JP3991269B2 - Conductive paste and semiconductor device using the same - Google Patents

Conductive paste and semiconductor device using the same Download PDF

Info

Publication number
JP3991269B2
JP3991269B2 JP2002357859A JP2002357859A JP3991269B2 JP 3991269 B2 JP3991269 B2 JP 3991269B2 JP 2002357859 A JP2002357859 A JP 2002357859A JP 2002357859 A JP2002357859 A JP 2002357859A JP 3991269 B2 JP3991269 B2 JP 3991269B2
Authority
JP
Japan
Prior art keywords
filler
conductive paste
conductive
resin
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002357859A
Other languages
Japanese (ja)
Other versions
JP2004193250A (en
Inventor
正明 竹越
俊明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002357859A priority Critical patent/JP3991269B2/en
Publication of JP2004193250A publication Critical patent/JP2004193250A/en
Application granted granted Critical
Publication of JP3991269B2 publication Critical patent/JP3991269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は半導体素子または半導体装置と支持基板を電気的に接続する、導電性ペースト及びこれを用いた半導体装置に関する。
【0002】
【従来の技術】
半導体素子や電子部品を支持部材へ接合する際には、接続部材としてはんだが一般的に用いられてきたが、近年、脱ハロゲン化、脱鉛化など環境への配慮を求める声が世界的に盛んになりつつあり、該接続部材に鉛フリーはんだ、異方導電性接着剤及び導電性ペースト等を用いた接続方式が各社より提案されている。なかでも導電性ペーストを用いた実装方法は、接続温度の低温化ならびに接続圧力の低減化が可能であり、基板や電子部品の低コスト化の面からも注目を浴びている。
【0003】
こうしたはんだ代替材料として導電性ペーストを用いる際に、一般的には、導電のために配合している金属フィラの形状をフレーク状に扁平化処理したものが用いられる。これは、フレーク状とすることでフィラ同士が接触した際の接触面積を増加させ、導電性ペースト硬化後の導電性能を向上するためである。
【0004】
しかし、フレーク状の導電性フィラを用いると、導電性ペーストを半導体素子や基板の電極にスクリーン印刷法を用いて塗布すると、フレーク状の導電性フィラが、塗布面に対し水平方向に配向する。このようにフレーク状の導電性フィラが一方向に配向して積層構造となると、積層面に対し水平方向の導電性は向上するが、逆に垂直方向の導電性が低下するため、半導体素子や電子部品を実装した際に、接続方向の抵抗が大きくなるという問題があった。
【0005】
上記のような問題を解決するため、金属粒子に強磁性を付与させたフィラを用い、垂直方向に磁場をかけることで金属粒子を垂直方向に整列させる方法(例えば、特許文献1参照)や、金属のマイグレーションを利用したデンドライトを、特殊な方法で垂直方向に成長させる方法(例えば、特許文献2参照)などが提案されているが、前者の場合、鉄やコバルトといった強磁性粒子に高導電性のめっきを施す必要があり、さらに硬化の際に強磁場を印加しつづけなければならず、後者の場合には電極表面にデンドライトを成長させるために半導体素子や基板全体を電解液に浸したり、電極間に電圧を印加させ続けてデンドライトの成長を促す必要があり、前者後者ともに特別な工程や特殊な装置が必要となり、実装プロセスが煩雑となる問題があった。
【0006】
【特許文献1】
特開平6−122857号公報
【特許文献2】
特開平5−259116号公報
【0007】
【発明が解決しようとする課題】
本発明は、これらの問題を解決させるためになされたものである。請求項1記載の発明は、導電性ペースト塗布面に対し垂直方向の導電性を向上することができ、かつ接続部の応力緩和性を向上させることのできる導電性ペーストを提供するものである。請求項2記載の発明は、請求項1記載の発明に加えて、導電性ペースト作成時や塗布時の作業性を向上した導電性ペーストを提供するものである。請求項3記載の発明は、請求項1記載の発明に加えて、更に垂直方向の導電性に優れ、かつ水平方向の導電性にも優れた導電性ペーストを提供するものである。請求項4記載の発明は、半導体素子を支持部材に接合する際に、優れた接続抵抗と応力緩和性を示す半導体装置を提供するものである。請求項5記載の発明は、電子部品を支持部材に接合する際に、優れた接続抵抗と応力緩和性を示す半導体装置を提供するものである。
【0008】
【課題を解決するための手段】
本発明は次のものに関する。
(1) 導電性フィラ、樹脂フィラ及びバインダー樹脂を主成分とする導電性ペーストであって、前記導電性フィラの長軸方向の平均長さ(A)を前記導電性フィラの短軸方向の平均長さで除した前記導電性フィラのアスペクト比(B)及び前記樹脂フィラの長軸方向の平均長さ(C)を前記樹脂フィラの短軸方向の平均長さで除した前記樹脂フィラのアスペクト比(D)の間に、0.05≦(A)/(C)≦1、かつ(B)≧5、かつ(D)≦3の関係が成り立ち、さらに導電性ペースト中に含有する前記導電性フィラの総体積(E)と前記樹脂フィラの総体積(F)の間に、2≦(E)/(F)≦5の関係が成り立ち、さらに前記樹脂フィラの弾性率(G)が10MPa≦(G)≦2400MPaであることを特徴とする導電性ペースト。
(2) 前記導電性フィラの平均粒径が0.5μm以上、かつ前記樹脂フィラの平均粒径が100μm以下であることを特徴とする上記(1)記載の導電性ペースト。
(3) 前記樹脂フィラの表面が、Ag、Cu、Au、Pt、Ni、Al、Sn、Zn、AgめっきCu、Ag−Cu合金、PdめっきAg、Pd−AgめっきAg、Au、Au−Ag合金、Au−Cu合金、Pt−Ag合金及びAgめっきNi等の導電性金属やその合金等で被覆されていること特徴とする、上記(1)または(2)に記載の導電性ペースト。
(4) 上記(1)、(2)または(3)のいずれかに記載の導電性ペーストを用いて、半導体素子の電極パッドと支持基板の電極パッドを電気的に接合することを特徴とする半導体装置。
(5) 上記(1)、(2)または(3)のいずれかに記載の導電性ペーストを用いて、電子部品または半導体装置の電極パッドと支持基板の電極パッドを電気的に接合することを特徴とする半導体装置。
【0009】
【発明の実施の形態】
本発明者は上記導電性ペーストを提供するため鋭意研究を重ねた結果、図1に示すように従来塗布面と水平方向へ配向していたフレーク状の導電性フィラ2が、図2に示すように導電性ペースト1に塊状の樹脂フィラ3を配合することで、塊状の樹脂フィラ3によってその配向を乱され、塗布面と水平方向へ配向していない導電性フィラ2の割合が増加することに着目し、特別な工程や特殊な装置を使用せず、また導電性フィラ2の充填量を増加させることなく塗布面に対し垂直方向の導電性に優れ、さらに、塊状の樹脂フィラ3に低弾性率の樹脂フィラを使用することにより、接続部の低弾性化を果たせる導電性ペーストが得られることを見出した。
【0010】
本発明に用いる導電性フィラとしては、Ag、Cu、Au、Pt、Ni、Al、Sn、Zn、AgめっきCu、Ag−Cu合金、PdめっきAg、Pd−AgめっきAg、Au、Au−Ag合金、Au−Cu合金、Pt−Ag合金及びAgめっきNi等が使用でき、そのなかでもAg、AgめっきCuが好ましい。また2種以上の導電性フィラを用いてもよく、単独で使用してもよい。
【0011】
本発明に用いる樹脂フィラとしては、シリコーンゴム、アクリルゴム、ポリエチレン、ポリスチレン、ポリプロピレン、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体、ポリカーボネート、ポリメチルメタアクリレート等の各種アクリレート、ポリイミド、ポリアミド、ポリエステル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリジビニルベンゼン、ポリフェニレンオキサイド、ポリフェニレンサルファイド、ポリメチルペンテン、シリコーン樹脂、アクリル樹脂、フッ素樹脂、尿素樹脂、メラミン樹脂、フェノール樹脂、エポキシ樹脂、ベンゾグアナミン樹脂ポリアセタール樹脂、キシレン樹脂、フラン樹脂、ポリイソシアネート樹脂、フェノキシ樹脂、導電性高分子等が使用でき、そのなかでもシリコーンゴム、アクリルゴム、ポリエチレン、ポリスチレン、アクリロニトリル−ブタジエン−スチレン共重合体などが好ましい。また2種以上の樹脂フィラを用いてもよく、単独で使用してもよい。
【0012】
さらに、前記樹脂フィラの表面が、Ag、Cu、Au、Pt、Ni、Al、Sn、Zn、AgめっきCu、Ag−Cu合金、PdめっきAg、Pd−AgめっきAg、Au、Au−Ag合金、Au−Cu合金、Pt−Ag合金及びAgめっきNi等の導電性金属やその合金等で被覆されていればより好ましい。また、被覆する金属としてはAg、AgめっきCuがより好ましい。なお、表面を被覆された樹脂フィラの長軸方向の平均長さ(C)は、導電性フィラの長軸方向の平均長さ(A)と0.05≦(A)/(C)≦1の関係を満たし、表面を被覆された樹脂フィラのアスペクト比(D)は(D)≦3である。
【0013】
なお、本発明において、(A)/(C)>1であると、配向を乱された導電性フィラが塗布面に対しとる角度が小さい傾向にあり、垂直方向の導電性を効率よく向上できず、(A)/(C)<0.05であると、導電性フィラに比べて樹脂フィラの同士の隙間が大きくなり、その隙間に導電性フィラが大量に入り込んでしまうため、効率よく配向を乱すことができず、やはり垂直方向の導電性を効率よく向上できない傾向にあるため、避けるべきである。また、(B)<5となると、導電性フィラの形状が球状に近づくため、導電性フィラ同士の接触面積が低下し、大塊状の樹脂フィラによって配向を乱されたとしても、垂直方向の導電性を効率よく向上できず、また、(D)>3となると、樹脂フィラの形状がフレーク状に近づくため、塗布時に樹脂フィラそのものが配向してしまうため、導電性フィラの配向を乱す効果が小さくなってしまい、垂直方向の導電性を効率よく向上できない傾向にあるため、避けるべきである。また、(E)/(F)<2であると、樹脂フィラの占める空間が大きくなりすぎて、導電性フィラ同士の接触が妨げられるため、導電性を効率よく向上できず、(E)/(F)>5であると、樹脂フィラの占める空間が小さくなりすぎて、導電性フィラの配向にわずかな影響しか与えられなくなるため、垂直方向の導電性を効率よく向上できない傾向にあるため、避けるべきである。また、(G)<10MPaであると、導電性ペースト作成の際に、混練操作中の圧力でフィラが大きく変形したり潰れたりすることがあり、(G)>2400MPaであると、導電性ペーストを硬化した際に弾性率を低下させる作用が弱く、接続部の低弾性化にはあまり効果的でないため、避けるべきである。
【0014】
さらに前記導電性フィラの平均粒径が0.5μmより小さいと、導電性ペーストの粘度が上昇し、導電性ペースト作製時及び塗布時の作業性が低下し、前記樹脂フィラの平均粒径が100μmより大きいと、導電性ペースト作成時及び塗布時の作業性が低下し、その塗布表面も平滑にならないため、好ましくはこれも避けるべきである。
【0015】
本発明における導電性ペーストは、上記導電性フィラと樹脂フィラを適当なバインダー樹脂中に、らいかい機等を使用してフィラ成分をバインダー中に均一に分散させることにより製造できる。該バインダー樹脂としては、エポキシ樹脂、フェノール樹脂、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、アルキド樹脂、レゾール樹脂、ポリイミド樹脂、ポリアミド樹脂、シリコン樹脂、セルロース樹脂、ロジン樹脂、メラミン樹脂及び尿素樹脂等が使用できる。
【0016】
本発明における導電性ペーストには、上記必須成分以外に各種溶剤、顔料、染料、分散剤、酸化防止剤、静電気防止剤、消泡剤等を必要に応じて使用し、印刷性、作業性等を適宜調整することができる。
【0017】
以上、説明した本発明の導電性ペーストは、半導体素子や電子部品等の支持基板への電気的な接合材料等として使用することができる。
【0018】
本発明の導電性ペーストを用いた半導体装置は、スクリーン印刷、転写、ディスペンス等で、半導体素子もしくは半導体装置及び電子部品の電極、または支持基板の電極の少なくともどちらか一方の電極に塗布したのち、半導体素子もしくは半導体装置及び電子部品と支持基板を導電性ペーストで接合し、加熱硬化して製造することができる。本発明を用いた半導体装置としては、フリップチップ型やチップ積層(スタック)型のBGA、CSP等の半導体パッケージ、IC接続ガラス基板、コンデンサや抵抗体といった各種表面実装用電子部品を搭載した実装基板、QFP、BGA及びCSP等半導体パッケージを搭載した実装基板等が挙げられる。
【0019】
【実施例】
以下に、本発明の具体的実施例について説明するが、本発明はこれらにより制限されるものではない。
実施例1〜4
バインダー樹脂として、主剤をビスフェノールF型、AD型混合エポキシ樹脂、硬化剤をノボラック型フェノール樹脂及びp−t−トリブチルフェニルグリシジルエーテルとした一液性熱硬化型エポキシ樹脂(以下樹脂成分という)を用い、導電性フィラ及び樹脂フィラとして、表1に示すような割合で配合したものをそれぞれ用い、導電性ペースト全体の体積に対する導電性フィラの総体積(フィラの体積分率)が32vol%になるように樹脂成分とフィラ成分を混合し、(株)石川工場製のらいかい機で真空混練して導電性ペーストを得た。この得られた導電性ペーストの導電性と弾性率を以下の方法で評価したところ、どの導電性ペーストも垂直方向の体積抵抗率ρz≦2.5×10−4Ω・cmの良好な導電性と、引っ張り弾性率E≦5GPaの低弾性な接続部を得ることができた。評価結果を表1に示す。
【0020】
【表1】

Figure 0003991269
【0021】
評価方法
導電性:接続抵抗を測定できるようにCu配線とAu電極を備えたガラスエポキシ基板のAu電極上に上記導電性ペーストをスクリーン印刷し、同じく接続抵抗を測定できるようにAl配線とAu電極を備えた半導体素子を、互いの電極同士が対向しあうように実装して得られた測定試料を、150℃オーブン中で60分加熱し導電性ペーストを硬化させ、接続部の導電性を4端子法で測定し、接続距離及び接続面積より垂直方向の体積抵抗率ρzを算出した。
弾性率:導電性ペーストを150℃オーブン中で60分硬化して、短冊状の導電性ペースト硬化物としたものを、エーアンドディ社製テンシロンRTC−1210Aを用いて、試験速度0.5mm/秒、試験温度25℃にて引っ張り試験を行い、得られた応力―ひずみ曲線から算出した。
【0022】
比較例1〜8
実施例と同様のバインダー樹脂を用い、導電性フィラ及び樹脂フィラとして、表2に示すような割合で配合したものをそれぞれ用い、導電性ペースト全体の体積に対する導電性フィラの総体積(フィラの体積分率)が32vol%になるように樹脂成分とフィラ成分を混合し、実施例と同様にして導電性ペーストを得た。評価方法も実施例と同様である。評価結果を表2に示す。
【0023】
【表2】
Figure 0003991269
【0024】
なお、本発明において、導電性フィラ及び高分子フィラの長さ及びアスペクト比は、導電性ペーストの硬化物のサンプルを作成し、その硬化物断面をSEM観察し、30個以上無作為に選択したフィラの、長軸方向の長さと短軸方向の長さの測定結果より得た。サンプルはガラス板の上に適量の導電性ペーストを塗布し、硬化反応が終了するのに必要な熱量を加え、導電性ペーストを硬化させて得た。断面は従来公知の装置でサンプルを切断して露出させた。
また、各フィラの総体積の関係は、導電性ペーストの硬化断面に現れた各フィラの面積比より算出した
【0025】
【発明の効果】
本発明の導電性ペーストは、低弾性な樹脂フィラを配合することで、導電性に優れるフレーク状の導電性フィラの塗布面と水平方向への配向が効率よく乱され、塗布面と垂直方向へ配向するフィラの割合が増加することによって、塗布面に対し垂直方向の導電性に優れ、さらに接続部の低弾性化による応力緩和性が優れており、支持基板への半導体素子、半導体装置及び電子部品の電気的な接合材料として好適であり、これを用いた半導体装置は接続抵抗と接続部の応力緩和性ともに優れている。
【図面の簡単な説明】
【図1】従来の導電性ペースト層の微細構造を示す断面図。
【図2】本発明の導電性ペースト層の微細構造を示す断面図。
【符号の説明】
1 導電性ペースト
2 導電性フィラ
3 樹脂フィラ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive paste for electrically connecting a semiconductor element or a semiconductor device and a support substrate, and a semiconductor device using the same.
[0002]
[Prior art]
When joining semiconductor elements and electronic components to support members, solder has generally been used as a connection member, but in recent years, there has been a global demand for environmental considerations such as dehalogenation and deleading. Various companies have proposed connection methods using lead-free solder, anisotropic conductive adhesive, conductive paste, and the like for the connection members. In particular, the mounting method using the conductive paste can reduce the connection temperature and the connection pressure, and is attracting attention from the viewpoint of reducing the cost of substrates and electronic components.
[0003]
When a conductive paste is used as such a solder substitute material, generally, a metal filler compounded for electrical conductivity is flattened into flakes. This is because the contact area when the fillers are brought into contact with each other by increasing the flake shape to improve the conductive performance after the conductive paste is cured.
