.
[Brief description of the drawings]
FIG. 1 is a view showing a rubber CVJ boot according to the present invention, wherein (a) is a longitudinal sectional side view, and (b) is a front view.
FIG. 2 is a cross-sectional view showing a mold for producing a rubber CVJ boot.
FIG. 3 is a front view showing another embodiment of a rubber CVJ boot.
4 is a cross-sectional view showing a mold for manufacturing the rubber CVJ boot shown in FIG. 3; FIG.
FIG. 5 is a partially omitted front view showing another embodiment of a rubber CVJ boot.
6 is a partially omitted front view showing a state where the rubber CVJ boot shown in FIG. 5 is attached to a constant velocity joint. FIG.
FIG. 7 is a front view showing still another embodiment of a rubber CVJ boot.
FIG. 8 is a front view showing still another embodiment of a rubber CVJ boot, wherein (a) is a longitudinal sectional side view, and (b) is a front view.
FIG. 9 is a longitudinal sectional side view showing the dimensions of each part of the thick part.
FIG. 10 is a graph showing the correlation between depth ratio and vulcanization time.
[Explanation of symbols]
1 Rubber CVJ Boot 2 Boot Mounting 3 Constant Velocity Joint (mating member)
4 Large diameter side fixing part 5 Thick part 5a Outer peripheral surface of thick part 6 Pin hole (concave part)
6 'groove (concave)

Claims (4)

大径側固定部の内周面側に内方へ突出する厚肉部分を備え、外周面の輪郭形状が非円形の相手側部材の大径側ブーツ取付部に装着されるゴム製CVJブーツにおいて、前記厚肉部分のみの外周面に形成された凹部を有することを特徴とするゴム製CVJブーツ。In a rubber CVJ boot provided with a thick portion protruding inward on the inner peripheral surface side of the large-diameter side fixing portion, and attached to the large-diameter boot attaching portion of the mating member whose outer peripheral surface has a non-circular contour shape , rubber CVJ boots, characterized in Rukoto to have a formed in said outer peripheral surface of the thick portion only recess. 前記各厚肉部分の容積がほぼ同じであることを特徴とする請求項1記載のゴム製CVJブーツ。  2. The rubber CVJ boot according to claim 1, wherein the volume of each thick part is substantially the same. 前記固定部の横断面における前記凹部の底面と前記厚肉部分の内周面とが同じ曲率中心の円弧であることを特徴とする請求項1または2記載のゴム製CVJブーツ。  3. The rubber-made CVJ boot according to claim 1, wherein the bottom surface of the concave portion and the inner peripheral surface of the thick portion in the cross section of the fixed portion are arcs having the same center of curvature. 前記凹部の深さ方向は前記ゴム製CVJブーツの成形型の型抜き方向であることを特徴とする請求項1から3までのいずれか記載のゴム製CVJブーツ。  The rubber CVJ boot according to any one of claims 1 to 3, wherein a depth direction of the concave portion is a die cutting direction of a molding die of the rubber CVJ boot.
JP12064697A 1997-03-28 1997-05-12 Rubber CVJ boots Expired - Fee Related JP3993662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12064697A JP3993662B2 (en) 1997-03-28 1997-05-12 Rubber CVJ boots

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7843597 1997-03-28
JP9-78435 1997-03-28
JP12064697A JP3993662B2 (en) 1997-03-28 1997-05-12 Rubber CVJ boots

Publications (2)

Publication Number Publication Date
JPH10325464A JPH10325464A (en) 1998-12-08
JP3993662B2 true JP3993662B2 (en) 2007-10-17

Family

ID=26419498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12064697A Expired - Fee Related JP3993662B2 (en) 1997-03-28 1997-05-12 Rubber CVJ boots

Country Status (1)

Country Link
JP (1) JP3993662B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010045044A (en) * 1999-11-02 2001-06-05 김재복 Bellows for secession prevention to spider die of uniform joint
JP2003329059A (en) * 2002-05-14 2003-11-19 Toyo Tire & Rubber Co Ltd Joint boot made of resin
JP4074326B2 (en) * 2004-11-17 2008-04-09 東洋ゴム工業株式会社 Manufacturing method of resin joint boots

Also Published As

Publication number Publication date
JPH10325464A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
US8303286B2 (en) Mold for vulcanizing a tire, a method of vulcanizing a green tire blank, and a tire obtained by said method
KR100994200B1 (en) Method and apparatus for manufacturing resin boots for constant velocity universal joint
US2772104A (en) Elastic articulating device
JP3993662B2 (en) Rubber CVJ boots
JP2539503B2 (en) Dust boot made of synthetic resin and manufacturing method thereof
JP6630114B2 (en) Non-pneumatic tire, mold and method of manufacturing non-pneumatic tire
JP5364331B2 (en) Golf ball molding die and golf ball manufactured using the same
US12060912B2 (en) Protective bellows and transmission joint provided with such a bellows
JP4074326B2 (en) Manufacturing method of resin joint boots
KR20030029739A (en) Vent Plug and Tire Curing Mould Mounted with the Same
JP2791857B2 (en) Mold equipment for bellows production
JP2023002401A (en) Tire molding die and tire production method
JP2020142459A (en) Tire vulcanization metallic mold
JP3556851B2 (en) Golf ball manufacturing method
JP2001254832A (en) Rubber packing for pipe coupling and pipe coupling using the same
JP3798540B2 (en) Vulcanization mold and tire vulcanization method
JP3890466B2 (en) Manufacturing method of resin boot for constant velocity joint
KR200203445Y1 (en) A bead ring struvture of a vulcanization press
JP2007113706A (en) Joint boot
JP3563466B2 (en) Resin molding
JP4228190B2 (en) Manufacturing method of bearing seal and bearing seal
CN109130268B (en) Method for manufacturing pneumatic tire, tire vulcanization mold, and pneumatic tire
JP4914837B2 (en) Constant velocity joint boot, method for manufacturing constant velocity joint boot, device for manufacturing constant velocity joint boot
JP5265156B2 (en) Tire mold and tire manufacturing method
JP2008082431A (en) Boot for constant velocity joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees