JP3990042B2 - Hydrophilic polyolefin fiber and non-woven fabric using the same - Google Patents

Hydrophilic polyolefin fiber and non-woven fabric using the same Download PDF

Info

Publication number
JP3990042B2
JP3990042B2 JP25298498A JP25298498A JP3990042B2 JP 3990042 B2 JP3990042 B2 JP 3990042B2 JP 25298498 A JP25298498 A JP 25298498A JP 25298498 A JP25298498 A JP 25298498A JP 3990042 B2 JP3990042 B2 JP 3990042B2
Authority
JP
Japan
Prior art keywords
fiber
treatment
nonwoven fabric
hydrophilic
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25298498A
Other languages
Japanese (ja)
Other versions
JP2000080559A (en
Inventor
憲司 山下
洋志 岡屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwabo Co Ltd
Daiwabo Holdings Co Ltd
Original Assignee
Daiwabo Co Ltd
Daiwabo Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwabo Co Ltd, Daiwabo Holdings Co Ltd filed Critical Daiwabo Co Ltd
Priority to JP25298498A priority Critical patent/JP3990042B2/en
Publication of JP2000080559A publication Critical patent/JP2000080559A/en
Application granted granted Critical
Publication of JP3990042B2 publication Critical patent/JP3990042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、様々な用途に有用な親水性に優れたポリオレフィン系繊維および不織布に関するものであり、特に、高圧水流法や湿式抄紙法など水を利用する不織布加工法における加工性に優れたポリオレフィン系繊維に関する。
【0002】
【従来の技術】
従来より、ポリオレフィン系繊維は様々な加工法を用いて不織布化されている。例えば、乾式不織布であれば、エアースルー法や熱カレンダー法などの熱接着法、あるいはニードルパンチ法や高圧水流法などの繊維交絡法、スパンボンド法やメルトブロー法などがあり、湿式不織布であれば、湿式抄紙法など不織布の加工法は用途に応じて多岐にわたっている。
【0003】
そして、様々な用途、例えば使い捨ておむつや生理用ナプキンなどの衛生材料、ウェットティッシュ、フィルター、ワイパー、ティーパック、電池用セパレータあるいはセメント補強用繊維などの建材用途など親水性の要求される分野にも使用されている。元来、ポリオレフィン系繊維は疎水性であるため、親水性の繊維処理剤を繊維表面に塗布することにより親水性能を付与している。
【0004】
【発明が解決しようとする課題】
しかしながら、従来のポリオレフィン系繊維を高圧水流法や湿式抄造法など水を利用する加工法に用いた場合、高圧水流法であれば、1回目の水流噴射で繊維処理剤が容易に洗い流されてしまい、それ以後水流を噴射しても繊維同士の交絡が不十分で強力に優れた不織布が得られないばかりか、繊維が水圧により飛散し、目付斑となり、美観的にも優れたものが得られない。また、湿式抄造法であれば、抄造前に繊維を水中に分散させる際の撹拌により、繊維処理剤が容易に洗い流されてしまい、繊維の分散が不十分となって、目付斑や密着糸が多数出現して美観的に優れた不織布が得られないのが現状である。
【0005】
さらに、親水性を要求する分野において、特に親水性能の耐久性、あるいは永続性が望まれており、従来の繊維処理剤の塗布だけでは、数回使用すると繊維処理剤が洗い流されてしまい、その後の親水性は著しく低下してしまう。それを解消するために、例えば、特開平5−272006号公報などのように親水化剤をポリオレフィン樹脂に配合し、溶融紡糸した親水性ポリオレフィン系繊維が開示されている。しかしながら、親水化剤を樹脂中に練り込んだ繊維は、親水化剤の繊維表面へブリード(しみ出し)する速度を調整するのが困難であり、目的に応じた耐久親水性を得るには十分とはいえない。
本発明はかかる実情を鑑みてなされたものであり、様々な不織布加工法に対応でき、かつ親水性を要求する分野、特に親水性能の耐久性に優れたポリオレフィン系繊維およびこれを用いた不織布を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の親水性ポリオレフィン系繊維は、表面改質により親水化されたポリオレフィン系繊維において、繊維表面に少なくとも下記の構造式からなる官能基が存在し、オレフィン主鎖および側鎖の全炭素元素に対する官能基の割合がそれぞれ下記の範囲であり表面改質後、繊維表面に繊維処理剤を0.1〜1.0重量%付着させたことを特徴とする。
(1)−CH−O− : 10〜35%
(2)−CO− : 3〜30%
(3)−COO−: 0〜15%
(4)残りの炭素元素 : 87〜20%
かかる構成を採ることにより、スパンレース法や湿式抄造法などの水力を利用する不織布加工法に有用であり、かつ親水性を要求する分野、特に親水性能の耐久性に優れたスパンレース不織布用又は湿式不織布用ポリオレフィン系繊維が得られる。
【0007】
本発明の親水性ポリオレフィン系繊維は、下記で示される初期濡れ時間が30sec 以上であり、かつ耐久濡れ時間が15sec 以上であることが好ましい。

5mmの長さに切断した繊維を0.3g、水1リットルを容量約1.3リットルの市販ミキサーへ投入し、回転数4000rpm で10秒間撹拌した後、即座に1リットル容量のメスシリンダー(高さ287mm、内径67mm)へ移し、投入した全繊維の浮き上がってくる時間を測定する。これを初期濡れ時間とする。次に、浮き上がった繊維を金網フィルター(300メッシュ)を用いて取り出し、1リットルの水とともに再度前記ミキサーへ投入し、回転数4000rpm で10秒間撹拌した後、即座に前記メスシリンダーへ移し、投入した全繊維の浮き上がってくる時間を測定する。これを耐久濡れ時間とした。
【0008】
上記繊維の表面改質は、コロナ放電処理もしくは常圧プラズマ処理であることが好ましい。また、コロナ放電処理は、繊維表面全体に施され、かつ1回当たりの放電量が少なくとも50W/m2/minであることが好ましい。そして、コロナ放電処理もしくは常圧プラズマ処理後、繊維表面に繊維処理剤を付着させると、初期濡れ性が向上する。
【0009】
上記親水性ポリオレフィン系繊維を少なくとも30重量%含有する不織布は、親水性を要求する分野、特に耐久親水性に優れた不織布が得られる。
以下、本発明の内容を具体的に説明する。
【0010】
【発明の実施の形態】
本発明に用いられるポリオレフィン系繊維は、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリブテン−1、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸メチル共重合体等のポリオレフィン重合体、共重合体、三元共重合体、あるいはそれらの変性体が用いられ、繊維形態は、単一繊維または複合繊維のいずれであってもよく、複合繊維は鞘芯型、偏心芯鞘型、並列型、分割型のいずれであっても差し支えない。断面形状においても、円状、異形状、中空状いずれであってもよい。
【0011】
また、本発明の親水性ポリオレフィン系繊維の繊度は、不織布の用途等に応じて適宜決定すればよいが、0.2〜17dtexが好ましい。一般に繊度が細いと繊維の表面積が大きくなるため、後述する表面改質した繊維の表面に親水基等が水に接触し易くなって親和性が増大し、不織布の均一性や生産性に寄与する。
【0012】
上記ポリオレフィン系繊維は、表面改質により親水化される。表面改質処理は、公知の処理方法の中から適宜選定すればよい。例えば、コロナ放電処理、プラズマ処理、フッ素化処理、紫外線照射、あるいはスルホン化処理等が挙げられる。なかでも本発明においては、親水化性能や安全性、コストの面からコロナ放電処理もしくは常圧プラズマ処理が特に好ましい。
【0013】
そして、表面改質により親水化されたポリオレフィン系繊維には、繊維表面に親水性の官能基が導入される。導入される親水性の官能基としては、例えば、−CH−O−、−CO−、−COO−などが挙げられるが、本発明においては、特に、オレフィン主鎖および側鎖の全炭素元素に対する官能基の割合がそれぞれ、下記の範囲を満たすことにより、後述する様々な不織布加工法に対応でき、かつ親水性を要求する分野、特に親水性能の耐久性に優れたポリオレフィン系繊維となる。
(1)−CH−O− : 10〜35%
(2)−CO− : 3〜30%
(3)−COO−: 0〜15%
(4)残りの炭素元素 : 87〜20%
より好ましくは、−CH−O−が20〜30%、−CO−が5〜15%、−COO−が2〜10%である。上記官能基は、株式会社島津製作所製のESCA−3300を用い、繊維の表面元素組成分析を行い、測定したものである。試料は両面テープの片面に、無脂状態に調整した約1100dtexの延伸糸束を引き揃えて並べて貼り付けた。測定条件としては、線源はMg/Al、出力8kW、30mAとし、測定面積50mm2 、繊維表面からの深度10nmで繊維表面に存在するオレフィン主鎖および側鎖の全炭素元素、および官能基の割合を測定した。−CH−O−が10%、あるいは−CO−が3%未満であると、親水性が不十分であり、例えば、高圧水流処理を施したときに十分に交絡せず、目付斑となったり、不織布強力が低くなるからである。また、−CH−O−が25%、−CO−が15%、あるいは−COO−が30%を超えると、親水性能は増大するが繊維劣化が著しく、高コストとなるため好ましくない。
【0014】
さらに、上記親水化されたポリオレフィン系繊維は、初期濡れ時間が30sec 以上であり、かつ耐久濡れ時間が15sec 以上であることが好ましい。より好ましくは、初期濡れ時間が45sec 以上であり、かつ耐久濡れ時間が20sec 以上である。初期濡れ時間、および耐久濡れ時間が上記範囲を満たすと、繊維表面が長時間に亘り濡れているので、高圧水流法や湿式抄造法など水を利用する加工法において、加工性に優れ、不織布強力や美観的にもに優れた不織布が得られる。初期濡れ時間が30sec 未満、あるいは耐久濡れ時間が15sec 未満であると、所期の目的である親水性が得られないからである。
【0015】
以下に本発明の親水性ポリオレフィン系繊維の製造方法について説明する。まず、ポリオレフィン系樹脂は、公知の溶融紡糸法により紡糸される。得られた紡糸フィラメントを温水、湿熱、あるいは乾熱中で所定の倍率に延伸され、延伸糸束が得られる。次いで、表面改質処理をコロナ放電処理やプラズマ処理などのように繊維に対して非接触で実施する場合、水分率5%以下に調整した55000〜1450000dtexの延伸糸束を10m/min 以上の速度で走行させながら、1.0〜1.2倍の緊張状態で表面改質処理を施すとよい。このとき延伸糸束はフィードロールに沿って均一に薄膜状に薄く拡げられることが必要である。特に延伸糸束の厚みはできるだけ薄い方が効率よく表面改質処理できるため、3mm以下、好ましくは1mm以下とするとよい。そして、表面改質処理は延伸糸束の両面を少なくとも1回処理される。表面改質処理が片面だけであると、親水化が不十分となり、均一な不織布が得られないからである。
【0016】
例えば、表面改質処理をコロナ放電処理で実施する場合、コロナ放電処理における1回当たりの放電量は、少なくとも50W/m2/minであることが好ましく、総放電量は50〜1000W/m2/minであることが好ましい。放電量が50W/m2/min未満、あるいは総放電量が50W/m2/min未満であると、親水化が不十分となり、1000W/m2/minを超えると、過剰処理となり高コストであるとともに繊維表面の劣化が生じて、不織布強力にも影響を与える。
また、常圧プラズマ処理で実施する場合は、電圧50〜250kV、周波数500〜3000ppsで処理するとよい。常圧プラズマ処理であると、低電圧で処理できるので、繊維の劣化が少なく都合がよい。
【0017】
さらに、表面改質処理中および処理後の繊維には熱を与えないことが好ましく、熱を与えるとしても130℃以下の熱が好ましい。130℃を超えると、酸素を導入した官能基が繊維表面から内部へと移動し親水性が低下するためである。
【0018】
本発明のポリオレフィン系繊維において、表面改質処理後に繊維処理剤を付着させてもよい。ここで用いられる繊維処理剤は特に限定されるものではなく、通常用いられる様々な繊維処理剤、例えばアルキルリン酸エステルなどのリン酸系アニオン活性剤、脂肪族カルボン酸石けんなどの石けん系アニオン活性剤、アルキルサルフェートなどのサルフェート系アニオン活性剤等が用いられ、これらを2種以上混合してもよい。
【0019】
上記の繊維処理剤は、繊維重量に対して0.1〜1.0重量%繊維表面に付着させることが好ましい。繊維処理剤の付与方法としては、浸漬法、スプレー法、コーティング法の何れでもよい。0.1重量%未満であると、初期の親水性が不十分であり、1.0重量%より大きいと、不経済である。そして、繊維処理剤付与後、アニーリング処理、乾燥、あるいは湿潤状態のままで所定の繊維長に切断されて、乾燥状態、あるいは湿潤状態のポリオレフィン系繊維を得る。
【0020】
得られた親水性ポリオレフィン系繊維は、繊維単独、繊維成型体、あるいは不織布として用いられる。不織布においては、公知の不織布加工法により不織布化される。不織布の形態としては、繊維長30〜120mmのステープル繊維であれば、熱風貫通型や熱ロール型などのサーマルボンド不織布、ケミカルボンド不織布、スパンレース不織布、ニードルパンチ不織布他が挙げられ、長繊維であれば、スパンボンド不織布やメルトブロー不織布他が挙げられる。また、繊維長3〜25mmの短繊維であれば、湿式抄造法による湿式不織布、エアレイ不織布他が挙げられる。そして上記不織布は、単層、あるいはこれらの積層体を用途に応じて決定される。
【0021】
上記不織布のうち、本発明の親水性ポリオレフィン系繊維は、スパンレース不織布あるいは湿式不織布など水力を利用する不織布加工法において、最も効果的である。例えば、スパンレース不織布に用いた場合、3MPa 以上の水圧の水流を2回以上噴射されるため、初回の水流により通常の繊維には付与されている繊維処理剤が簡単に洗い流されてしまい、2回目以降の水流の応力による繊維の交絡にはほとんど寄与しないのであるが、本発明の親水性ポリオレフィン系繊維を用いると、水流により繊維表面が瞬時に濡れて、疎水性であると反発されていた水流エネルギーが繊維ウェブの内部に浸透し易くなり、水流による交絡性を増大させるとともに、短繊維の飛び散りが極端に減少し、均一な不織布が得られる。また、湿式不織布においても、抄紙スラリーの分散性が良好であり、分散不良による密着糸や目付斑などが抑制され、均一な不織布が得られる。
【0022】
本発明の親水性ポリオレフィン系繊維を上記不織布に加工する際、加工温度は、130℃以下が好ましい。加工温度が130℃を超えると、前述と同様に、酸素を導入した官能基が繊維表面から内部へと移動し親水性が低下するためである。例えば、本発明の親水性ポリオレフィン系繊維をサーマルボンド不織布として用いる場合、融点が130℃未満の熱接着性繊維を混合し、加工温度130℃以下で加工するとよい。
【0023】
上記不織布における本発明の親水性ポリオレフィン系繊維の含有量は、少なくとも30重量%が好ましい。より好ましくは少なくとも50重量%、さらに好ましくは少なくとも80重量%である。含有量が30重量%未満であると、ポリオレフィン系繊維本来の機能を維持しつつ、親水性が十分に得られないからである。
【0024】
そして、上記不織布に混合される他の素材としては、例えば、綿、麻、レーヨンなどのセルロース系繊維、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系繊維、ナイロン6、ナイロン66などのポリアミド系繊維、アクリル系繊維、あるいはポリオレフィン系繊維などが挙げられ、繊維形状も特に限定されず、単一繊維、鞘芯型複合繊維、偏心鞘芯型複合繊維、並列型複合繊維、海島型複合繊維、分割型複合繊維等の断面が円状、異形状、中空状のものが挙げられる。もちろんこれらの繊維は、表面改質により親水性が付与されていても何ら差し支えない。
【0025】
例えば、不織布に強力を付与する場合は、繊維表面の少なくとも一部が低融点樹脂からなる熱接着性繊維、あるいはエチレン−ビニルアルコール共重合体からなる湿熱接着性繊維がよい。熱接着性繊維としては、ポリエチレン、ポリブテン−1、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸メチル共重合体などの単一繊維、鞘芯型複合繊維、偏心鞘芯型複合繊維、並列型複合繊維、海島型複合繊維、分割型複合繊維等の断面が円状、異形状、中空状のものが挙げられる。なかでも、鞘成分の融点が130℃以下の鞘芯型複合繊維がよい。
【0026】
また、ワイパー、フィルター、電池用セパレータなどの分野においては、繊度0.6dtex以下の極細繊維を混合してもよい。特に分割型複合繊維を混合すると、スパンレース法により交絡とともに分割されて極細繊維が発現して都合がよい。分割型複合繊維としては、ポリエステル/ポリアミド、ポリエステル/ポリオレフィン、ポリメチルペンテン/ポリプロピレン、ポリメチルペンテン/ポリエチレン、ポリプロピレン/ポリエチレン、エチレン−ビニルアルコール共重合体/ポリプロピレン等が挙げられる。
【0027】
さらに、使い捨ておむつや生理用ナプキンなどの衛生材料、ウェットティッシュなどの分野においては、本発明の親水性ポリオレフィン系繊維を50重量%以上含有させるとよい。
【0028】
【実施例】
以下、本発明の内容を実施例を挙げて説明する。なお、繊維強力、伸度、初期濡れ時間および耐久濡れ時間は、以下のように測定した。
【0029】
[繊維強力、伸度]
JIS L 1013における引張強さおよび伸び率に準ずる。
【0030】
[初期濡れ時間、耐久濡れ時間]
5mmの長さに切断した繊維を0.3g、水1リットルをミキサー(松下電器産業(株)製、商品名MX−M3)へ投入し、回転数4000rpm で10秒間撹拌した後、即座に1リットル容量のメスシリンダー(高さ287mm、内径67mm)へ移し、投入した全繊維の浮き上がってくる時間を測定する。これを初期濡れ時間とする。次に、浮き上がった繊維を金網フィルター(300メッシュ)を用いて取り出し、1リットルの水とともに再度前記ミキサーへ投入し、回転数4000rpm で10秒間撹拌した後、即座に前記メスシリンダーへ移し、投入した全繊維の浮き上がってくる時間を測定する。これを耐久濡れ時間とした。
【0031】
[実施例1]
樹脂として融点165℃、MFR25g/10min (JIS K 7210、230℃)のポリプロピレン樹脂を用いて、紡糸温度270℃、引取速度640m/min で溶融紡糸し、5dtexの紡糸フィラメントを得た。上記紡糸フィラメントを130℃で3.2倍に延伸して延伸糸束とし、水分率0%のトータル90000dtexの延伸糸束を10m/min の速度で走行させながら、1.05倍の緊張状態を保ち、均一に薄膜状に厚み1mmに拡げられた状態で室温25℃の雰囲気下でコロナ放電処理機を通し、両面に放電量各1026W/m2/minを2回与えて、繊維表面にコロナ放電処理を施し、親水性延伸糸束を得た。その後、ジアルキルスルホン酸系繊維処理剤を80℃のオイルバス槽に浸漬させて0.3重量%付着させ、15山/25mmの捲縮を付与し、110℃で乾燥し、切断することにより繊度1.1dtex、繊維長45mmの親水性ポリプロピレン繊維となした。
【0032】
得られた親水性ポリプロピレン繊維100重量%からなる目付60g/m2のパラレルカードウェブを、100メッシュの支持体上で、孔径0.13mmのオリフィスが1mm間隔で設けられたノズルから水圧9.8MPa の高圧柱状水流を噴射し、繊維同士を交絡させ、80℃で乾燥を施してスパンレース不織布を得た。
【0033】
[実施例2]
実施例の延伸糸束に電圧60kV、周波数1000pps の常圧プラズマ処理を施した以外は実施例1と同様として、親水性ポリプロピレン繊維およびスパンレース不織布を得た。
【0034】
[実施例3]
芯成分が融点165℃、MFR25g/10min (JIS K 7210、230℃)のポリプロピレン樹脂、鞘成分が融点138℃、MFR22g/10min のエチレン−プロピレン共重合体からなり、複合比(芯成分/鞘成分)が5/5、紡糸温度270℃、引取速度500m/min で偏心芯鞘型ノズルを用いて溶融紡糸し、8.8dtexの紡糸フィラメントを得た。上記紡糸フィラメントを65℃で3.2倍に延伸して延伸糸束とし、トータル90000dtexの延伸糸束を65℃で乾燥して水分率0%に調整し、延伸糸束を10m/min の速度で走行させながら、1.05倍の緊張状態を保ち、均一に薄膜状に厚み1mmに拡げられた状態で室温25℃の雰囲気下でコロナ放電処理機を通し、両面に放電量各2050W/m2/minを与えて、繊維表面にコロナ放電処理を施した。その後、ジアルキルスルホン酸系繊維処理剤を65℃のオイルバス槽に浸漬させて0.3重量%付着させ、15山/25mmの捲縮を付与し、65℃で乾燥し、切断することにより繊度2.2dtex、繊維長45mmの親水性偏心芯鞘型ポリオレフィン系複合繊維となした。
【0035】
得られた親水性偏心芯鞘型ポリオレフィン系複合繊維100重量%からなる目付60g/m2のパラレルカードウェブを、100メッシュの支持体上で、孔径0.13mmのオリフィスが1mm間隔で設けられたノズルから水圧9.8MPa の高圧柱状水流を噴射し、繊維同士を交絡させ、80℃で乾燥を施してスパンレース不織布を得た。
【0036】
[実施例4]
実施例1の親水性延伸糸にジアルキルスルホン酸系繊維処理剤を25℃のオイルバス槽に浸漬させて0.3重量%付着させ、5mmに切断し、繊度1.1dtex、繊維長5mmの親水性ポリプロピレン繊維となした。
【0037】
得られた親水性ポリプロピレン繊維90重量%、繊度2.2dtex、繊維長5mmの芯成分がポリプロピレン樹脂、鞘成分がポリエチレン樹脂からなる芯鞘型複合繊維(大和紡績(株)製、NBF(H))10重量%からなる目付50g/m2の湿式抄造ウェブを、ヤンキードライヤーを用い、130℃で熱処理し、湿式不織布を得た。
【0038】
[比較例1]
コロナ放電処理を施さなかった以外は実施例1と同様として、ポリプロピレン繊維を得た。実施例1および実施例4と同様にして、それぞれスパンレース不織布および湿式不織布を作製した。
【0039】
[比較例2]
コロナ放電処理を施さなかった以外は実施例4と同様として、偏心芯鞘型ポリオレフィン系複合繊維を得た。そして、実施例1および実施例4と同様にして、それぞれスパンレース不織布および湿式不織布を作製した。
【0040】
[比較例3]
延伸糸束の両面に放電量各25W/m2/minを与えて、繊維表面にコロナ放電処理を施した以外は、実施例1と同様にして、ポリプロピレン繊維を得た。実施例1および実施例4と同様にして、それぞれスパンレース不織布および湿式不織布を作製した。
【0041】
[実施例5]
実施例1の親水性ポリプロピレン繊維80重量%、芯成分がポリプロピレン樹脂、鞘成分がポリエチレン樹脂からなる熱接着性複合繊維20重量%(大和紡績(株)製、NBF(H))からなる目付40g/m2のパラレルカードウェブを、熱処理温度130℃、熱処理時間5sec の熱風貫通型熱処理機を用いて熱処理を施し、サーマルボンド不織布を得た。
【0042】
[比較例4]
熱処理温度を140℃とした以外は、実施例5と同様の方法でサーマルボンド不織布を得た。
実施例1〜3および比較例1〜3の繊維物性を表1に示す。
【0043】
【表1】