[0004]
However, when a flaky conductive filler is used, when the conductive paste is applied to a semiconductor element or an electrode of a substrate using a screen printing method, the flaky conductive filler is oriented in the horizontal direction with respect to the application surface. Thus, when the flake-like conductive filler is oriented in one direction to form a laminated structure, the conductivity in the horizontal direction with respect to the laminated surface is improved, but conversely the conductivity in the vertical direction is lowered, so that the semiconductor element or When an electronic component is mounted, there is a problem that the resistance in the connection direction increases.
[0005]
In order to solve the above problems, a method of aligning the metal particles in the vertical direction by applying a magnetic field in the vertical direction using a filler imparted with ferromagnetism to the metal particles (for example, see Patent Document 1), A method of growing dendrites using metal migration in a vertical direction by a special method (for example, see Patent Document 2) has been proposed. In the former case, however, ferromagnetic particles such as iron and cobalt are highly conductive. In order to grow dendrites on the electrode surface, the semiconductor element or the entire substrate is immersed in an electrolytic solution, or, in the latter case, It is necessary to continue applying voltage between the electrodes to promote the growth of dendrites, and both the former and the latter require special processes and special equipment, and the mounting process is complicated. There was.
[0006]
[Patent Document 1]
JP-A-6-122857 [Patent Document 2]
Japanese Patent Laid-Open No. 5-259116
[Problems to be solved by the invention]
The present invention has been made to solve these problems. The invention according to claim 1 provides a conductive paste capable of improving the conductivity in the direction perpendicular to the conductive paste application surface and improving the stress relaxation property of the connection portion. In addition to the invention described in claim 1, the invention described in claim 2 provides a conductive paste with improved workability at the time of forming or applying the conductive paste. In addition to the invention described in claim 1, the invention described in claim 3 provides a conductive paste that is further excellent in electrical conductivity in the vertical direction and in electrical conductivity in the horizontal direction. The invention according to claim 4 provides a semiconductor device exhibiting excellent connection resistance and stress relaxation when a semiconductor element is bonded to a support member. The invention according to claim 5 provides a semiconductor device exhibiting excellent connection resistance and stress relaxation when an electronic component is joined to a support member.
[0008]
[Means for Solving the Problems]
The present invention relates to the following.
(1) A conductive paste mainly composed of a conductive filler, a resin filler, and a binder resin, wherein an average length (A) in a major axis direction of the conductive filler is an average in a minor axis direction of the conductive filler. The aspect ratio (B) of the conductive filler divided by the length and the average length (C) in the major axis direction of the resin filler are divided by the average length in the minor axis direction of the resin filler. Between the ratio (D), the relationship of 0.05 ≦ (A) / (C) ≦ 1, (B) ≧ 5, and (D) ≦ 3 is established, and the conductive material contained in the conductive paste The relationship of 2 ≦ (E) / (F) ≦ 5 holds between the total volume (E) of the filler and the total volume (F) of the resin filler, and the elastic modulus (G) of the resin filler is 10 MPa. <= (G) <= 2400MPa The electrically conductive paste characterized by the above-mentioned.
(2) The conductive paste according to (1) above, wherein the conductive filler has an average particle size of 0.5 μm or more and the resin filler has an average particle size of 100 μm or less.
(3) The surface of the resin filler is Ag, Cu, Au, Pt, Ni, Al, Sn, Zn, Ag plating Cu, Ag-Cu alloy, Pd plating Ag, Pd-Ag plating Ag, Au, Au-Ag The conductive paste according to (1) or (2) above, which is coated with a conductive metal such as an alloy, an Au—Cu alloy, a Pt—Ag alloy, or an Ag-plated Ni, or an alloy thereof.
(4) The electrode pad of the semiconductor element and the electrode pad of the supporting substrate are electrically bonded using the conductive paste according to any one of (1), (2), and (3) above. Semiconductor device.
(5) Using the conductive paste according to any one of (1), (2), and (3), electrically bonding an electrode pad of an electronic component or a semiconductor device and an electrode pad of a support substrate A featured semiconductor device.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
As a result of intensive studies to provide the conductive paste, the present inventor has found that a flaky conductive filler 2 that has been oriented in the horizontal direction with respect to the coated surface as shown in FIG. By adding the bulk resin filler 3 to the conductive paste 1, the orientation is disturbed by the bulk resin filler 3, and the ratio of the conductive filler 2 not oriented in the horizontal direction with respect to the coating surface increases. Paying attention, it does not use a special process or special equipment, and does not increase the filling amount of the conductive filler 2, it has excellent conductivity in the direction perpendicular to the coating surface, and the bulky resin filler 3 has low elasticity. It has been found that a conductive paste capable of reducing the elasticity of the connecting portion can be obtained by using a resin filler having a low rate.
[0010]
As the conductive filler used in the present invention, Ag, Cu, Au, Pt, Ni, Al, Sn, Zn, Ag plating Cu, Ag-Cu alloy, Pd plating Ag, Pd-Ag plating Ag, Au, Au-Ag An alloy, an Au—Cu alloy, a Pt—Ag alloy, an Ag plating Ni, or the like can be used, and among them, Ag and Ag plating Cu are preferable. Two or more kinds of conductive fillers may be used, or may be used alone.
[0011]
Examples of the resin filler used in the present invention include silicone rubber, acrylic rubber, polyethylene, polystyrene, polypropylene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, polycarbonate, various acrylates such as polymethyl methacrylate, polyimide, Polyamide, polyester, polyvinyl chloride, polyvinylidene chloride, polydivinylbenzene, polyphenylene oxide, polyphenylene sulfide, polymethylpentene, silicone resin, acrylic resin, fluorine resin, urea resin, melamine resin, phenol resin, epoxy resin, benzoguanamine resin polyacetal Resin, xylene resin, furan resin, polyisocyanate resin, phenoxy resin, conductive polymer, etc. can be used. Silicone rubber, acrylic rubber, polyethylene, polystyrene, acrylonitrile - butadiene - styrene copolymer. Two or more kinds of resin fillers may be used, or may be used alone.
[0012]
Furthermore, the surface of the resin filler is Ag, Cu, Au, Pt, Ni, Al, Sn, Zn, Ag plating Cu, Ag—Cu alloy, Pd plating Ag, Pd—Ag plating Ag, Au, Au—Ag alloy. It is more preferable if it is coated with a conductive metal such as Au—Cu alloy, Pt—Ag alloy and Ag plating Ni, or an alloy thereof. Moreover, as a metal to coat | cover, Ag and Ag plating Cu are more preferable. The average length (C) in the major axis direction of the resin filler coated on the surface is equal to the average length (A) in the major axis direction of the conductive filler and 0.05 ≦ (A) / (C) ≦ 1. The aspect ratio (D) of the resin filler that satisfies the above relationship and whose surface is coated is (D) ≦ 3.
[0013]
In the present invention, when (A) / (C)> 1, the angle taken by the disordered conductive filler with respect to the coated surface tends to be small, and the vertical conductivity can be improved efficiently. If (A) / (C) <0.05, the gap between the resin fillers becomes larger than that of the conductive filler, and a large amount of the conductive filler enters the gap. Cannot be disturbed and the vertical conductivity tends not to be improved efficiently, and should be avoided. Further, when (B) <5, the shape of the conductive fillers is close to a spherical shape, so that the contact area between the conductive fillers decreases, and even if the orientation is disturbed by the massive resin filler, When (D)> 3, the shape of the resin filler approaches a flake shape, so that the resin filler itself is oriented at the time of application, so that the orientation of the conductive filler is disturbed. It should be avoided because it tends to be smaller and the conductivity in the vertical direction cannot be improved efficiently. Also, if (E) / (F) <2, the space occupied by the resin filler becomes too large and the contact between the conductive fillers is hindered, so the conductivity cannot be improved efficiently, and (E) / When (F)> 5, the space occupied by the resin filler becomes too small, and only a slight influence is exerted on the orientation of the conductive filler, so that the conductivity in the vertical direction tends not to be improved efficiently. Should be avoided. In addition, when (G) <10 MPa, the filler may be greatly deformed or crushed by the pressure during the kneading operation when forming the conductive paste, and when (G)> 2400 MPa, the conductive paste The effect of lowering the elastic modulus when curing is weak and is not very effective in reducing the elasticity of the connection, so it should be avoided.
[0014]
Further, when the average particle size of the conductive filler is smaller than 0.5 μm, the viscosity of the conductive paste increases, the workability at the time of preparing and applying the conductive paste decreases, and the average particle size of the resin filler is 100 μm. If it is larger, the workability at the time of preparing and applying the conductive paste is lowered, and the coated surface is not smooth, so this should preferably be avoided.
[0015]
The conductive paste in the present invention can be produced by uniformly dispersing the filler component in the binder by using a rough machine or the like in the above-mentioned conductive filler and resin filler in an appropriate binder resin. As the binder resin, epoxy resin, phenol resin, acrylic resin, urethane resin, polyester resin, alkyd resin, resol resin, polyimide resin, polyamide resin, silicon resin, cellulose resin, rosin resin, melamine resin, urea resin, etc. are used. it can.
[0016]
In the conductive paste of the present invention, various solvents, pigments, dyes, dispersants, antioxidants, antistatic agents, antifoaming agents and the like are used as necessary in addition to the above essential components, and printability, workability, etc. Can be adjusted as appropriate.
[0017]
As described above, the conductive paste of the present invention described above can be used as a material for electrical bonding to a support substrate such as a semiconductor element or an electronic component.
[0018]
A semiconductor device using the conductive paste of the present invention is applied to at least one of the electrodes of a semiconductor element or a semiconductor device and an electronic component, or an electrode of a support substrate by screen printing, transfer, dispensing, or the like. A semiconductor element or a semiconductor device, an electronic component, and a support substrate can be joined with a conductive paste, and can be manufactured by heating and curing. As a semiconductor device using the present invention, a mounting substrate on which various surface mounting electronic components such as flip chip type or chip stack (stack) type semiconductor packages such as BGA and CSP, an IC connection glass substrate, a capacitor and a resistor are mounted. , QFP, BGA, CSP, etc., a mounting substrate on which a semiconductor package is mounted.
[0019]
【Example】
Hereinafter, specific examples of the present invention will be described, but the present invention is not limited thereto.
Examples 1-4
As a binder resin, a one-component thermosetting epoxy resin (hereinafter referred to as a resin component) in which the main agent is bisphenol F type, AD type mixed epoxy resin, and the curing agent is novolak type phenol resin and pt-tributylphenylglycidyl ether is used. As the conductive filler and the resin filler, those blended in proportions as shown in Table 1 are used, respectively, so that the total volume of the conductive filler relative to the total volume of the conductive paste (the volume fraction of the filler) is 32 vol%. A resin component and a filler component were mixed with each other, and vacuum kneaded with a rough machine manufactured by Ishikawa Factory to obtain a conductive paste. The conductivity and elastic modulus of the obtained conductive paste were evaluated by the following method. As a result, any conductive paste had good volume conductivity in the vertical direction ρz ≦ 2.5 × 10 −4 Ω · cm. As a result, a low-elasticity connecting portion having a tensile elastic modulus E ≦ 5 GPa could be obtained. The evaluation results are shown in Table 1.
[0020]
[Table 1]
Figure 0003991269
[0021]
Evaluation method Conductivity: Screen printing of the above conductive paste on the Au electrode of the glass epoxy substrate provided with Cu wiring and Au electrode so that the connection resistance can be measured, and Al wiring and Au electrode so that the connection resistance can also be measured. A measurement sample obtained by mounting a semiconductor element equipped with the electrodes so that the electrodes face each other is heated in a 150 ° C. oven for 60 minutes to cure the conductive paste, and the conductivity of the connection portion is 4 Measured by the terminal method, the volume resistivity ρz in the vertical direction was calculated from the connection distance and connection area.
Elastic modulus: Conductive paste was cured in an oven at 150 ° C. for 60 minutes to obtain a strip-shaped conductive paste cured product using Tensilon RTC-1210A manufactured by A & D Co., Ltd., with a test speed of 0.5 mm / A tensile test was conducted at a test temperature of 25 ° C. for 2 seconds, and the obtained stress-strain curve was calculated.
[0022]
Comparative Examples 1-8
Using the same binder resin as in the examples, the conductive filler and the resin filler were blended in the proportions shown in Table 2, and the total volume of the conductive filler relative to the total volume of the conductive paste (the volume of the filler). The resin component and the filler component were mixed so that the fraction) was 32 vol%, and a conductive paste was obtained in the same manner as in the example. The evaluation method is the same as that in the example. The evaluation results are shown in Table 2.
[0023]
[Table 2]
Figure 0003991269
[0024]
In the present invention, the lengths and aspect ratios of the conductive filler and the polymer filler were prepared by preparing a sample of a cured product of the conductive paste, observing a cross section of the cured product, and randomly selecting 30 or more. It was obtained from the measurement results of the length of the filler in the major axis direction and the minor axis direction. The sample was obtained by applying an appropriate amount of conductive paste on a glass plate, applying the amount of heat necessary to complete the curing reaction, and curing the conductive paste. The cross section was exposed by cutting the sample with a conventionally known apparatus.
Further, the relationship of the total volume of each filler was calculated from the area ratio of each filler that appeared on the cured cross section of the conductive paste.
【The invention's effect】
In the conductive paste of the present invention, by adding a low-elasticity resin filler, the orientation of the flaky conductive filler excellent in conductivity and the orientation in the horizontal direction is efficiently disturbed, and in the direction perpendicular to the coating surface. By increasing the proportion of the filler that is oriented, the conductivity in the direction perpendicular to the coated surface is excellent, and further, the stress relaxation property due to the low elasticity of the connection portion is excellent. It is suitable as an electrical bonding material for components, and a semiconductor device using this is excellent in both connection resistance and stress relaxation of the connection portion.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a fine structure of a conventional conductive paste layer.
FIG. 2 is a cross-sectional view showing a fine structure of a conductive paste layer of the present invention.
[Explanation of symbols]
1 Conductive Paste 2 Conductive Filler 3 Resin Filler

Claims (5)

導電性フィラ、樹脂フィラ及びバインダー樹脂を主成分とする導電性ペーストであって、前記導電性フィラの長軸方向の平均長さ(A)を前記導電性フィラの短軸方向の平均長さで除した前記導電性フィラのアスペクト比(B)及び前記樹脂フィラの長軸方向の平均長さ(C)を前記樹脂フィラの短軸方向の平均長さで除した前記樹脂フィラのアスペクト比(D)の間に、0.05≦(A)/(C)≦1、かつ(B)≧5、かつ(D)≦3の関係が成り立ち、さらに導電性ペースト中に含有する前記導電性フィラの総体積(E)と前記樹脂フィラの総体積(F)の間に、2≦(E)/(F)≦5の関係が成り立ち、さらに前記樹脂フィラの弾性率(G)が10MPa≦(G)≦2400MPaであることを特徴とする導電性ペースト。A conductive paste mainly composed of a conductive filler, a resin filler and a binder resin, wherein the average length (A) in the major axis direction of the conductive filler is the average length in the minor axis direction of the conductive filler. The aspect ratio (D) of the resin filler obtained by dividing the aspect ratio (B) of the conductive filler and the average length (C) in the major axis direction of the resin filler by the average length in the minor axis direction of the resin filler (D). ) 0.05 ≦ (A) / (C) ≦ 1, and (B) ≧ 5, and (D) ≦ 3, and the conductive filler contained in the conductive paste A relationship of 2 ≦ (E) / (F) ≦ 5 is established between the total volume (E) and the total volume (F) of the resin filler, and the elastic modulus (G) of the resin filler is 10 MPa ≦ (G ) ≦ 2400 MPa Conductive paste characterized by the above. 前記導電性フィラの平均粒径が0.5μm以上、かつ前記樹脂フィラの平均粒径が100μm以下であることを特徴とする請求項1記載の導電性ペースト。The conductive paste according to claim 1, wherein the conductive filler has an average particle size of 0.5 μm or more and the resin filler has an average particle size of 100 μm or less. 前記樹脂フィラの表面が、Ag、Cu、Au、Pt、Ni、Al、Sn、Zn、AgめっきCu、Ag−Cu合金、PdめっきAg、Pd−AgめっきAg、Au、Au−Ag合金、Au−Cu合金、Pt−Ag合金及びAgめっきNi等の導電性金属やその合金等で被覆されていること特徴とする、請求項1または2に記載の導電性ペースト。The surface of the resin filler is Ag, Cu, Au, Pt, Ni, Al, Sn, Zn, Ag plating Cu, Ag—Cu alloy, Pd plating Ag, Pd—Ag plating Ag, Au, Au—Ag alloy, Au The conductive paste according to claim 1, wherein the conductive paste is coated with a conductive metal such as a Cu alloy, a Pt—Ag alloy, or an Ag-plated Ni, or an alloy thereof. 請求項1、2または3のいずれかに記載の導電性ペーストを用いて、半導体素子の電極パッドと支持基板の電極パッドを電気的に接合することを特徴とする半導体装置。4. A semiconductor device, wherein the electrode pad of the semiconductor element and the electrode pad of the supporting substrate are electrically joined using the conductive paste according to claim 1. 請求項1、2または3のいずれかに記載の導電性ペーストを用いて、電子部品または半導体装置の電極パッドと支持基板の電極パッドを電気的に接合することを特徴とする半導体装置。4. A semiconductor device, wherein an electrode pad of an electronic component or a semiconductor device and an electrode pad of a support substrate are electrically bonded using the conductive paste according to claim 1.
JP2002357859A 2002-12-10 2002-12-10 Conductive paste and semiconductor device using the same Expired - Fee Related JP3991269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002357859A JP3991269B2 (en) 2002-12-10 2002-12-10 Conductive paste and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002357859A JP3991269B2 (en) 2002-12-10 2002-12-10 Conductive paste and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2004193250A JP2004193250A (en) 2004-07-08
JP3991269B2 true JP3991269B2 (en) 2007-10-17

Family

ID=32757742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002357859A Expired - Fee Related JP3991269B2 (en) 2002-12-10 2002-12-10 Conductive paste and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP3991269B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542842B2 (en) * 2004-07-12 2010-09-15 株式会社リコー Interelectrode connection structure
JP4900674B2 (en) * 2006-06-23 2012-03-21 住友電気工業株式会社 Anisotropic conductive film and method for manufacturing electronic device using the same
JP5332464B2 (en) * 2008-09-30 2013-11-06 住友ベークライト株式会社 Resin composition and semiconductor device produced using resin composition
TWI540590B (en) * 2011-05-31 2016-07-01 住友電木股份有限公司 Semiconductor device
JPWO2013146984A1 (en) * 2012-03-30 2015-12-14 京セラ株式会社 Multilayer piezoelectric element, injection device including the same, and fuel injection system

Also Published As

Publication number Publication date
JP2004193250A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
JP4996182B2 (en) POLYMER NANOCOMPOSITE MATERIAL, MANUFACTURING METHOD THEREOF
KR101748454B1 (en) Conductive particles, anisotropic conductive film, assembly, and connection method
JP4775377B2 (en) Adhesive film for circuit connection, circuit member connection structure, and circuit member connection method
KR102028389B1 (en) Electroconductive particle, circuit connecting material, mounting body, and method for manufacturing mounting body
CN104106182B (en) Anisotropic conductive connecting material, connection structural bodies, the manufacturing method of connection structural bodies and connection method
JP5232130B2 (en) Printed wiring board connection structure, manufacturing method thereof, and anisotropic conductive adhesive
KR101530401B1 (en) Anisotropically conductive adhesive
JP2015167106A (en) Anisotropic conductive film, and connection structure
JP2007026776A (en) Conductive fine particle and adhesive using the same
KR101536825B1 (en) Anisotropic conductive adhesive, process for producing same, connection structure, and process for producing same
JP3966686B2 (en) Connecting material
Tao et al. Novel isotropical conductive adhesives for electronic packaging application
JP2002265920A (en) Electroconductive adhesive and circuit using the same
Wang et al. Effect of curing agent and curing substrate on low temperature curable silver conductive adhesive
JP3991269B2 (en) Conductive paste and semiconductor device using the same
JP2007317563A (en) Circuit connecting adhesive
JP6326867B2 (en) Connection structure manufacturing method and connection structure
KR20150060683A (en) Anisotropic conductive film, connection method, and connected body
JPH0992026A (en) Complex conductive powder, conductive paste, manufacture of conductive paste, electric circuit, and manufacture of electric circuit
JP5143329B2 (en) Manufacturing method of circuit connection body
CN1900195B (en) Adhesive agent for circuit member connection, circuit board and its producing method
JP5698080B2 (en) Anisotropic conductive film, connection method, and joined body
WATANABE et al. Flip-chip Interconnection to Various Substrates Using Anisotropic Conductive Adhesive Films
JP2001064619A (en) Film-like adhesive for connection to circuit
JP6601533B2 (en) Anisotropic conductive film, connection structure, method for manufacturing anisotropic conductive film, and method for manufacturing connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees