JP3992528B2 - Heat shrinkable nonwoven fabric - Google Patents

Heat shrinkable nonwoven fabric Download PDF

Info

Publication number
JP3992528B2
JP3992528B2 JP2002109148A JP2002109148A JP3992528B2 JP 3992528 B2 JP3992528 B2 JP 3992528B2 JP 2002109148 A JP2002109148 A JP 2002109148A JP 2002109148 A JP2002109148 A JP 2002109148A JP 3992528 B2 JP3992528 B2 JP 3992528B2
Authority
JP
Japan
Prior art keywords
heat
nonwoven fabric
fiber
shrinkable
shrinkable nonwoven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002109148A
Other languages
Japanese (ja)
Other versions
JP2003306858A (en
Inventor
祥一 種市
渉 坂
孝信 宮本
浩司 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2002109148A priority Critical patent/JP3992528B2/en
Publication of JP2003306858A publication Critical patent/JP2003306858A/en
Application granted granted Critical
Publication of JP3992528B2 publication Critical patent/JP3992528B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)
  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自着性が低く、ハンドリング性、及び巻回してロール状にした場合の繰り出し性に優れており、また所望の工程において所望の熱収縮性を発現させることのできる、潜在捲縮性繊維を用いた熱収縮性不織布に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
熱収縮性繊維を含む層と非熱収縮性繊維を含む層とを積層一体化させた後、熱収縮性繊維を含む層を収縮させて製造された不織布が知られている。例えば特開平9−111631号公報には、熱収縮性繊維及び該熱収縮性繊維の熱収縮開始温度よりも融点の低い熱融着繊維を含む層と、非熱収縮性繊維を含む層とを積層し両層を部分的に熱融着させた後、熱収縮性繊維を含む層を熱収縮させて製造された多皺性不織布が記載されている。
【0003】
このような不織布においては、熱収縮性繊維を含む層としてウエブ又は不織布が用いられる。しかし、ウエブを用いる場合には、強度が弱いことからウエブが切れ易くなるなど、ハンドリング性に問題がある。また毛羽が発生し易く、該ウエブを巻回してロール状にした場合、ウエブ同士の自着性によりウエブを繰り出すことが困難であるという問題がある。他方、熱収縮性繊維を含む層として不織布を用いる場合、熱収縮性繊維として潜在捲縮性繊維を用いると、熱収縮させた後に潜在捲縮性繊維がコイル状の捲縮を発現することで、伸縮性を有する不織布が得られるので、例えば生理用ナプキンや使い捨ておむつ等の吸収性物品の構成材料として用いるのに都合が良い。しかし、潜在捲縮性繊維を用いた場合には、潜在捲縮性繊維の製造工程や不織布の製造工程においてコイル状の3次元捲縮が発現して、不織布同士の自着性が高まり、ハンドリング性や、巻回してロール状にした場合の繰り出し性に問題が生じることがあった。また、熱収縮工程前に繊維のコイル状の3次元捲縮が発生してしまうと、熱収縮工程後の不織布が固くなって風合いが悪くなったり、または熱収縮工程で十分な熱収縮を得られなかったり、所望の効果が得られないこともあった。
【0004】
従って、本発明の目的は、自着性が低く、ハンドリング性、及び巻回してロール状にした場合の繰り出し性に優れており、また所望の工程において所望の熱収縮性を発現させることのできる、潜在捲縮性繊維を用いた熱収縮性不織布を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、潜在捲縮性繊維を含む熱収縮性不織布において、前記潜在捲縮性繊維中に、無機フィラーが1〜6重量%含有されており、前記潜在捲縮性繊維は、収縮率の異なる2種類の成分からなる偏心芯鞘型又はサイド・バイ・サイド型の複合繊維であり、前記2種類の成分の内の何れか一方がエチレン−プロピレンランダム共重合体であり、前記無機フィラーは、前記2種類の成分の内の少なくとも収縮率が低い方の成分中に含有されており、前記無機フィラーが酸化チタンである熱収縮性不織布を提供することにより、上記目的を達成したものである。
【0006】
【発明の実施の形態】
以下本発明を、その好ましい実施形態に基づき説明する。
本発明の熱収縮性不織布には、潜在捲縮性繊維が含まれている。
潜在捲縮性繊維は、所定温度での加熱によってコイル状の3次元捲縮が発現して収縮する性質を有する繊維である。なお熱処理前の状態でも通常の繊維に見られるように、大きな山と谷の繰返しからなる(ギザギザ状の)機械捲縮が施されている。潜在捲縮性繊維を含むため、本発明の潜在収縮性不織布は、熱収縮後においても伸縮性を発現する。
潜在捲縮性繊維は、収縮率の異なる2種類の成分からなる偏心芯鞘型の複合繊維又はサイド・バイ・サイド型の複合繊維からなる。その例としては、特開平9−296325号公報や特許2759331号明細書に記載のものが挙げられる。収縮率の異なる2種類の成分(熱可塑性ポリマー等)としては、エチレン−プロピレンランダム共重合体(高収縮率成分)とポリプロピレン(低収縮率成分)との組み合わせが好ましい例として挙げられる。熱捲縮性繊維は、ステープルファイバでも長繊維のフィラメントでもよい。
【0007】
潜在捲縮性繊維中に含有させる無機フィラーは酸化チタンである。酸化チタンは、電子顕微鏡法による測定において粒度が0.10〜0.50μmの狭い範囲に分布しており、粒径が小さく、粒度分布が均一であり好ましい。
【0008】
無機フィラー(酸化チタン)の含有率は、潜在捲縮性繊維中1〜6重量%、好ましくは2〜4重量%である。無機フィラーの含有率が1重量%未満であると、潜在捲縮性繊維の紡糸工程や不織布の製造工程で3次元の捲縮が発現して、不織布同士の自着性が高まり、ハンドリング性、巻回してロール状にした場合の繰り出し性に問題が生じる。6重量%を超えると、潜在捲縮性繊維が脆くなってしまうことから、紡糸工程で、繊維切れなどが発生し、紡糸することが難しくなる。また熱収縮性不織布の製造工程においても、カーディング工程で繊維が破壊され工程上のトラブルを引き起こす。更に、潜在捲縮性繊維の収縮率をコントロールすることが難しくなり、著しく収縮率の低い熱収縮性不織布しか作ることができなくなる。
【0009】
無機フィラーは、潜在捲縮性繊維を構成する成分の高次構造を乱し、所望の工程以外での3次元捲縮の発現を抑制することから、潜在捲縮性繊維を構成する成分中に万遍なく含有させても良いが、複合繊維を構成する2種類の成分の内の収縮率の低い方にのみ含有していることが、潜在捲縮性繊維の収縮性能(収縮率の高い方に無機フィラーが入っている場合繊維の収縮阻害を起こす)の点から好ましい。
【0010】
本発明においては、潜在捲縮性繊維と無機フィラーの組み合わせとして、潜在捲縮性繊維が、収縮率の異なる2種類の成分からなる偏心芯鞘型又はサイド・バイ・サイド型の複合繊維であって、その2種類の成分の内の何れか一方がエチレン−プロピレンランダム共重合体であり、無機フィラーが、酸化チタンである組み合わせを採用している。酸化チタンは、エチレン−プロピレンランダム共重合体からなる部分と、その他の成分からなる部分の内の、その他の成分の方に含有させることが好ましい。
【0011】
本発明の熱収縮性不織布に含まれる潜在捲縮性繊維の量は、不織布の重量に対して50〜100重量%、特に70〜100重量%であることが、熱収縮性不織布の収縮のしやすさの点から好ましい。
【0012】
本発明の熱収縮性不織布には、潜在捲縮性繊維に加えて他の繊維を含有させても良い。他の繊維としては、熱融着繊維が挙げられる。また、レーヨン、コットン、親水化アクリル系繊維などの吸水性繊維を含有させても良い。
熱融着繊維と潜在捲縮性繊維とから不織布を構成する場合、熱融着繊維の量が、不織布の重量に対して10〜50重量%、特に10〜30重量%であり潜在捲縮性繊維の量が、不織布の重量に対して50〜90重量%、特に70〜90重量%であることが、不織布の強度を向上させながら収縮力を維持させ得る点から好ましい。ここでいう熱融着繊維とは、芯鞘型熱融着性複合繊維であり、該芯鞘型熱融着性複合繊維の主に鞘部の樹脂の熱融着により、繊維交点が熱融着される繊維のことである。
【0013】
▲1▼芯鞘型熱融着性複合繊維の芯部に用いられる樹脂としては、
オレフィン系重合体として、プロピレン単独重合体、またはプロピレンを主体とし、エチレンまたは他のα−オレフィンとの共重合体、ポリエステル系重合体として、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートおよびこれらの誘導体としての他のモノマーを共重合させてなる共重合体エステル等が挙げられ、使用に際しては、それぞれ単独で又は2種類以上混合して用いることができる。またポリアミド系重合体として、ナイロン6、ナイロン66、ナイロン2、ナイロン3、ナイロン4、ナイロン7、ナイロン11、ナイロン12、ナイロン610、及びこれらの誘導体としての他のモノマーを共重合させてなる共重合体等が挙げられ、使用に際してはそれぞれ単独で又は2種類以上混合して用いることができる。
【0014】
▲2▼芯鞘型熱融着性複合繊維の鞘部に用いられる樹脂としては、
芯部に比べて融解温度の低い樹脂が適宜選ばれる。具体的には、高密度ポリエチレン、低密度ポリエチレン、線状低密度ポリエチレン、エチレン−プロピレン共重合体、エチレン−ブテン1−プロピレン3元共重合体、エチレン−酢酸ビニル共重合体、ポリエチレンテレフタレート等ポリエステル系樹脂を主成分とする共重合体などが挙げられる。ここで融解温度の定義は、JIS K7121に記載の方法を用いて定義される。
【0015】
また、本発明の熱収縮性不織布は、その坪量(目付)が10〜50g/m2、特に15〜30g/m2であることが好ましい。
【0016】
本発明の熱収縮性不織布は、無機フィラーとして酸化チタンを含有する潜在捲縮性繊維を用いる以外は、各種公知の製法で製造することができる。例えば、繊維ウエブをエアースルー、ヒートエンボス、超音波エンボス、スパンレース等で加工して不織布化する方法を挙げることができる。酸化チタンを含有する潜在捲縮性繊維は、構成成分の全体又は一部に酸化チタンを配合する以外は、各種公知の方法と同様に紡糸(複合紡糸)することにより得られる。また、繊維ウエブは、カード法又エアレイ法等により製造したものを用いることができる。
上記の製法の中でも、凹凸ロールと平滑ロールからなるヒートエンボス装置を用いて行うヒートエンボス法は、繊維ウエブの凹凸ロールの凸部と平滑ロールではさまれた部分では、加熱され繊維同士が融着されるが、凹凸ロールの凹部と平滑ロールではさまれた部分にある繊維ウエブは、潜在捲縮性繊維の捲縮が発現するほど加熱されず、熱収縮工程で所望の収縮を発現させることができるので好ましい。
尚、繊維ウエブは、カード法又エアレイ法等によって形成されたウエブのことであり、不織布化される前の状態の繊維集合体のことである。つまり、不織布を製造する際に用いられるカードウェブに加えられる後処理、例えば、エアスルー法やカレンダー法による加熱融着処理が施されていない状態にあり、繊維同士が極めて緩く絡んでいる状態の繊維集合体のことである。
【0017】
ヒートエンボスは、例えば、一方又は双方が所定温度に加熱可能な相対向する一対の圧着部を備えたエンボス装置であって、各圧着部の対向部の一方が所定の凹凸パターンで彫刻されており且つ他方が平滑となっているものを用いて行われる。この場合の熱収縮性不織布は、その構成繊維がヒートエンボスによって部分的に熱融着されている。また、ヒートエンボスによる部分的な熱融着のパターンに特に制限はないが、収縮し易さ及び収縮後の不織布の風合いの点から、独立のドット状、例えば独立した円形、三角形、四角形、六角形などのパターンが好ましい。
【0018】
本発明の熱収縮性不織布は、熱収縮性不織布中に特定量の無機フィラー(酸化チタン)を含有するため、その製造工程において、所望の熱処理工程以外での潜在捲縮性繊維の捲縮の発現が抑制される。例えば、カードにより繊維ウエブを形成し、ヒートエンボスによりそのウエブを不織布化して本発明の熱収縮性不織布を製造する場合においては、カードによる繊維開繊時(カーディング工程における繊維の捲縮は、繊維とカード機の間の摩擦により発生する熱や繊維間の摩擦により発生する熱によって発現する。)やエンボス処理時におけるコイル状の3次元捲縮の発現を、無機フィラーを含有させない場合に比べて顕著に抑制することができる。
そのため、本発明の熱収縮性不織布は、自着力(不織布同士のくっつき易さ)が低く、ハンドリング性や、巻回してロール状にした場合の繰り出し性が良好である。
【0019】
本発明の熱収縮性不織布の自着力は、特に制限されるものではないが、実施例において後述する方法により測定した自着力が1.00cN/mm以下、特に0.01〜0.40cN/mmであることが好ましい。当該方法により測定した自着力が0.20cN/mm以下であると、ハンドリング性や、巻回してロール状にした場合の繰り出し性が特に良好となる。
【0020】
本発明の熱収縮性不織布は種々の用途に使用できる。
例えば、本発明の熱収縮性不織布を非熱収縮性の繊維層と積層一体化した後、熱収縮不織布を熱収縮させることで、表面に凹凸を有する立体シートを製造できる。このようにして製造した立体シートは、弾力性があり、また非収縮層の繊維が低密度で配されているため、例えば生理用ナプキンや使い捨ておむつ等の吸収性物品の構成部材、特に表面シートとして好適に用いることができる。
【0021】
図1には、本発明の一実施形態としての熱収縮性不織布1を用いて製造した立体シート形成用の熱収縮性不織布2及び該熱収縮性不織布2を用いて製造した立体シート3が示されている。図1に示す立体シート形成用の熱収縮性不織布2は、本発明に係る熱収縮性不織布1の片面に、該熱収縮性不織布1の収縮開始温度以下では実質的に熱収縮しない繊維ウエブ又は不織布からなる第2繊維層4を積層し、熱収縮性不織布1と第2繊維層4とを所定のパターンの接合部5で接合して得られたものである。このようにして得られた立体シート形成用の熱収縮性不織布2によれば、例えば熱風を吹き付けて温度120〜140℃の熱処理を施し、該熱処理によって、熱収縮性不織布2を、その面積収縮率が20〜70%となるように熱収縮させることにより、第2繊維層の接合部5以外の部分が大きな凸状に変形するため、嵩高で柔軟性に優れた立体シート3を製造できる。熱処理の具体的な例としては、卓上型の恒温乾燥機や、熱接着不織布を製造する際に用いられる熱処理機、マイクロウェーブ、蒸気、赤外線、ヒートロールとの接触等が用いられる。
【0022】
尚、立体シート形成用の熱収縮性不織布2の接合部5は、例えば熱エンボス、超音波エンボス、接着剤による接着などの各種接合手段によって形成される。図1に示す熱収縮性不織布2の接合部5は、圧密化されており、該不織布2の他の部位に比して厚みが小さく且つ密度が大きくなっている(立体シート3の接合部5も同様)。
熱収縮性不織布2(立体シート3)を平面視した場合の個々の接合部5の形状は、円形、楕円形、三角形、矩形又はこれらの組み合わせ等とすることができ、接合部5の配置パターンは、例えば図2の左側から右側に順に示すように、千鳥状の配置パターン、菱形格子状の配置パターン、縦横両方向に所定ピッチで並べた配置パターン、向きの異なる2種類の接合部を縦横両方向に交互に配置したパターン等とすることができる。また、接合部5を、連続した形状、例えば直線や曲線などの線状、格子状等に形成することもできる。
【0023】
本発明の熱収縮性不織布1,2は、用いる潜在捲縮性繊維の種類や、熱融着の面積率にもよるが、その最大熱収縮率が20〜90%、特に40〜80%程度となっている。最大熱収縮率は、自由な状態下で不織布を最適温度に加熱した時、(収縮前面積−収縮後面積)/収縮前面積×100で定義される。尚、実際に収縮させる時には、必ずしも最大収縮率で収縮させる必要は無く、適当な熱処理条件で収縮させれば良いことは言うまでもない。
【0024】
また、本発明の熱収縮性不織布を用いて製造された立体シートは、料理用のシート、各種薬液や洗浄液を保持するためのシート(例えば、対人用のメイク落としシートや清掃用ワイパー)などとして用いることもできる。尚、本発明の熱収縮性不織布は、他のシート材等と接合せずに、単独で立体シート等の製造に用いることもできる。
【0025】
本発明の熱収縮性不織布は、熱収縮後における不織布の伸縮性の程度は、50%伸張時の伸張回復率を尺度としたとき、その値が20%以上、特に40%以上、更には60〜95%であることが、十分に高いエラストマー的挙動を発現させる観点から好ましい。伸張回復率は、本発明の不織布の流れ方向及び幅方向において値が異なる場合があるが、少なくとも何れかの方向において測定された伸張回復率の値が前記範囲内であれば、十分なエラストマー的挙動が発現する。
【0026】
伸張回復率は、以下の方法で測定される。ORIENTEC社製の引張圧縮試験機TENSILON「RTA-100」を用い引張モードで測定する。先ず、不織布を50mm×50mmの大きさに裁断し測定片を採取する。測定片を引張圧縮試験機に装着されたエアーチャック間に初期試料長(チャック間距離)30mmでセットし、引張圧縮試験機のロードセル(定格出力5kg)に取り付けられたチャックを100mm/分の速度で上昇させて、測定片を伸張させる。測定片が初期試料長の50%、つまり15mm伸びた時点で、チャックの移動方向を逆転させ、チャックを100mm/分の速度で下降させ、初期試料長の位置まで戻す。この間の操作でロードセルで検出される荷重と、測定片の伸びとの関係をチャートに記録し、このチャートに基づき下記式(1)から伸張回復率を求める。
伸張回復率=回復伸び/最大伸び長さ(=15mm) (1)
ここで、回復伸びは、最大伸び長さ(=15mm)からチャックを下降させて、初めて荷重ゼロを記録したときの、最大伸び長さからのチャック移動距離で定義される。
【0027】
前記エラストマー的挙動が発現すると生理用ナプキンやおむつなどの吸収性物品の構成部材として用いられた場合には装着者への身体への追従性が得られて漏れ防止や装着感が向上し、また、掃除用及び対人用ワイパーとして用いられた場合には使用者や被清浄面への追従性が得られて作業性や清浄性が向上する観点から、好ましい。
【0028】
本発明の熱収縮性不織布は、その両面に、該熱収縮性不織布の収縮開始温度以下では実質的に熱収縮しない繊維ウエブ又は不織布からなる第2繊維層を積層して、立体シート形成用の熱収縮性不織布として用いることもできる。
【0029】
【実施例】
以下実施例により本発明を更に詳細に説明する。しかし、本発明の範囲は斯かる実施例に制限されない。
【0030】
〔実施例1〕
〔潜在捲縮性繊維〕
非収縮成分と熱収縮成分が繊維の全長にわたって相互に偏芯型で配置、密着してなる複合繊維である潜在捲縮性繊維〔2.2dtex×51mm〕を用いた。該潜在捲縮性繊維は、非収縮成分としてプロピレン単独重合体であるポリプロピレン(PP)を用い、熱収縮成分としてエチレン−プロピレンランダム共重合体(EP)を用い、非収縮成分のポリプロピレンに3.0wt%(繊維重量に対して)の酸化チタンを配合して製造した。
〔熱収縮性不織布の製造〕
前記潜在捲縮性繊維を繊維開繊用のカード機を用いて、繊維ウェブを製造した。ウェブの目付は20g/m2であった。凹凸ロールと平滑ロールからなるヒートエンボス装置を用い、この繊維ウェブに対して、表1に示す加工速度でヒートエンボス加工をした。各ロールの温度及びエンボス面積率は表1に示す通りであった。エンボスパターンは、一辺0.7mmの菱形を、各菱形間1.05mmで千鳥に配列した。このようにして熱収縮性不織布を得た。
【0031】
〔実施例2,3〕
実施例1において、繊維重量に対する酸化チタンの配合量を、表1に示す量に代えた以外は、それぞれ実施例1と同様にして熱収縮性不織布を製造した。但し、実施例1,2は酸化チタンを非収縮成分に配合し、実施例3は酸化チタンを非収縮成分及び収縮成分の両成分に配合した。
【0032】
〔比較例1〕
実施例1において、繊維重量に対する酸化チタンの配合量を、表1に示す量に代えた以外は、それぞれ実施例1と同様にして熱収縮性不織布を製造した。
【0033】
〔性能評価〕
実施例及び比較例の熱収縮性不織布について、以下の方法で、用いた潜在捲縮性繊維の140℃における乾熱収縮率、及び不織布としての最大面積収縮率及び自着力を測定した。結果を表1に示す。
【0034】
〔繊維の乾熱収縮率〕
熱応力測定装置(カネボウエンジニアリング株式会社製、KE−2LS)を用いて測定を行った。試料長50mm、試料重量110dtexの試料を取付用フックにセットする。初荷重3.3gf/110dtexを試料に加え、40℃から170℃まで昇温速度1.25℃/sec(240秒で300℃まで昇温するように昇温する)で装置を加熱し、140℃になったときのフックの変位を変位検知で検知する。初期試料長と140℃時の変位から繊維乾熱収縮率を下式(2)より求める。
繊維乾熱収縮率(%)=(初期試料長−変位)/初期試料長×100 (2)
【0035】
〔最大面積収縮率〕
最大面積収縮率の測定は、熱収縮処理前の熱収縮性不織布のMD、CD方向それぞれに、一定間隔で点状のマーキングを一対施し、60sec間マーキングした熱収縮性不織布を熱収縮処理し、こららのマーキング間距離の変化を測定し、その測定値(収縮後寸法)及び収縮前のマーキング間距離(収縮前寸法)から、次式により面積収縮率を算出し、それを最大面積収縮率とした。
面積収縮率=[(MD収縮前寸法×CD収縮前寸法)−(MD収縮後寸法×CD収縮後寸法)]/(MD収縮前寸法×CD収縮前寸法)
ここで、前記熱収縮処理は130℃±10℃の熱風を通過させる熱処理である。ここで130℃±10℃の熱風とは、熱収縮性不織布に当たる前の熱風の初期温度のことであり、具体的には熱収縮性不織布よりも熱風の吹き出し部に近い側に設置された温度センサーが検知する初期温度のことである。初期温度とは、該熱処理を行った熱処理装置に、熱収縮性不織布を入れる直前の熱風温度のことである。
【0036】
〔不織布の自着力〕
各熱収縮性不織布からMD100mm×CD50mmに切り出した2枚の試験片を、MD方向を一致させ、MD方向に70mmの重なり部を設けて重ねる。その重なり部を、1kgのローラー(外径95mm)で加重し貼り合せサンプルを作製する。作製した貼り合せサンプルを、株式会社東洋ボールドウイン製の引張・圧縮試験機(型番:RTM−100)に、その長手方向の両端をチャックに固定してセットし、引張りモードの引張り速度100mm/minでチャック間距離を拡大させる。ロードセルで検知した最大荷重を単位幅(1mm)当たりに換算し、自着力とする。尚、最大荷重は、上部チャックの下端から2枚の試験片の内の下部チャックに固定された方の試験片の上端縁までの距離が、引張り開始時の該距離に対して10mm拡大した時点から40mm拡大した時点までの間における最大荷重で定義している。2枚の試験片を重ね合わせる際には、それらを切り出した熱収縮性不織布における一面と他面を面接させる。
【0037】
【表1】

Figure 0003992528
【0038】
実施例で用いた酸化チタンを所定量以上配合した潜在捲縮性繊維は、不織布化工程において、コイル状の3次元捲縮の発現が顕著に抑制されることから、実施例の不織布は比較例のものに比べて自着力が小さい。また、酸化チタンを配合した潜在捲縮性繊維は、乾熱収縮率が小さく不織布製造工程でのコイル状の3次元捲縮の発現が抑制されていることが明らかである。
最大面積収縮率を測定した熱収縮後の本発明の実施例の不織布は、伸縮性があり、吸収性物品の構成部材、清掃用ワイパーや対人用ワイパーなどに用いた場合に追従性が良く、また表面が滑らかで風合いが良好であった。一方、最大面積収縮率を測定した熱収縮後の比較例の不織布は、伸縮性はあるものの、表面が固く風合いがやや劣るものであった。
【0039】
【発明の効果】
本発明の熱収縮性不織布は、自着力が低く、ハンドリング性及び巻回してロール状にした場合の繰り出し性に優れており、また所望の工程において所望の熱収縮性を発現させることのできるものである。
本発明の熱収縮性不織布(及び立体シート形成用の熱収縮性不織布)は、潜在捲縮性繊維を含んでおり、熱収縮後においても弾力性を有しているため、生理用ナプキン、オムツなどの吸収性物品の構成部材、特に肌と接する面に用いられるシート(特に立体シート)の製造に好適である。また、清掃用ワイパーやメイク落としなどの対人用ワイパー用のシート(特に立体シート)の製造にも好適に用いられる。
【図面の簡単な説明】
【図1】本発明の熱収縮性不織布の使用方法の一例を示す模式図である。
【図2】本発明の立体シート形成用の熱収縮性不織布の接合部の形状及び配置パターンの例を示す平面図である。
【符号の説明】
1 熱収縮性不織布
2 立体シート形成用の熱収縮性不織布
3 立体シート[0001]
BACKGROUND OF THE INVENTION
The present invention has low self-adhesiveness, is easy to handle, and has excellent drawability when wound into a roll, and can develop desired heat shrinkability in a desired process. The present invention relates to a heat-shrinkable nonwoven fabric using a conductive fiber.
[0002]
[Prior art and problems to be solved by the invention]
A non-woven fabric manufactured by stacking and integrating a layer containing heat-shrinkable fibers and a layer containing non-heat-shrinkable fibers and then shrinking the layer containing heat-shrinkable fibers is known. For example, Japanese Patent Application Laid-Open No. 9-111631 discloses a layer containing a heat-shrinkable fiber, a heat-fusible fiber having a melting point lower than the heat-shrink start temperature of the heat-shrinkable fiber, and a layer containing a non-heat-shrinkable fiber. A multi-woven fabric produced by laminating and partially heat-sealing both layers and then thermally shrinking a layer containing heat-shrinkable fibers is described.
[0003]
In such a nonwoven fabric, a web or a nonwoven fabric is used as a layer containing a heat-shrinkable fiber. However, when a web is used, there is a problem in handling properties such that the web is easily cut due to its low strength. Further, fluff is likely to occur, and when the web is wound into a roll, there is a problem that it is difficult to feed out the web due to self-adhesiveness between the webs. On the other hand, when using a non-woven fabric as the layer containing the heat-shrinkable fiber, if the latent crimpable fiber is used as the heat-shrinkable fiber, the latent crimpable fiber expresses a coiled crimp after being heat-shrinked. Since a nonwoven fabric having elasticity is obtained, it is convenient to use as a constituent material of absorbent articles such as sanitary napkins and disposable diapers. However, when latent crimpable fibers are used, coil-like three-dimensional crimps are developed in the process of manufacturing latent crimpable fibers and nonwoven fabrics, and self-adhesion between the nonwoven fabrics is increased and handling is improved. There are cases where problems arise in the property and the unwinding property when wound into a roll. In addition, if the coiled three-dimensional crimp of the fiber occurs before the heat shrinking process, the nonwoven fabric after the heat shrinking process becomes hard and the texture becomes worse, or sufficient heat shrinkage is obtained in the heat shrinking process. In some cases, the desired effect could not be obtained.
[0004]
Accordingly, the object of the present invention is low self-adhesiveness, excellent handling properties, and excellent drawability when wound into a roll, and can exhibit desired heat shrinkability in a desired process. An object of the present invention is to provide a heat-shrinkable nonwoven fabric using latent crimpable fibers.
[0005]
[Means for Solving the Problems]
The present invention relates to a heat-shrinkable nonwoven fabric containing latent crimpable fibers, wherein the latent crimpable fibers contain 1 to 6% by weight of an inorganic filler, and the latent crimpable fibers have a shrinkage ratio. It is an eccentric core-sheath type or side-by-side type composite fiber composed of two different components, and one of the two components is an ethylene-propylene random copolymer, and the inorganic filler is The above object is achieved by providing a heat-shrinkable nonwoven fabric, which is contained in at least one of the two types of components having a lower shrinkage rate, and the inorganic filler is titanium oxide. .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on preferred embodiments thereof.
The heat-shrinkable nonwoven fabric of the present invention contains latent crimpable fibers.
The latent crimpable fiber is a fiber having a property that a coiled three-dimensional crimp is developed and contracted by heating at a predetermined temperature. In addition, as seen in ordinary fibers even before the heat treatment, mechanical crimps (jagged) consisting of repeated large peaks and valleys are applied. Since the latent crimpable fiber is contained, the latent shrinkable nonwoven fabric of the present invention exhibits stretchability even after heat shrinkage.
Latent crimpable fibers consists shrinkage rates of two different consisting components eccentric core-sheath type composite fibers or side-by-side type composite fiber of. Examples thereof include those described in JP-A-9-296325 and Japanese Patent No. 2759331. The two components having different shrinkage (thermoplastic polymer), et styrene - mentioned as set Awa Sega Preferred examples of the propylene random copolymer (high shrinkage component) and polypropylene (low shrinkage component). The thermally crimpable fiber may be a staple fiber or a filament of long fiber.
[0007]
Inorganic filler to be contained in the latent crimpable fiber is an acid titanium. Acid titanium is distributed in a narrow range granularity of 0.10~0.50μm as measured by electron microscopy, small particle size, a uniform particle size distribution, preferred.
[0008]
The content of the inorganic filler (titanium oxide) is 1 to 6% by weight, preferably 2 to 4% by weight in the latent crimpable fiber. When the content of the inorganic filler is less than 1% by weight, a three-dimensional crimp is developed in the spinning process of the latent crimpable fiber and the manufacturing process of the nonwoven fabric, and the self-adhesiveness between the nonwoven fabrics is increased. There is a problem with the pay-out performance when wound into a roll. If it exceeds 6% by weight, the latent crimpable fiber becomes brittle, and thus fiber breakage occurs in the spinning process, making spinning difficult. Also in the process of manufacturing a heat-shrinkable nonwoven fabric, fibers are broken in the carding process, causing troubles in the process. Furthermore, it becomes difficult to control the shrinkage rate of the latent crimpable fiber, and only a heat-shrinkable nonwoven fabric with a significantly low shrinkage rate can be produced.
[0009]
Since the inorganic filler disturbs the higher-order structure of the component constituting the latent crimpable fiber and suppresses the expression of three-dimensional crimps other than the desired process, the inorganic filler is included in the component constituting the latent crimpable fiber. Although it may be contained evenly, the shrinkage performance of the latent crimpable fiber (the one with the higher shrinkage rate) should be contained only in the one with the lower shrinkage rate of the two components constituting the composite fiber. In the case where an inorganic filler is contained in the fiber, it is preferable from the viewpoint of causing inhibition of fiber shrinkage.
[0010]
In the present invention, as a combination of the latent crimpable fiber and the inorganic filler, the latent crimpable fiber is an eccentric core-sheath type or side-by-side type composite fiber composed of two components having different shrinkage rates. Thus, any one of the two components is an ethylene-propylene random copolymer, and the inorganic filler is titanium oxide . Acid titanium are ethylene - propylene random copolymer comprising a polymer moiety, of the portion consisting of other components, thereby preferably contained towards the other components.
[0011]
The amount of latent crimpable fibers contained in the heat-shrinkable nonwoven fabric of the present invention is 50 to 100% by weight, particularly 70 to 100% by weight, based on the weight of the nonwoven fabric. It is preferable in terms of ease.
[0012]
The heat-shrinkable nonwoven fabric of the present invention may contain other fibers in addition to the latent crimpable fibers. Examples of other fibers include heat-sealing fibers. Further, water-absorbing fibers such as rayon, cotton, and hydrophilic acrylic fibers may be included.
When a non-woven fabric is composed of a heat-sealing fiber and a latent crimpable fiber, the amount of the heat-sealing fiber is 10 to 50% by weight, particularly 10 to 30% by weight, based on the weight of the non-woven fabric. The amount of fibers is preferably 50 to 90% by weight, particularly 70 to 90% by weight, based on the weight of the nonwoven fabric, from the viewpoint that the shrinkage force can be maintained while improving the strength of the nonwoven fabric. The heat-sealable fiber here is a core-sheath type heat-sealable conjugate fiber, and the fiber intersection is thermally fused by heat-seal of the resin in the sheath part mainly of the core-sheath type heat-sealable conjugate fiber. It is the fiber that is worn.
[0013]
(1) As a resin used for the core of the core-sheath type heat-fusible conjugate fiber,
As an olefin polymer, propylene homopolymer, or a copolymer mainly composed of propylene and ethylene or other α-olefin, and a polyester polymer include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and derivatives thereof. And a copolymer ester obtained by copolymerizing other monomers as described above, and can be used alone or in admixture of two or more. As polyamide-based polymers, nylon 6, nylon 66, nylon 2, nylon 3, nylon 4, nylon 7, nylon 11, nylon 12, nylon 610, and other monomers as their derivatives are copolymerized. Examples thereof include polymers, and can be used alone or in combination of two or more.
[0014]
(2) As a resin used for the sheath of the core-sheath type heat-fusible conjugate fiber,
A resin having a lower melting temperature than that of the core is appropriately selected. Specifically, high density polyethylene, low density polyethylene, linear low density polyethylene, ethylene-propylene copolymer, ethylene-butene 1-propylene terpolymer, ethylene-vinyl acetate copolymer, polyester such as polyethylene terephthalate, etc. And a copolymer mainly composed of a resin. Here, the melting temperature is defined using the method described in JIS K7121.
[0015]
Further, the heat-shrinkable nonwoven fabric of the present invention preferably has a basis weight (weight per unit area) of 10 to 50 g / m 2 , particularly 15 to 30 g / m 2 .
[0016]
The heat-shrinkable nonwoven fabric of the present invention can be produced by various known production methods except that a latent crimpable fiber containing titanium oxide is used as an inorganic filler. For example, a method of forming a nonwoven fabric by processing a fiber web with air through, heat embossing, ultrasonic embossing, spunlace, or the like can be mentioned. The latent crimpable fiber containing titanium oxide can be obtained by spinning (composite spinning) in the same manner as in various known methods except that titanium oxide is blended with all or part of the constituent components. The fiber web manufactured by the card method or air array method can be used.
Among the above-mentioned manufacturing methods, the heat embossing method performed using a heat embossing device composed of a concavo-convex roll and a smooth roll is heated at the portion sandwiched between the convex part of the concavo-convex roll of the fiber web and the smooth roll, and the fibers are fused. However, the fiber web between the concave and convex portions of the concavo-convex roll and the smooth roll is not heated to the extent that the crimp of the latent crimpable fiber is expressed, and the desired shrinkage can be expressed in the heat shrinking process. It is preferable because it is possible.
The fiber web is a web formed by a card method, an air array method or the like , and is a fiber assembly in a state before being made into a nonwoven fabric. In other words, the fiber is in a state where it is not subjected to post-treatment applied to the card web used for manufacturing the nonwoven fabric, for example, heat fusion treatment by air-through method or calendar method, and the fibers are entangled very loosely. It is an aggregate.
[0017]
Heat embossing is, for example, an embossing device that includes a pair of opposing pressure-bonding parts that can be heated to a predetermined temperature, or one of both, and one of the facing parts of each pressure-bonding part is engraved with a predetermined uneven pattern. And it is performed using what the other is smooth. The heat-shrinkable nonwoven fabric in this case has its constituent fibers partially heat-sealed by heat embossing. Further, the pattern of partial heat fusion by heat embossing is not particularly limited. However, in terms of ease of shrinkage and the texture of the nonwoven fabric after shrinkage, independent dot shapes such as independent circles, triangles, squares, six A pattern such as a square is preferred.
[0018]
Since the heat-shrinkable nonwoven fabric of the present invention contains a specific amount of inorganic filler (titanium oxide) in the heat-shrinkable nonwoven fabric, the crimping of latent crimpable fibers other than the desired heat treatment step is performed in the production process. Expression is suppressed. For example, when a fiber web is formed with a card and the web is made into a nonwoven fabric by heat embossing to produce the heat-shrinkable nonwoven fabric of the present invention, when the fiber is opened by the card (fiber crimping in the carding process is It is expressed by heat generated by friction between the fiber and the card machine and heat generated by friction between the fibers.) And the expression of the coiled three-dimensional crimp at the time of the embossing treatment as compared with the case where no inorganic filler is contained. Can be significantly suppressed.
Therefore, the heat-shrinkable nonwoven fabric of the present invention has a low self-adhesion force (easy adhesion between the nonwoven fabrics), and has good handling properties and good drawability when wound into a roll.
[0019]
The self-adhesion force of the heat-shrinkable nonwoven fabric of the present invention is not particularly limited, but the self-adhesion force measured by the method described later in Examples is 1.00 cN / mm or less, particularly 0.01 to 0.40 cN / mm. It is preferable that When the self-adhesion force measured by the method is 0.20 cN / mm or less, handling property and unwinding property when wound into a roll shape are particularly good.
[0020]
The heat-shrinkable nonwoven fabric of the present invention can be used for various applications.
For example, after the heat-shrinkable nonwoven fabric of the present invention is laminated and integrated with a non-heat-shrinkable fiber layer, the heat-shrinkable nonwoven fabric can be heat-shrinked to produce a three-dimensional sheet having irregularities on the surface. The three-dimensional sheet produced in this way is elastic, and the non-shrinkable layers of fibers are arranged at a low density, so that it is a constituent member of absorbent articles such as sanitary napkins and disposable diapers, especially a surface sheet. Can be suitably used.
[0021]
FIG. 1 shows a heat-shrinkable nonwoven fabric 2 for forming a three-dimensional sheet manufactured using a heat-shrinkable nonwoven fabric 1 as an embodiment of the present invention and a three-dimensional sheet 3 manufactured using the heat-shrinkable nonwoven fabric 2. Has been. A heat-shrinkable non-woven fabric 2 for forming a three-dimensional sheet shown in FIG. 1 is a fiber web that does not substantially heat-shrink on one side of the heat-shrinkable non-woven fabric 1 according to the present invention below the shrinkage start temperature of the heat-shrinkable non-woven fabric 1 or The second fiber layer 4 made of a non-woven fabric is laminated, and the heat-shrinkable non-woven fabric 1 and the second fiber layer 4 are joined by a joint portion 5 having a predetermined pattern. According to the heat-shrinkable nonwoven fabric 2 for forming a three-dimensional sheet thus obtained, for example, hot air is blown to perform a heat treatment at a temperature of 120 to 140 ° C., and the heat-shrinkable nonwoven fabric 2 is reduced in area by the heat treatment. By heat-shrinking so that the rate becomes 20 to 70%, the portion other than the joint portion 5 of the second fiber layer is deformed into a large convex shape, so that the three-dimensional sheet 3 that is bulky and excellent in flexibility can be manufactured. Specific examples of the heat treatment include a table-type constant temperature dryer, a heat treatment machine used for producing a heat-bonding nonwoven fabric, contact with microwaves, steam, infrared rays, heat rolls, and the like.
[0022]
The joining portion 5 of the heat-shrinkable nonwoven fabric 2 for forming a three-dimensional sheet is formed by various joining means such as heat embossing, ultrasonic embossing, and adhesion using an adhesive. The joint 5 of the heat-shrinkable nonwoven fabric 2 shown in FIG. 1 is consolidated, and has a smaller thickness and a higher density than the other parts of the nonwoven fabric 2 (the joint 5 of the three-dimensional sheet 3). The same).
The shape of each joint 5 when the heat-shrinkable nonwoven fabric 2 (three-dimensional sheet 3) is viewed in plan can be a circle, an ellipse, a triangle, a rectangle, or a combination thereof. For example, as shown in order from left to right in FIG. 2, a staggered arrangement pattern, a rhombus-like arrangement pattern, an arrangement pattern arranged in a predetermined pitch in both the vertical and horizontal directions, and two types of joints with different orientations in both vertical and horizontal directions The pattern may be alternately arranged. Moreover, the joining part 5 can also be formed in a continuous shape, for example, a linear shape such as a straight line or a curve, or a lattice shape.
[0023]
The heat shrinkable nonwoven fabrics 1 and 2 of the present invention have a maximum heat shrinkage of 20 to 90%, particularly about 40 to 80%, depending on the type of latent crimpable fibers used and the area ratio of heat fusion. It has become. The maximum heat shrinkage rate is defined by (area before shrinkage−area after shrinkage) / area before shrinkage × 100 when the nonwoven fabric is heated to an optimum temperature under free conditions. Needless to say, when actually contracting, it is not always necessary to contract at the maximum contraction rate, and the contraction may be performed under appropriate heat treatment conditions.
[0024]
The three-dimensional sheet manufactured using the heat-shrinkable nonwoven fabric of the present invention is a sheet for cooking, a sheet for holding various chemicals and cleaning liquids (for example, a makeup remover sheet for personal use, a wiper for cleaning), and the like. It can also be used. In addition, the heat-shrinkable nonwoven fabric of this invention can also be used for manufacture of a solid sheet etc. independently, without joining with another sheet material etc.
[0025]
In the heat-shrinkable non-woven fabric of the present invention, the degree of stretchability of the non-woven fabric after heat shrinkage is 20% or more, particularly 40% or more, and further 60 when the stretch recovery rate at 50% stretch is taken as a scale. It is preferable that it is -95% from a viewpoint of expressing a sufficiently high elastomeric behavior. The stretch recovery rate may vary in the flow direction and the width direction of the nonwoven fabric of the present invention, but if the stretch recovery rate value measured in at least one of the directions is within the above range, the stretch recovery rate is sufficient. Behavior develops.
[0026]
The stretch recovery rate is measured by the following method. Measure in tension mode using TENSILON “RTA-100”, a tensile and compression tester manufactured by ORIENTEC. First, the nonwoven fabric is cut into a size of 50 mm × 50 mm, and a measurement piece is collected. The test piece is set between the air chucks attached to the tensile and compression tester with an initial sample length (distance between chucks) of 30 mm, and the chuck attached to the load cell (rated output of 5 kg) of the tensile and compression tester is set at a speed of 100 mm / min. To raise the measurement piece. When the measurement piece extends 50% of the initial sample length, that is, 15 mm, the moving direction of the chuck is reversed, the chuck is lowered at a speed of 100 mm / min, and returned to the position of the initial sample length. The relationship between the load detected by the load cell by the operation during this time and the elongation of the measurement piece is recorded on a chart, and the extension recovery rate is obtained from the following formula (1) based on this chart.
Elongation recovery rate = Recovery elongation / Maximum elongation length (= 15 mm) (1)
Here, the recovery elongation is defined as the chuck moving distance from the maximum extension length when the zero load is recorded for the first time after the chuck is lowered from the maximum extension length (= 15 mm).
[0027]
When the elastomeric behavior is expressed, when used as a component of an absorbent article, such as sanitary napkins and diapers is improved leakproof and fit it following property is obtained to the body of the wearer, Moreover, when it is used as a wiper for cleaning and personal use, it is preferable from the viewpoint that followability to the user and the surface to be cleaned is obtained and workability and cleanliness are improved.
[0028]
The heat-shrinkable non-woven fabric of the present invention has a second fiber layer made of a fiber web or non-woven fabric that is not substantially heat-shrinkable below the shrinkage start temperature of the heat-shrinkable non-woven fabric. It can also be used as a heat-shrinkable nonwoven fabric.
[0029]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such embodiments.
[0030]
[Example 1]
[Latent crimped fiber]
A latent crimpable fiber [2.2 dtex × 51 mm], which is a composite fiber in which a non-shrinkable component and a heat-shrinkable component are arranged eccentrically with each other over the entire length of the fiber, was used. The latent crimpable fiber uses propylene homopolymer polypropylene (PP) as a non-shrinkable component, ethylene-propylene random copolymer (EP) as a heat-shrinkable component, and 3. 0 wt% (based on the fiber weight) of titanium oxide was blended and manufactured.
[Production of heat-shrinkable nonwoven fabric]
A fiber web was produced from the latent crimpable fiber using a card machine for fiber opening. The basis weight of the web was 20 g / m 2 . Using a heat embossing device composed of an uneven roll and a smooth roll, the fiber web was heat embossed at the processing speed shown in Table 1. The temperature and embossed area ratio of each roll were as shown in Table 1. In the emboss pattern, rhombuses with a side of 0.7 mm were arranged in a staggered manner with 1.05 mm between the rhombuses. Thus, a heat-shrinkable nonwoven fabric was obtained.
[0031]
[Examples 2 and 3]
In Example 1, a heat-shrinkable nonwoven fabric was produced in the same manner as in Example 1 except that the blending amount of titanium oxide with respect to the fiber weight was changed to the amount shown in Table 1. However, in Examples 1 and 2, titanium oxide was blended in the non-shrinkable component, and in Example 3, titanium oxide was blended in both the non-shrinkable component and the shrinkable component.
[0032]
[Comparative Example 1]
In Example 1, a heat-shrinkable nonwoven fabric was produced in the same manner as in Example 1 except that the blending amount of titanium oxide with respect to the fiber weight was changed to the amount shown in Table 1.
[0033]
[Performance evaluation]
About the heat-shrinkable nonwoven fabric of an Example and a comparative example, the dry heat shrinkage | contraction rate in 140 degreeC of the latent crimpable fiber used, the maximum area shrinkage | contraction rate, and self-adhesion force were measured with the following method. The results are shown in Table 1.
[0034]
[Dry heat shrinkage of fiber]
Measurement was performed using a thermal stress measurement device (Ke-2LS, manufactured by Kanebo Engineering Co., Ltd.). A sample having a sample length of 50 mm and a sample weight of 110 dtex is set on the mounting hook. An initial load of 3.3 gf / 110 dtex was added to the sample, and the apparatus was heated from 40 ° C. to 170 ° C. at a rate of temperature increase of 1.25 ° C./sec (temperature increased to 300 ° C. in 240 seconds). The displacement of the hook when it reaches ℃ is detected by displacement detection. From the initial sample length and the displacement at 140 ° C., the fiber dry heat shrinkage is obtained from the following equation (2).
Fiber dry heat shrinkage (%) = (initial sample length−displacement) / initial sample length × 100 (2)
[0035]
[Maximum area shrinkage]
Measurement of the maximum area shrinkage rate is performed by applying a pair of dotted markings at regular intervals in the MD and CD directions of the heat-shrinkable nonwoven fabric before heat-shrink treatment, and heat-shrinking the heat-shrinkable nonwoven fabric marked for 60 seconds, The change in the distance between these markings is measured, and the area shrinkage rate is calculated from the measured value (size after shrinkage) and the distance between markings before shrinkage (size before shrinkage) by the following formula. It was.
Area shrinkage rate = [(size before MD shrinkage × size before CD shrinkage) − (size after MD shrinkage × size after CD shrinkage)] / (size before MD shrinkage × size before CD shrinkage)
Here, the thermal contraction treatment is a heat treatment that passes hot air of 130 ° C. ± 10 ° C. Here, the hot air of 130 ° C. ± 10 ° C. is the initial temperature of the hot air before hitting the heat-shrinkable nonwoven fabric. Specifically, the temperature is set closer to the hot air blowing portion than the heat-shrinkable nonwoven fabric. This is the initial temperature detected by the sensor. The initial temperature is the hot air temperature immediately before putting the heat-shrinkable nonwoven fabric into the heat treatment apparatus that has performed the heat treatment.
[0036]
[Self-adhesive strength of nonwoven fabric]
Two test pieces cut into MD100 mm × CD50 mm from each heat-shrinkable non-woven fabric are made to coincide with each other in the MD direction, and overlapped by 70 mm in the MD direction. The overlapping portion is weighted with a 1 kg roller (outer diameter: 95 mm) to produce a bonded sample. The produced bonded sample was set in a tensile / compression tester (model number: RTM-100) manufactured by Toyo Baldwin Co., Ltd. with both ends in the longitudinal direction fixed to the chuck, and the tensile speed in the tensile mode was 100 mm / min. Increase the distance between chucks. The maximum load detected by the load cell is converted per unit width (1 mm) and used as the self-adhesive force. The maximum load is when the distance from the lower end of the upper chuck to the upper end edge of the test piece fixed to the lower chuck of the two test pieces is expanded by 10 mm with respect to the distance at the start of pulling. Is defined as the maximum load from the time point until 40 mm is expanded. When two test pieces are overlapped, one surface and the other surface of the heat-shrinkable nonwoven fabric cut out from them are brought into contact with each other.
[0037]
[Table 1]
Figure 0003992528
[0038]
The latent crimpable fiber blended with a predetermined amount or more of the titanium oxide used in the examples is that the nonwoven fabric of the examples is a comparative example because the expression of coiled three-dimensional crimps is remarkably suppressed in the nonwoven fabricization process. Self-adhesion is small compared to In addition, it is clear that the latent crimpable fiber blended with titanium oxide has a low dry heat shrinkage and suppresses the expression of coiled three-dimensional crimp in the nonwoven fabric manufacturing process.
The non-woven fabric of the embodiment of the present invention after heat shrinkage which measured the maximum area shrinkage rate is stretchable and has good followability when used as a constituent member of an absorbent article, a wiper for cleaning, a wiper for personal use, etc. The surface was smooth and the texture was good. On the other hand, the non-woven fabric of the comparative example after the heat shrinkage whose maximum area shrinkage rate was measured was stretchable but had a hard surface and a slightly inferior texture.
[0039]
【The invention's effect】
The heat-shrinkable nonwoven fabric of the present invention has a low self-adhesive strength, is excellent in handling properties and roll-out properties when wound into a roll, and can exhibit a desired heat-shrinkability in a desired process. It is.
Since the heat-shrinkable nonwoven fabric (and heat-shrinkable nonwoven fabric for forming a three-dimensional sheet) of the present invention contains latent crimpable fibers and has elasticity even after heat shrinkage, sanitary napkins and diapers It is suitable for production of a sheet (particularly, a three-dimensional sheet) used for a component member of an absorbent article such as a surface in contact with the skin. Further, it is also suitably used for the production of sheets for interpersonal wipers (particularly three-dimensional sheets) such as cleaning wipers and makeup removers.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a method for using the heat-shrinkable nonwoven fabric of the present invention.
FIG. 2 is a plan view showing an example of the shape and arrangement pattern of the joint portion of the heat-shrinkable nonwoven fabric for forming a three-dimensional sheet of the present invention.
[Explanation of symbols]
1 heat-shrinkable nonwoven fabric 2 heat-shrinkable nonwoven fabric for 3D sheet formation 3 3D sheet

Claims (4)

潜在捲縮性繊維を含む熱収縮性不織布において、
前記潜在捲縮性繊維中に、無機フィラーが1〜6重量%含有されており、
前記潜在捲縮性繊維は、収縮率の異なる2種類の成分からなる偏心芯鞘型又はサイド・バイ・サイド型の複合繊維であり、前記2種類の成分の内の何れか一方がエチレン−プロピレンランダム共重合体であり、
前記無機フィラーは、前記2種類の成分の内の少なくとも収縮率が低い方の成分中に含有されており、前記無機フィラーが酸化チタンである熱収縮性不織布。
In the heat-shrinkable nonwoven fabric containing latent crimpable fibers,
The latent crimpable fiber contains 1 to 6% by weight of an inorganic filler ,
The latent crimpable fiber is an eccentric core-sheath type or side-by-side type composite fiber composed of two types of components having different shrinkage rates, and one of the two types of components is ethylene-propylene. A random copolymer,
The inorganic filler is a heat-shrinkable nonwoven fabric that is contained in at least one of the two types of components that has a lower shrinkage rate, and the inorganic filler is titanium oxide .
自着力が1.00cN/mm以下である請求項1記載の熱収縮性不織布。  The heat-shrinkable nonwoven fabric according to claim 1, wherein the self-adhesive strength is 1.00 cN / mm or less. 請求項1又は2記載の熱収縮性不織布の片面又は両面に、該熱収縮性不織布の収縮開始温度以下では実質的に熱収縮しない第2繊維層を積層し、前記熱収縮性不織布と第2繊維層とを部分的に接合してなる、立体シート形成用の熱収縮性不織布。 A second fiber layer that is substantially not thermally shrunk below the shrinkage start temperature of the heat-shrinkable nonwoven fabric is laminated on one or both sides of the heat- shrinkable nonwoven fabric according to claim 1 or 2 , and the heat-shrinkable nonwoven fabric and the second layer. A heat-shrinkable nonwoven fabric for forming a three-dimensional sheet, which is formed by partially joining a fiber layer. 請求項1又は2記載の熱収縮性不織布の片面又は両面に、該熱収縮性不織布の収縮開始温度以下では実質的に熱収縮しない第2繊維層を積層し、前記熱収縮性不織布と第2繊維層とを部分的に接合してなる、立体シート形成用の熱収縮性不織布に、温度120〜140℃の熱処理を施し、該熱収縮性不織布を、面積収縮率が20〜70%となるように熱収縮させることを特徴とする立体シートの製造方法。 A second fiber layer that is substantially not thermally shrunk below the shrinkage start temperature of the heat-shrinkable nonwoven fabric is laminated on one or both sides of the heat- shrinkable nonwoven fabric according to claim 1 or 2 , and the heat-shrinkable nonwoven fabric and the second layer. A heat-shrinkable nonwoven fabric for forming a three-dimensional sheet formed by partially bonding a fiber layer is subjected to a heat treatment at a temperature of 120 to 140 ° C., and the area shrinkage ratio of the heat-shrinkable nonwoven fabric becomes 20 to 70%. The manufacturing method of the solid sheet | seat characterized by making it heat-shrink like this.
JP2002109148A 2002-04-11 2002-04-11 Heat shrinkable nonwoven fabric Expired - Lifetime JP3992528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002109148A JP3992528B2 (en) 2002-04-11 2002-04-11 Heat shrinkable nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002109148A JP3992528B2 (en) 2002-04-11 2002-04-11 Heat shrinkable nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2003306858A JP2003306858A (en) 2003-10-31
JP3992528B2 true JP3992528B2 (en) 2007-10-17

Family

ID=29392689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002109148A Expired - Lifetime JP3992528B2 (en) 2002-04-11 2002-04-11 Heat shrinkable nonwoven fabric

Country Status (1)

Country Link
JP (1) JP3992528B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4488734B2 (en) * 2003-12-25 2010-06-23 花王株式会社 Shorts cover
JP4212526B2 (en) * 2004-08-05 2009-01-21 花王株式会社 Three-dimensional sheet material
JP5592168B2 (en) * 2009-08-31 2014-09-17 ユニ・チャーム株式会社 Disposable wearing items
JP5566782B2 (en) * 2010-01-08 2014-08-06 ユニ・チャーム株式会社 Disposable wearing items
JP2012017534A (en) * 2010-07-07 2012-01-26 Long Fang Co Ltd Functional fabric having both high breathability and protective performance
JP6231868B2 (en) * 2013-12-12 2017-11-15 花王株式会社 Absorbent article surface sheet and absorbent article provided with the same
RU2686509C1 (en) * 2015-09-04 2019-04-29 Одзи Холдингз Корпорейшн Absorbent product
JP6812298B2 (en) * 2017-04-28 2021-01-13 日本製紙クレシア株式会社 Non-woven wiper and its manufacturing method
JP7126420B2 (en) * 2018-09-26 2022-08-26 花王株式会社 absorbent article
FR3103732B1 (en) * 2019-11-29 2023-03-31 Michelin & Cie ASSEMBLY INCLUDING AN ADAPTABLE SUPPORTING STRUCTURE

Also Published As

Publication number Publication date
JP2003306858A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
JP3625804B2 (en) Three-dimensional sheet material
JP4895710B2 (en) Nonwoven manufacturing method
CA2355752C (en) Absorbent article employing surface layer with continuous filament and manufacturing process thereof
EP2517872B1 (en) Rugged elastic nonwoven fabric and method for manufacturing the same
CN106794082B (en) Absorbent article
JP3992528B2 (en) Heat shrinkable nonwoven fabric
JP4471925B2 (en) Nonwoven manufacturing method
JP5386341B2 (en) Disposable diapers
JP5514536B2 (en) Disposable diapers
JP4614876B2 (en) Latent crimped fiber
JP2008144321A (en) Nonwoven fabric
JP4212526B2 (en) Three-dimensional sheet material
JP5211033B2 (en) Nonwoven manufacturing method
JP3883460B2 (en) 3D sheet
JP6523741B2 (en) Nonwoven fabric and method of manufacturing the same
JP4013346B2 (en) Nonwoven fabric and absorbent article using the same
JP5203349B2 (en) Non-woven
JP4017529B2 (en) Method for producing heat-shrinkable nonwoven fabric
JP5211032B2 (en) A method for producing a three-dimensional shaped nonwoven fabric.
JP2003306859A (en) Layered fiber assembly for forming three-dimensional sheet and method for producing three-dimensional sheet
JP4352575B2 (en) Thermoplastic composite nonwoven fabric and fiber product using the same
JP4749320B2 (en) Manufacturing method of composite nonwoven fabric
JPH0892852A (en) Stretchable nonwoven fabric
JP5225449B2 (en) Nonwoven fabric and method for producing the same
JP5190441B2 (en) Non-woven

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

R151 Written notification of patent or utility model registration

Ref document number: 3992528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term