Figure 0003990042
【0044】
実施例1〜3および比較例1〜2について、実施例1〜3には−CH−O−、−CO−、−COO−の官能基が形成されていた。また、繊維の強力および伸度は表面改質処理前後においては、ほとんど劣化することはなかった。さらに初期濡れ時間は、繊維表面に付着している界面活性剤の効果によって差はほとんど見られないが、耐久濡れ時間になると比較例1〜2は界面活性剤が流れ落ちてしまい、繊維表面が濡れることなく急激に浮上してしまった。また、比較例3においては、−CH−O−、−CO−が形成されていたものの、親水性が不十分で耐久濡れ時間が短くなった。
【0045】
また、実施例1〜3においては、スパンレース処理時に水流が繊維ウェブの内部に浸透していき、地合が乱れることはなかったが、比較例1〜2では、最初から水をはじいてしまい、繊維ウェブが吹き飛ばされてしまい、地合が乱れて均一な不織布が得られなかった。比較例3においても、濡れ性が不十分で地合に乱れが生じた。
【0046】
一方、実施例4においては、スラリー調整時における分散性が良好で、均一な湿式抄造ウェブが得られたが、比較例1〜3では、スラリー調整時における分散性が悪く、数本の繊維が密着状態で抄造され、欠点の多い湿式抄造ウェブとなった。また、実施例5および比較例4において、吸収体に上に不織布を載置し、約10ccの水を滴下し、これを吸収体を交換しながら3回繰り返したところ、実施例5は不織布を瞬時に通過するが、比較例4は通過性が不十分であった。
【0047】
【発明の効果】
本発明の親水性ポリオレフィン系繊維は、繊維表面に親水化処理を施し、親水性の官能基を所定量導入することにより、親水性、とりわけ耐久親水性に優れた繊維となり、例えば使い捨ておむつや生理用ナプキンなどの衛生材料、フィルター、ワイパー、ティーパック、電池用セパレータなど耐久親水性を要求する分野に好適である。特に、初期濡れ時間、および耐久濡れ指数に優れた親水性ポリオレフィン系繊維は、水の親和性に優れているため、スパンレース法や湿式抄造法などの水力を利用する不織布加工法に有用であり、従来であれば、不織布加工後に親水性の処理剤や表面改質により親水性能を付与する必要があり、これらの不織布では親水性能が不織布内部にまで及ばなかったが、本発明の親水性ポリオレフィン系繊維を不織布化した場合、繊維が不織布内部に均一に分散されるので、斑なく親水性能を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to polyolefin fibers and nonwoven fabrics excellent in hydrophilicity useful for various applications, and in particular, polyolefin systems excellent in processability in nonwoven fabric processing methods using water such as high-pressure water flow method and wet papermaking method. Regarding fiber.
[0002]
[Prior art]
Conventionally, polyolefin fibers have been made into non-woven fabrics using various processing methods. For example, for dry type nonwoven fabrics, there are thermal bonding methods such as air-through method and thermal calendar method, fiber entanglement methods such as needle punch method and high pressure water flow method, spunbond method and melt blow method, etc. Nonwoven fabric processing methods, such as wet papermaking, vary widely depending on the application.
[0003]
And in various fields such as sanitary materials such as disposable diapers and sanitary napkins, wet tissue, filters, wipers, tea packs, battery separators, and building materials such as cement reinforcing fibers, etc. in use. Originally, polyolefin fibers are hydrophobic, and thus hydrophilic properties are imparted by applying a hydrophilic fiber treatment agent to the fiber surface.
[0004]
[Problems to be solved by the invention]
However, when a conventional polyolefin fiber is used in a processing method using water such as a high-pressure water flow method or a wet papermaking method, the fiber treatment agent is easily washed away by the first water flow injection if the high-pressure water flow method is used. After that, even if the water flow is jetted, the fibers are not entangled with each other and a strong and excellent nonwoven fabric is not obtained, but the fibers are scattered by water pressure and become spotted spots, and an aesthetically superior one is obtained. Absent. In addition, in the case of wet papermaking, the fiber treatment agent is easily washed away by stirring when the fibers are dispersed in water before papermaking, resulting in insufficient fiber dispersion, resulting in spot weight and adhesive threads. The present condition is that many non-woven fabrics that are aesthetically superior cannot be obtained.
[0005]
Furthermore, in the field requiring hydrophilicity, durability or durability of the hydrophilic performance is particularly desired. By simply applying the conventional fiber treatment agent, the fiber treatment agent is washed away after several uses. The hydrophilicity of is significantly reduced. In order to solve this problem, for example, a hydrophilic polyolefin fiber obtained by blending a hydrophilic agent with a polyolefin resin and melt spinning it as disclosed in JP-A-5-272006 is disclosed. However, it is difficult to adjust the speed at which the hydrophilizing agent is kneaded into the resin, and it is difficult to adjust the speed at which the hydrophilizing agent bleeds onto the fiber surface. That's not true.
The present invention has been made in view of such circumstances, and is applicable to various non-woven fabric processing methods and requires hydrophilicity, particularly a polyolefin fiber excellent in durability of hydrophilic performance and a non-woven fabric using the same. The purpose is to provide.
[0006]
[Means for Solving the Problems]
The hydrophilic polyolefin fiber of the present invention is a polyolefin fiber that has been made hydrophilic by surface modification, and has at least a functional group having the following structural formula on the fiber surface, and is based on the total carbon elements of the olefin main chain and side chains. after the proportion of functional groups, each range der Ri surface modification below, characterized in that depositing the fiber treatment agent 0.1-1.0% by weight on the fiber surface.
(1) -CH-O-: 10 to 35%
(2) -CO-: 3 to 30%
(3) -COO-: 0 to 15%
(4) Remaining carbon element: 87-20%
By adopting such a configuration, it is useful for non-woven fabric processing methods using hydropower such as the spunlace method and wet papermaking method , and for a spunlace nonwoven fabric excellent in durability of hydrophilic performance, particularly in fields requiring hydrophilicity. A polyolefin fiber for wet nonwoven fabric is obtained.
[0007]
The hydrophilic polyolefin fiber of the present invention preferably has an initial wetting time of 30 seconds or longer and a durable wetting time of 15 seconds or longer as shown below.
0.3 g of the fiber cut to a length of 5 mm and 1 liter of water were put into a commercially available mixer having a capacity of about 1.3 liters, stirred for 10 seconds at a rotational speed of 4000 rpm, and immediately a 1 liter graduated cylinder ( The height is 287 mm and the inner diameter is 67 mm), and the rising time of all the input fibers is measured. This is the initial wetting time. Next, the lifted fibers were taken out using a wire mesh filter (300 mesh), and again put into the mixer together with 1 liter of water, stirred for 10 seconds at a rotational speed of 4000 rpm, immediately transferred to the graduated cylinder and put in. Measure the lifting time of all fibers. This was defined as a durable wetting time.
[0008]
The surface modification of the fiber is preferably corona discharge treatment or atmospheric pressure plasma treatment. Further, the corona discharge treatment is preferably performed on the entire fiber surface, and the discharge amount per time is preferably at least 50 W / m 2 / min. And after a corona discharge process or a normal pressure plasma process, if a fiber processing agent is made to adhere to the fiber surface, initial stage wettability will improve.
[0009]
The nonwoven fabric containing at least 30% by weight of the hydrophilic polyolefin-based fiber can provide a nonwoven fabric excellent in durability and hydrophilicity, particularly in fields requiring hydrophilicity.
The contents of the present invention will be specifically described below.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Polyolefin fibers used in the present invention include polyolefin fibers such as polyethylene, polypropylene, polymethylpentene, polybutene-1, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, and ethylene-methyl acrylate copolymer. Polymers, copolymers, terpolymers, or modified products thereof may be used, and the fiber form may be either a single fiber or a composite fiber. The composite fiber is a sheath core type or an eccentric core sheath type. It can be either a parallel type or a split type. The cross-sectional shape may be circular, irregular, or hollow.
[0011]
Further, the fineness of the hydrophilic polyolefin fiber of the present invention may be appropriately determined according to the use of the nonwoven fabric and the like, but is preferably 0.2 to 17 dtex. In general, when the fineness is thin, the surface area of the fiber increases, so that hydrophilic groups and the like are easily brought into contact with water on the surface of the surface-modified fiber described later, thereby increasing the affinity and contributing to the uniformity and productivity of the nonwoven fabric. .
[0012]
The polyolefin fiber is hydrophilized by surface modification. The surface modification treatment may be appropriately selected from known treatment methods. For example, corona discharge treatment, plasma treatment, fluorination treatment, ultraviolet irradiation, sulfonation treatment and the like can be mentioned. Of these, in the present invention, corona discharge treatment or atmospheric pressure plasma treatment is particularly preferred from the viewpoint of hydrophilization performance, safety, and cost.
[0013]
And the hydrophilic functional group is introduce | transduced into the fiber surface in the polyolefin-type fiber hydrophilized by surface modification. Examples of the hydrophilic functional group to be introduced include —CH—O—, —CO—, —COO— and the like. In the present invention, particularly for all carbon elements in the olefin main chain and side chain. When the ratio of the functional group satisfies the following range, it becomes a polyolefin-based fiber that can cope with various nonwoven fabric processing methods described later, and that is excellent in durability, particularly in a field that requires hydrophilicity.
(1) -CH-O-: 10 to 35%
(2) -CO-: 3 to 30%
(3) -COO-: 0 to 15%
(4) Remaining carbon element: 87-20%
More preferably, -CH-O- is 20 to 30%, -CO- is 5 to 15%, and -COO- is 2 to 10%. The above functional group was measured by ESCA-3300 manufactured by Shimadzu Corporation and subjected to surface elemental composition analysis of the fiber. The sample was affixed to one side of a double-sided tape with a stretched yarn bundle of about 1100 dtex adjusted to a non-greasy state. As the measurement conditions, the radiation source was Mg / Al, the output was 8 kW, 30 mA, the measurement area was 50 mm 2 , the total carbon elements of the olefin main chain and side chain existing on the fiber surface at a depth of 10 nm from the fiber surface, and the functional groups The percentage was measured. When -CH-O- is less than 10% or -CO- is less than 3%, the hydrophilicity is insufficient. For example, when high-pressure water flow treatment is performed, it is not sufficiently entangled and may become spotted spots. This is because the strength of the nonwoven fabric is lowered. On the other hand, if -CH-O- is more than 25%, -CO- is more than 15%, or -COO- is more than 30%, the hydrophilic performance is increased, but the fiber deterioration is remarkable and the cost is increased.
[0014]
Further, the hydrophilic polyolefin fiber preferably has an initial wetting time of 30 seconds or longer and a durable wetting time of 15 seconds or longer. More preferably, the initial wetting time is 45 seconds or more and the durable wetting time is 20 seconds or more. If the initial wetting time and durable wetting time satisfy the above ranges, the fiber surface is wet for a long time, so it is excellent in workability and strong nonwoven fabric in processing methods that use water, such as the high-pressure water flow method and wet papermaking method. And a non-woven fabric excellent in aesthetics. This is because if the initial wetting time is less than 30 seconds or the durable wetting time is less than 15 seconds, the desired hydrophilicity cannot be obtained.
[0015]
Below, the manufacturing method of the hydrophilic polyolefin-type fiber of this invention is demonstrated. First, the polyolefin resin is spun by a known melt spinning method. The obtained spinning filament is drawn at a predetermined magnification in warm water, wet heat, or dry heat to obtain a drawn yarn bundle. Next, when the surface modification treatment is carried out in a non-contact manner on the fiber, such as corona discharge treatment or plasma treatment, a stretched yarn bundle of 55000 to 1450,000 dtex adjusted to a moisture content of 5% or less is at a speed of 10 m / min or more. The surface modification treatment is preferably performed in a tension state of 1.0 to 1.2 times while traveling at a high speed. At this time, the drawn yarn bundle needs to be spread thinly in a thin film uniformly along the feed roll. In particular, since the surface of the drawn yarn bundle is as thin as possible, the surface modification treatment can be performed efficiently, so that it is 3 mm or less, preferably 1 mm or less. In the surface modification treatment, both sides of the drawn yarn bundle are treated at least once. This is because if the surface modification treatment is only on one side, the hydrophilicity is insufficient and a uniform nonwoven fabric cannot be obtained.
[0016]
For example, when the surface modification treatment is carried out by corona discharge treatment, the discharge amount per time in the corona discharge treatment is preferably at least 50 W / m 2 / min, and the total discharge amount is 50 to 1000 W / m 2. / min is preferred. If the discharge amount is less than 50 W / m 2 / min, or if the total discharge amount is less than 50 W / m 2 / min, hydrophilization will be insufficient, and if it exceeds 1000 W / m 2 / min, it will be excessively processed and costly. At the same time, the fiber surface deteriorates, affecting the strength of the nonwoven fabric.
Moreover, when implementing by a normal pressure plasma process, it is good to process by the voltage of 50-250 kV and the frequency of 500-3000 pps. The atmospheric pressure plasma treatment is convenient because it can be treated at a low voltage, and there is little deterioration of the fiber.
[0017]
Furthermore, it is preferable not to give heat to the fibers during and after the surface modification treatment, and even if heat is given, heat of 130 ° C. or less is preferred. This is because when the temperature exceeds 130 ° C., the functional group into which oxygen is introduced moves from the fiber surface to the inside and the hydrophilicity is lowered.
[0018]
In the polyolefin fiber of the present invention, a fiber treatment agent may be adhered after the surface modification treatment. The fiber treatment agent used here is not particularly limited, and various commonly used fiber treatment agents, for example, phosphate anion activators such as alkyl phosphate esters, and soap anion activities such as aliphatic carboxylate soaps. Agents, sulfate anion activators such as alkyl sulfates, and the like may be used, and two or more of these may be mixed.
[0019]
The fiber treatment agent is preferably attached to the fiber surface in an amount of 0.1 to 1.0% by weight based on the fiber weight. As a method for applying the fiber treatment agent, any of an immersion method, a spray method, and a coating method may be used. If it is less than 0.1% by weight, the initial hydrophilicity is insufficient, and if it is more than 1.0% by weight, it is uneconomical. And after fiber treatment agent provision, it is cut | disconnected to predetermined fiber length with an annealing process, a dry or wet state, and obtains the polyolefin-type fiber of a dry state or a wet state.
[0020]
The obtained hydrophilic polyolefin fiber is used as a fiber alone, a fiber molded body, or a nonwoven fabric. The nonwoven fabric is made into a nonwoven fabric by a known nonwoven fabric processing method. As the form of the nonwoven fabric, if the staple fiber has a fiber length of 30 to 120 mm, a thermal bond nonwoven fabric, a chemical bond nonwoven fabric, a spunlace nonwoven fabric, a needle punch nonwoven fabric, etc., such as a hot air penetrating type and a hot roll type, can be mentioned. If there are, a spunbond nonwoven fabric, a melt blown nonwoven fabric, etc. are mentioned. Moreover, if it is a short fiber of 3-25 mm in fiber length, the wet nonwoven fabric by the wet papermaking method, the air-laid nonwoven fabric, etc. will be mentioned. And the said nonwoven fabric determines a single layer or these laminated bodies according to a use.
[0021]
Among the nonwoven fabrics described above, the hydrophilic polyolefin fiber of the present invention is most effective in a nonwoven fabric processing method that uses hydraulic power such as spunlace nonwoven fabric or wet nonwoven fabric. For example, when used for a spunlace nonwoven fabric, a water treatment with a water pressure of 3 MPa or more is jetted twice or more, so that the fiber treatment agent applied to normal fibers is easily washed away by the first water flow. Although it hardly contributes to the entanglement of the fiber due to the stress of the water flow after the first time, when the hydrophilic polyolefin fiber of the present invention is used, the fiber surface is instantly wetted by the water flow and repelled as being hydrophobic. Water flow energy easily penetrates into the inside of the fiber web, and the entanglement by the water flow is increased, and the scattering of short fibers is extremely reduced, so that a uniform nonwoven fabric can be obtained. In addition, the wet nonwoven fabric also has good dispersibility of the papermaking slurry, and adhesion yarns and unevenness due to poor dispersion are suppressed, and a uniform nonwoven fabric can be obtained.
[0022]
When the hydrophilic polyolefin fiber of the present invention is processed into the nonwoven fabric, the processing temperature is preferably 130 ° C. or lower. This is because, when the processing temperature exceeds 130 ° C., the functional group into which oxygen is introduced moves from the fiber surface to the inside and the hydrophilicity is reduced as described above. For example, when the hydrophilic polyolefin fiber of the present invention is used as a thermal bond nonwoven fabric, heat-bonding fibers having a melting point of less than 130 ° C. may be mixed and processed at a processing temperature of 130 ° C. or less.
[0023]
The content of the hydrophilic polyolefin fiber of the present invention in the nonwoven fabric is preferably at least 30% by weight. More preferably it is at least 50% by weight, more preferably at least 80% by weight. This is because when the content is less than 30% by weight, hydrophilicity cannot be sufficiently obtained while maintaining the original function of the polyolefin fiber.
[0024]
And as other materials mixed in the nonwoven fabric, for example, cellulose fibers such as cotton, hemp, rayon, polyester fibers such as polyethylene terephthalate and polybutylene terephthalate, polyamide fibers such as nylon 6 and nylon 66, Acrylic fiber, polyolefin fiber, etc. are mentioned, fiber shape is not particularly limited, single fiber, sheath core type composite fiber, eccentric sheath core type composite fiber, parallel type composite fiber, sea island type composite fiber, split type Examples of the cross section of the composite fiber include a circular shape, an irregular shape and a hollow shape. Of course, these fibers may be given hydrophilicity by surface modification.
[0025]
For example, when imparting strength to a nonwoven fabric, heat-adhesive fibers in which at least a part of the fiber surface is made of a low-melting resin or wet-heat-adhesive fibers made of an ethylene-vinyl alcohol copolymer are preferable. Examples of heat-adhesive fibers include polyethylene, polybutene-1, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-methyl acrylate copolymer, and other single fibers, sheath-core type composite fibers, and eccentricity. Examples of the sheath-core type composite fiber, the parallel type composite fiber, the sea-island type composite fiber, and the split type composite fiber include those having a circular, irregular shape, and hollow cross section. Among these, a sheath-core type composite fiber having a melting point of the sheath component of 130 ° C. or lower is preferable.
[0026]
In the field of wipers, filters, battery separators, and the like, ultrafine fibers having a fineness of 0.6 dtex or less may be mixed. In particular, when split-type composite fibers are mixed, it is convenient that the ultrafine fibers are developed by being split together with the entanglement by the spunlace method. Examples of the split composite fibers include polyester / polyamide, polyester / polyolefin, polymethylpentene / polypropylene, polymethylpentene / polyethylene, polypropylene / polyethylene, ethylene-vinyl alcohol copolymer / polypropylene, and the like.
[0027]
Furthermore, in the fields of sanitary materials such as disposable diapers and sanitary napkins, and wet tissues, it is preferable to contain the hydrophilic polyolefin fiber of the present invention in an amount of 50% by weight or more.
[0028]
【Example】
Hereinafter, the contents of the present invention will be described with reference to examples. The fiber strength, elongation, initial wetting time and durable wetting time were measured as follows.
[0029]
[Fiber strength, elongation]
Conforms to tensile strength and elongation in JIS L 1013.
[0030]
[Initial wetting time, endurance wetting time]
0.3 g of fiber cut to a length of 5 mm and 1 liter of water were put into a mixer (trade name MX-M3, manufactured by Matsushita Electric Industrial Co., Ltd.), stirred for 10 seconds at a rotational speed of 4000 rpm, and immediately 1 Transfer to a liter capacity measuring cylinder (height 287 mm, inner diameter 67 mm) and measure the time for all the fibers to float. This is the initial wetting time. Next, the lifted fibers were taken out using a wire mesh filter (300 mesh), and again put into the mixer together with 1 liter of water, stirred for 10 seconds at a rotation speed of 4000 rpm, immediately transferred to the graduated cylinder and put in. Measure the lifting time of all fibers. This was defined as a durable wetting time.
[0031]
[Example 1]
Using a polypropylene resin having a melting point of 165 ° C. and MFR of 25 g / 10 min (JIS K 7210, 230 ° C.) as a resin, melt spinning was performed at a spinning temperature of 270 ° C. and a take-up speed of 640 m / min to obtain a 5 dtex spun filament. The above-mentioned spinning filament is stretched 3.2 times at 130 ° C. to obtain a drawn yarn bundle, and a drawn yarn bundle of 0,000% in total is run at a speed of 10 m / min while a tension state of 1.05 times is applied. Keep it in a uniform thin film with a thickness of 1 mm, pass it through a corona discharge treatment machine in an atmosphere at room temperature of 25 ° C., and apply a discharge amount of 1026 W / m 2 / min to each side twice. Discharge treatment was performed to obtain a hydrophilic drawn yarn bundle. Thereafter, the dialkyl sulfonic acid fiber treatment agent is immersed in an oil bath tank at 80 ° C. and attached to 0.3% by weight, crimped at 15 peaks / 25 mm, dried at 110 ° C., and cut to obtain a fineness. It became a hydrophilic polypropylene fiber of 1.1 dtex and a fiber length of 45 mm.
[0032]
The obtained parallel card web consisting of 100% by weight of hydrophilic polypropylene fiber and having a basis weight of 60 g / m 2 was placed on a 100 mesh support from a nozzle provided with orifices having a pore diameter of 0.13 mm at intervals of 1 mm, and a water pressure of 9.8 MPa. The spunlace nonwoven fabric was obtained by injecting a high-pressure columnar water stream of, entangled the fibers and drying at 80 ° C.
[0033]
[Example 2]
A hydrophilic polypropylene fiber and a spunlace nonwoven fabric were obtained in the same manner as in Example 1 except that the drawn yarn bundle of Example was subjected to atmospheric pressure plasma treatment with a voltage of 60 kV and a frequency of 1000 pps.
[0034]
[Example 3]
The core component is composed of a polypropylene resin having a melting point of 165 ° C. and MFR 25 g / 10 min (JIS K 7210, 230 ° C.), and the sheath component is an ethylene-propylene copolymer having a melting point of 138 ° C. and MFR 22 g / 10 min, and the composite ratio (core component / sheath component) ) Was 5/5, the spinning temperature was 270 ° C., the take-up speed was 500 m / min, and melt spinning was performed using an eccentric core-sheath nozzle to obtain an 8.8 dtex spun filament. The above spinning filament is stretched 3.2 times at 65 ° C. to make a drawn yarn bundle, the drawn yarn bundle of total 90000 dtex is dried at 65 ° C. and adjusted to a moisture content of 0%, and the drawn yarn bundle is set at a speed of 10 m / min. While running at 1.05 times, maintain a tension state of 1.05 times and pass through a corona discharge treatment machine in an atmosphere of room temperature 25 ° C. in a state where the film is uniformly spread to a thickness of 1 mm. The surface of the fiber was subjected to corona discharge treatment at 2 / min. Thereafter, the dialkyl sulfonic acid fiber treating agent is immersed in an oil bath tank at 65 ° C. and attached to 0.3% by weight, crimped by 15 ridges / 25 mm, dried at 65 ° C., and cut to obtain a fineness. It became a hydrophilic eccentric core-sheath type polyolefin composite fiber having 2.2 dtex and a fiber length of 45 mm.
[0035]
The obtained parallel card web having a basis weight of 60 g / m 2 made of 100% by weight of the hydrophilic eccentric core-sheath polyolefin composite fiber was provided on a 100-mesh support with orifices having a pore diameter of 0.13 mm at intervals of 1 mm. A high-pressure columnar water flow having a water pressure of 9.8 MPa was jetted from the nozzle, the fibers were entangled, and dried at 80 ° C. to obtain a spunlace nonwoven fabric.
[0036]
[Example 4]
A dialkyl sulfonic acid fiber treatment agent is immersed in an oil bath tank at 25 ° C. and attached to the hydrophilic drawn yarn of Example 1 in an amount of 0.3% by weight, cut to 5 mm, hydrophilic having a fineness of 1.1 dtex and a fiber length of 5 mm. Made polypropylene fiber.
[0037]
A core-sheath composite fiber (90% by weight of hydrophilic polypropylene fiber, having a fineness of 2.2 dtex, a fiber length of 5 mm, a core-sheath composite fiber made of polypropylene resin, and a sheath component made of polyethylene resin (manufactured by Daiwabo Co., Ltd., NBF (H) ) A wet paper web having a basis weight of 50 g / m 2 consisting of 10% by weight was heat treated at 130 ° C. using a Yankee dryer to obtain a wet nonwoven fabric.
[0038]
[Comparative Example 1]
A polypropylene fiber was obtained in the same manner as in Example 1 except that the corona discharge treatment was not performed. Spunlace nonwoven fabric and wet nonwoven fabric were produced in the same manner as in Example 1 and Example 4, respectively.
[0039]
[Comparative Example 2]
An eccentric core-sheath type polyolefin-based composite fiber was obtained in the same manner as in Example 4 except that the corona discharge treatment was not performed. And the spunlace nonwoven fabric and the wet nonwoven fabric were produced like Example 1 and Example 4, respectively.
[0040]
[Comparative Example 3]
A polypropylene fiber was obtained in the same manner as in Example 1 except that a discharge amount of 25 W / m 2 / min was applied to both surfaces of the drawn yarn bundle, and the fiber surface was subjected to corona discharge treatment. Spunlace nonwoven fabric and wet nonwoven fabric were produced in the same manner as in Example 1 and Example 4, respectively.
[0041]
[Example 5]
80 g of the hydrophilic polypropylene fiber of Example 1, the core component is polypropylene resin, and the sheath component is 20% by weight of the heat-adhesive conjugate fiber made of polyethylene resin (manufactured by Daiwabo Co., Ltd., NBF (H)). The parallel card web of / m 2 was subjected to heat treatment using a hot air penetration type heat treatment machine having a heat treatment temperature of 130 ° C. and a heat treatment time of 5 seconds to obtain a thermal bond nonwoven fabric.
[0042]
[Comparative Example 4]
A thermal bond nonwoven fabric was obtained in the same manner as in Example 5 except that the heat treatment temperature was 140 ° C.
The fiber physical properties of Examples 1 to 3 and Comparative Examples 1 to 3 are shown in Table 1.
[0043]
[Table 1]
Figure 0003990042
[0044]
Regarding Examples 1 to 3 and Comparative Examples 1 to 2, the functional groups of —CH—O—, —CO—, and —COO— were formed in Examples 1 to 3. In addition, the strength and elongation of the fiber hardly deteriorated before and after the surface modification treatment. Furthermore, the initial wetting time shows almost no difference depending on the effect of the surfactant adhering to the fiber surface. However, when the endurance wetting time is reached, the surfactants flow down in Comparative Examples 1 and 2, and the fiber surface gets wet. It suddenly surfaced without any problems. In Comparative Example 3, although —CH—O— and —CO— were formed, the hydrophilicity was insufficient and the durability wetting time was shortened.
[0045]
In Examples 1 to 3, the water flow penetrated into the fiber web during the spunlace treatment, and the formation was not disturbed, but in Comparative Examples 1 and 2, the water was repelled from the beginning. The fiber web was blown away, the formation was disturbed, and a uniform nonwoven fabric could not be obtained. Also in Comparative Example 3, the wettability was insufficient and the formation was disturbed.
[0046]
On the other hand, in Example 4, the dispersibility at the time of slurry adjustment was good and a uniform wet papermaking web was obtained, but in Comparative Examples 1 to 3, the dispersibility at the time of slurry adjustment was poor, and several fibers were present. Paper was made in close contact, resulting in a wet paper web with many defects. In Example 5 and Comparative Example 4, a nonwoven fabric was placed on the absorbent body, about 10 cc of water was dropped, and this was repeated three times while exchanging the absorbent body. Although it passes instantaneously, Comparative Example 4 has insufficient passability.
[0047]
【The invention's effect】
The hydrophilic polyolefin fiber of the present invention is a fiber excellent in hydrophilicity, particularly durable hydrophilicity, by applying a hydrophilic treatment to the fiber surface and introducing a predetermined amount of hydrophilic functional groups. For example, disposable diapers and physiological Sanitary materials such as sanitary napkins, filters, wipers, tea packs, battery separators, and other fields requiring durable hydrophilicity. In particular, hydrophilic polyolefin fibers with excellent initial wetting time and durable wetting index are excellent in water affinity, and are useful for nonwoven processing methods that utilize hydropower such as spunlace and wet papermaking. Conventionally, it is necessary to impart hydrophilic performance by processing a hydrophilic treatment agent or surface modification after processing the nonwoven fabric. In these nonwoven fabrics, the hydrophilic performance did not reach the inside of the nonwoven fabric. When the system fiber is made into a non-woven fabric, the fiber is uniformly dispersed inside the non-woven fabric, so that hydrophilic performance can be obtained without spots.

Claims (3)

表面改質により親水化されたポリオレフィン系繊維の製造方法であって、水分率が5%以下である55000〜1450000 dtex 延伸糸束をフィードロールに沿って、厚み1mm以下の薄膜状に拡げ、1.0〜1.2倍の緊張状態で、コロナ放電処理、又はプラズマ処理を行い、該表面改質処理後、該延伸糸束の繊維表面に繊維処理剤を0.1〜1.0重量%付着させることを特徴とし、繊維表面に少なくとも下記の構造式からなる官能基が存在し、オレフィン主鎖および側鎖の全炭素元素に対する官能基の割合がそれぞれ下記の範囲である親水性ポリオレフィン系繊維の製造方法。
(1)−CH−O− : 10〜35%
(2)−CO− : 3〜30%
(3)−COO−: 0〜15%
(4)残りの炭素元素 : 87〜20%
A method for producing a polyolefin fiber that has been hydrophilicized by surface modification, and a stretched yarn bundle of 55000 to 1450000 dtex having a moisture content of 5% or less is spread along a feed roll into a thin film having a thickness of 1 mm or less, In a tension state of 1.0 to 1.2 times, corona discharge treatment or plasma treatment is performed. After the surface modification treatment, 0.1 to 1.0 weight of fiber treatment agent is applied to the fiber surface of the drawn yarn bundle. A hydrophilic polyolefin system in which at least a functional group having the following structural formula is present on the fiber surface, and the ratio of the functional group to the total carbon elements of the olefin main chain and side chain is within the following ranges, respectively: A method for producing fibers.
(1) -CH-O-: 10 to 35%
(2) -CO-: 3 to 30%
(3) -COO-: 0 to 15%
(4) Remaining carbon element: 87-20%
表面改質処理後、親水化されたポリオレフィン系繊維に捲縮を付与することを特徴とする請求項1記載の親水性ポリオレフィン系繊維の製造方法。  The method for producing a hydrophilic polyolefin fiber according to claim 1, wherein crimping is imparted to the hydrophilic polyolefin fiber after the surface modification treatment. 表面改質処理がコロナ放電処理であり、該コロナ放電処理の1回当たりの放電量が少なくとも50W/m2/minであることを特徴とする請求項1または2に記載の親水性ポリオレフィン系繊維の製造方法。The hydrophilic polyolefin fiber according to claim 1 or 2, wherein the surface modification treatment is corona discharge treatment, and a discharge amount per one time of the corona discharge treatment is at least 50 W / m 2 / min. Manufacturing method.
JP25298498A 1998-09-07 1998-09-07 Hydrophilic polyolefin fiber and non-woven fabric using the same Expired - Fee Related JP3990042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25298498A JP3990042B2 (en) 1998-09-07 1998-09-07 Hydrophilic polyolefin fiber and non-woven fabric using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25298498A JP3990042B2 (en) 1998-09-07 1998-09-07 Hydrophilic polyolefin fiber and non-woven fabric using the same

Publications (2)

Publication Number Publication Date
JP2000080559A JP2000080559A (en) 2000-03-21
JP3990042B2 true JP3990042B2 (en) 2007-10-10

Family

ID=17244896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25298498A Expired - Fee Related JP3990042B2 (en) 1998-09-07 1998-09-07 Hydrophilic polyolefin fiber and non-woven fabric using the same

Country Status (1)

Country Link
JP (1) JP3990042B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101888586B1 (en) 2011-04-12 2018-08-14 (주)엘지하우시스 Method for surface treatment of continuous fiber and method for manufacturing thermoplastic-continuous fiber hybrid complex using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030020886A (en) * 2000-06-13 2003-03-10 이데미쓰 유니테크 가부시키가이샤 Spunbonded nonwoven fabric and absorbent article
JP4744676B2 (en) * 2000-07-12 2011-08-10 ダイワボウホールディングス株式会社 Cement reinforcing composite fiber
JP4860828B2 (en) * 2001-02-01 2012-01-25 ダイワボウホールディングス株式会社 Polyolefin fiber for cement reinforcement and method for producing the same
JP4970675B2 (en) * 2001-09-14 2012-07-11 ダイワボウホールディングス株式会社 Polyolefin fiber for cement reinforcement and method for producing the same
KR102294965B1 (en) * 2019-10-14 2021-08-26 도레이첨단소재 주식회사 Hydrophilic modifying coating agent for non-woven having non-toxic to cells, Non-woven having non-toxic to cells and Manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101888586B1 (en) 2011-04-12 2018-08-14 (주)엘지하우시스 Method for surface treatment of continuous fiber and method for manufacturing thermoplastic-continuous fiber hybrid complex using the same

Also Published As

Publication number Publication date
JP2000080559A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
JP3475596B2 (en) Durable hydrophilic fibers, cloths and moldings
KR101187219B1 (en) Fiber for wetlaid non-woven fabric
US20010008965A1 (en) Durable hydrophilic nonwoven webs and articles formed therefrom
JPS632621B2 (en)
TWI535903B (en) Permeable nonwovens
JP2001159078A (en) Hydrophilic fiber and nonwoven fabric, nonwoven fabric processed product
JP2019515150A (en) Bicomponent staple fibers or short cut trilobal fibers and their use
JP4005276B2 (en) Manufacturing method of spunlace nonwoven fabric
JP3990042B2 (en) Hydrophilic polyolefin fiber and non-woven fabric using the same
JP7348460B2 (en) Surface sheet for absorbent articles, manufacturing method thereof, and absorbent articles
JP5172217B2 (en) Laminated nonwoven fabric and method for producing the same
JP4079751B2 (en) Hydrophilic polyolefin nonwoven fabric
JP2005139594A (en) Non-woven fabric and method for producing the same
JP3741886B2 (en) Ultrafine fiber generation possible fiber, ultrafine fiber generated from this, and fiber sheet using this ultrafine fiber
JP3852644B2 (en) Split type composite fiber, nonwoven fabric and absorbent article using the same
JPH11350322A (en) Absorber base, its production and absorber using the same
JPH03279452A (en) High-strength nonwoven sheet
JPH01260051A (en) Fiber web
JPS63243324A (en) Heat bonding fiber and nonwoven fabric thereof
JP2002220740A (en) Splittable conjugated fiber, method for producing the same and nonwoven fabric using ultrafine fiber obtained from the same
JPH10331063A (en) Composite nonwoven fabric and its production
KR20110076154A (en) Polyolefine staple, nonwoven fabric for hygiene article and manufacturing method thereof
JP2001089969A (en) Sustainedly hydrophilic fiber and textile form using the same
JP4748560B2 (en) Thermally adhesive composite fiber and fiber product using the same
JP4028958B2 (en) Durable hydrophilic fiber and non-woven fabric using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees