JP3989083B2 - Vacuum vessel - Google Patents

Vacuum vessel Download PDF

Info

Publication number
JP3989083B2
JP3989083B2 JP10355298A JP10355298A JP3989083B2 JP 3989083 B2 JP3989083 B2 JP 3989083B2 JP 10355298 A JP10355298 A JP 10355298A JP 10355298 A JP10355298 A JP 10355298A JP 3989083 B2 JP3989083 B2 JP 3989083B2
Authority
JP
Japan
Prior art keywords
vacuum
container
vacuum vessel
vessel
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10355298A
Other languages
Japanese (ja)
Other versions
JPH11286771A (en
Inventor
さかえ 角谷
幸恵 佐藤
園子 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP10355298A priority Critical patent/JP3989083B2/en
Publication of JPH11286771A publication Critical patent/JPH11286771A/en
Application granted granted Critical
Publication of JP3989083B2 publication Critical patent/JP3989083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属材料等からなり、真空排気可能な真空容器に関し、特に真空排気に要する時間を短縮することができる真空容器に関する。
【0002】
【従来の技術】
図3(a)において符号100は従来の真空容器である。この真空容器100は半導体装置の製造装置等の真空処理装置に用いられ、ステンレス鋼等の腐食しにくい材料で構成されている。
【0003】
この真空容器100を真空処理装置に用いてスパッタリングやエッチング等の真空処理を行う際には、まず不図示の排気系などで真空容器100の内部を真空排気し、内部が所望の真空状態に到達した後、真空状態を維持しながら処理対象となる半導体基板などを真空容器100内に搬入し、成膜処理やエッチング処理を開始する。従って、真空状態に到達するまでの排気時間や、プロセスガス導入後に真空状態まで回復する排気時間は、処理能力に大きな影響を与えるためできるだけ排気時間を短縮したいという要求がある。
【0004】
一般に、真空容器100の内壁の表面には、通常図3(b)に示すような凹凸102があるので、内壁の表面積は大きく、表面には多量のガス分子が吸着する。また、凹凸102の凹部内に入り込んだ吸着したガス分子は真空排気の際に排出されにくくなるため、所定の真空状態に到達するまでの排気時間が長くなってしまうという問題がある。
【0005】
そこで図3(c)に示すように、内壁の表面に電解研磨や、バフ研磨等の研磨処理を施して平坦化するという対処法が行われている。この対処法によると内壁の表面にあった凹部が減ってガスが排出されやすくなり、また表面積も小さくなるため内壁表面に吸着するガスの量が減るので、目的とする圧力までの排気時間を短縮することができる。
【0006】
しかしながら、このような研磨処理によっても、真空状態に到達するまでの排気時間を充分には短縮できないという問題があった。
【0007】
【発明が解決しようとする課題】
本発明は、このような従来の技術の課題を解決するために創作されたもので、その目的は、従来の真空容器に比して、真空排気に要する時間を短縮することができる技術を提供することにある。
【0008】
【課題を解決するための手段】
本発明の発明者等は、真空容器に研磨処理を施しても、所定の真空状態に到達するまでの排気時間を充分に短縮できない原因を考えたところ、水分の存在に思い当たった。
【0009】
一旦容器の内壁表面に吸着した水分の表面からの放出速度は、凹凸などのような表面の形状よりも、表面の材質によるものが大きく、ステンレス鋼等のように水分を吸着しやすい物質の表面に水分が吸着した場合には、いかに研磨によって表面を平坦にしても、真空排気の際に排出されにくいので、排気時間が充分には短縮できない。
【0010】
かかる知見に基づいてなされた本発明は、請求項1に記載するように、真空排気可能な真空容器であって、容器本体と、シリコンからなる被膜とを有し、前記被膜は、前記容器本体内部の真空雰囲気に接する全面に配置されたことを特徴とする真空容器である。
請求項2記載の発明は、請求項1記載の真空容器であって、前記被膜は、5μm以下の厚みであることを特徴とする真空容器である。
【0011】
シリコンやゲルマニウムのような半導体材料は水の初期付着確率が低く、又これらの半導体材料は、大気中の水及び酸素により自然酸化されて表面が安定な酸化物あるいは水酸化物になる。こうしてできた酸化物や水酸化物は不活性であり、通常真空容器の材料として用いられるステンレス鋼やアルミニウム合金などよりも水が吸着しにくいという性質がある。
【0012】
被膜としてシリコンやゲルマニウムを用いた場合でも、これらは自然酸化されてシリコンやゲルマニウムの酸化物となるので、これらの酸化物からなる被膜が形成されることになる。かかる酸化物からなる被膜で覆われた容器の内壁には水が吸着しにくくなるので、真空排気の際に容器内の水が排出されやすくなり、目的とする真空状態に到達するまでの排気時間を短縮することが可能になる。
【0013】
【発明の実施の形態】
以下、本発明の効果を定量的に検証するための実施例について図面を参照しながら説明する。
図1の符号10は本発明の実施例に係る真空容器である。この真空容器10は、ステンレス鋼からなる容器本体11の内壁が、シリコンからなる膜厚0.4μmの被膜12で被覆されることによって構成されている。この真空容器10の容積は2×10-2 3であり、内表面積は0.4m2である。
【0014】
本実施例の被膜12は、アルゴン圧力0.6Pa、RF電力800W、成膜レート15nm/分の条件下でのRFマグネトロンスパッタリング法によって容器本体11の内壁の全面に形成された。
【0015】
本発明の発明者等は、このような真空容器10を真空排気しながら容器内部の圧力を測定した。図1において符号30はこの測定で用いられた測定装置である。
この測定装置30は、排気系20、B−A真空計1及びピラニー真空計2を有する。排気系20は、直列に接続されたオリフィス3、ターボ分子ポンプ4、油回転ポンプ5を有し、オリフィス3で排気速度の調整をしながら真空排気ができるように構成されている。ここでは、排気コンダクタンスが6×10-2 3/秒のオリフィス3を用いた。また、ターボ分子ポンプ4及び油回転ポンプ5の排気速度はそれぞれ、0.3 3/秒、0.3 3/分である。
【0016】
B−A真空計1は電離真空計の一種であって、高〜超高真空状態での圧力を測定するものである。ピラニー真空計2は大気圧付近等の比較的高い圧力を測定するものである。
【0017】
本実施例では、真空容器10に排気系20と、B−A真空計1及びピラニー真空計2を取り付けた後に、油回転ポンプ5を起動して真空容器10を真空排気し、ピラニー真空計2で真空容器10の内部圧力の測定を開始した。
【0018】
そして真空容器10の内部圧力が低下し、ピラニー真空計2の測定値が10Paに到達した後にターボ分子ポンプ4を起動させた。ターボ分子ポンプ4が定常運転になった後、B−A真空計1を点灯して真空容器10内の圧力を測定した。
【0019】
このようにしてなされた測定結果を図3の曲線(A)に示す。図3はB−A真空計1の測定値の経時変化を示すグラフであって、横軸が排気時間を、縦軸が内部圧力をそれぞれ示し、油回転ポンプ5で排気を開始した時点を0時間としている。
【0020】
この曲線(A)には、排気時間が10時間になった時点ですでに内部圧力が10-7Pa以下に低下し、ほとんど10-8Pa近くの超高真空状態に到達していることが示されている。
【0021】
本実施例の真空容器10の測定が終わったらこれを取り外し、比較の目的で、従来の電解研磨がなされた真空容器についても同様の測定を行った。ここでは、ステンレス鋼よりなり、容積及び内表面積が真空容器10と同じ真空容器を用いた。かかる従来の真空容器による測定結果を図3の曲線(B)に示す。
【0022】
この曲線(B)には、排気時間が10時間になった時点で内部圧力はまだ10-7Pa以下に低下していないことが示されている。この時点で曲線(A)では内部圧力がすでに10-8Pa近くまで達しているので、容器の圧力降下速度は曲線(A)に示す本実施例の真空容器の方が大きいことがわかる。
【0023】
また、曲線(A)では内部圧力が10-7Paに到達するまでおよそ2時間を要しているのに対し、曲線(B)では20時間以上を要していることが図3より読みとれる。従って、本実施例の真空容器10では、同じ圧力に到達するまでの時間が従来の真空容器の1/10程度に短縮されていることがわかった。
【0024】
ところで、容器の圧力降下速度を大きくする目的で、容器の内壁にTiNを成膜するという真空容器があるが、本発明の発明者等はこのような容器についても同様の圧力降下速度の測定を行った。
【0025】
ここでは、真空容器の材料として本実施例の真空容器10と同じステンレス鋼を用い、容積、内表面積ともに真空容器10と同じにした。このような真空容器の内壁に、ホロカソード放電を用いた反応性蒸着法により、アルゴン圧力0.1Pa、窒素圧力0.1Pa、バイアス電圧−100V、成膜レート80nm/分の条件で膜厚0.5μmのTiN膜を成膜した。
【0026】
TiN膜で内壁が被覆された真空容器の圧力降下速度の測定結果を図3の曲線(C)に示す。この曲線(C)をみると、確かに従来の容器の測定結果である曲線(B)に比べると排気時間が若干短縮されていることがわかるが、排気時間が10時間になった時点で内部圧力はまだ10-7Pa以下に低下していないことについては曲線(B)と同様であり、曲線(A)の容器の圧力降下速度には及ばない。
また、内部圧力が10-7Paに到達するまでの時間もおよそ20時間を要し、曲線(A)の2時間と比べると相当の差がある。
【0027】
このようにTiN膜を内部に成膜した真空容器に比しても、本実施例の真空容器10の圧力降下速度は大きいことがわかり、容器の圧力降下速度が大きくなるという本発明の効果が実証された。
【0028】
なお、本実施形態では、被膜12の材料としてシリコンを用いたが、材料はこれに限らず、水が吸着しにくいシリコン酸化物、ゲルマニウム、ゲルマニウム酸化物のいずれかの膜を用いてもよい。
【0029】
また、被膜12を形成するのにスパッタ法を用いたが、例えば真空蒸着法や、化学蒸着法等を用いてもよい。さらに、容器本体11の材料としてステンレス鋼を用いたが、アルミニウム合金、チタニウム合金などのような腐食しにくい金属材料を用いてもよい。
【0030】
さらに、被膜12の厚さを0.4μmとしたが、表面を完全に被覆できる厚さであれば0.005μm以上であってもよい。また被膜12が応力で剥離しないようにするには、5μm以下であればよい。
【0031】
また、容器内に部品が設けられているときにはその部品の表面に被膜を形成してもよい。この場合には、例えば容器本体11の内壁にはシリコン酸化膜を形成し、部品にはゲルマニウム酸化膜を形成するというように、異なる材料の被膜を形成してもよい。
【0032】
さらに、本実施形態では被膜12は容器本体11の内壁全面を被覆しているが、必ずしも全面を被覆しなくともよく、容器本体11の内壁のうち大部分の面積を被膜12が被覆していれば、従来に比して容器の圧力降下速度を大きくすることはできる。
【0033】
【発明の効果】
従来の真空容器に比して排気時間を短縮することができる。
【図面の簡単な説明】
【図1】本発明の実施例の真空容器の真空排気に要する時間を測定する測定装置の構成を説明する図
【図2】本実施例の真空容器と従来の真空容器について、排気時間と内部圧力との関係を示すグラフ
【図3】(a):従来の真空容器の構造を示す断面図
(b):従来の真空容器の内壁の表面状態を説明する図
(c):電解研磨が内壁になされた真空容器の表面状態を説明する図
【符号の説明】
1…B−A真空計 2…ピラニー真空計 3…オリフィス 4…ターボ分子ポンプ 5…油回転ポンプ 10…真空容器 11…容器本体 12…被膜 20…排気系 30…測定装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum vessel made of a metal material or the like and capable of being evacuated, and more particularly to a vacuum vessel capable of reducing the time required for evacuation.
[0002]
[Prior art]
In FIG. 3A, reference numeral 100 denotes a conventional vacuum vessel. The vacuum vessel 100 is used in a vacuum processing apparatus such as a semiconductor device manufacturing apparatus, and is made of a material that hardly corrodes, such as stainless steel.
[0003]
When vacuum processing such as sputtering or etching is performed using the vacuum vessel 100 in a vacuum processing apparatus, the inside of the vacuum vessel 100 is first evacuated by an exhaust system (not shown), and the inside reaches a desired vacuum state. After that, a semiconductor substrate or the like to be processed is carried into the vacuum vessel 100 while maintaining a vacuum state, and a film forming process or an etching process is started. Therefore, the exhaust time until reaching the vacuum state and the exhaust time for recovering to the vacuum state after the introduction of the process gas have a great influence on the processing capacity, and therefore there is a demand for reducing the exhaust time as much as possible.
[0004]
Generally, since the surface of the inner wall of the vacuum vessel 100 has irregularities 102 as shown in FIG. 3B, the surface area of the inner wall is large and a large amount of gas molecules are adsorbed on the surface. In addition, the adsorbed gas molecules that have entered the recesses of the projections and depressions 102 are difficult to be exhausted during the vacuum exhaust, and there is a problem that the exhaust time until reaching a predetermined vacuum state becomes long.
[0005]
Therefore, as shown in FIG. 3C, a countermeasure is taken in which the surface of the inner wall is subjected to a polishing process such as electrolytic polishing or buffing to be flattened. According to this countermeasure, the recesses on the surface of the inner wall are reduced and gas is easily discharged, and the surface area is reduced, so the amount of gas adsorbed on the inner wall surface is reduced, so the exhaust time to the target pressure is shortened. can do.
[0006]
However, even with such a polishing process, there is a problem that the exhaust time until the vacuum state is reached cannot be sufficiently shortened.
[0007]
[Problems to be solved by the invention]
The present invention was created to solve the problems of the conventional technology, and its purpose is to provide a technology capable of shortening the time required for evacuation as compared with a conventional vacuum vessel. There is to do.
[0008]
[Means for Solving the Problems]
The inventors of the present invention have come up with the presence of moisture when considering the reason why the evacuation time until reaching a predetermined vacuum state cannot be sufficiently shortened even if the vacuum vessel is polished.
[0009]
The release rate of the moisture once adsorbed on the inner wall surface of the container is larger due to the surface material than the surface shape such as irregularities, and the surface of a substance that easily adsorbs moisture such as stainless steel If moisture is adsorbed on the surface, the exhaust time cannot be shortened sufficiently because the surface is flattened by polishing and is difficult to be exhausted during vacuum exhaust.
[0010]
The present invention made on the basis of such knowledge is a vacuum container which can be evacuated as described in claim 1, and has a container body and a coating film made of silicon , and the coating film includes the container body. The vacuum vessel is arranged on the entire surface in contact with the internal vacuum atmosphere.
A second aspect of the present invention is the vacuum container according to the first aspect, wherein the coating has a thickness of 5 μm or less.
[0011]
Semiconductor materials such as silicon and germanium have a low initial deposition probability of water, and these semiconductor materials are naturally oxidized by water and oxygen in the atmosphere to become oxides or hydroxides having a stable surface. The oxides and hydroxides thus formed are inactive and have the property that water is less likely to adsorb than stainless steel, aluminum alloys and the like that are usually used as materials for vacuum vessels.
[0012]
Even when silicon or germanium is used as the coating, they are naturally oxidized to become oxides of silicon or germanium, so that a coating made of these oxides is formed. Since it is difficult for water to be adsorbed on the inner wall of the container covered with the oxide film, the water in the container is likely to be discharged during evacuation, and the evacuation time until the target vacuum state is reached. Can be shortened.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments for quantitatively verifying the effects of the present invention will be described with reference to the drawings.
Reference numeral 10 in FIG. 1 denotes a vacuum container according to an embodiment of the present invention. The vacuum vessel 10 is configured by coating the inner wall of a vessel body 11 made of stainless steel with a coating 12 made of silicon and having a thickness of 0.4 μm. The volume of the vacuum vessel 10 is 2 × 10 −2 m 3 and the inner surface area is 0.4 m 2 .
[0014]
The coating film 12 of this example was formed on the entire inner wall of the container body 11 by RF magnetron sputtering under the conditions of argon pressure 0.6 Pa, RF power 800 W, and film formation rate 15 nm / min.
[0015]
The inventors of the present invention measured the pressure inside the vacuum vessel 10 while evacuating the vacuum vessel 10. In FIG. 1, reference numeral 30 denotes a measuring apparatus used in this measurement.
The measuring device 30 includes an exhaust system 20, a B-A vacuum gauge 1 and a Pirani vacuum gauge 2. The exhaust system 20 includes an orifice 3, a turbo molecular pump 4, and an oil rotary pump 5 connected in series, and is configured so that vacuum exhaust can be performed while adjusting the exhaust speed with the orifice 3. Here, the orifice 3 having an exhaust conductance of 6 × 10 −2 m 3 / sec was used. The exhaust speeds of the turbo molecular pump 4 and the oil rotary pump 5 are 0.3 respectively. m 3 / sec, 0.3 m 3 / min.
[0016]
The B-A vacuum gauge 1 is a kind of ionization vacuum gauge, and measures the pressure in a high to ultrahigh vacuum state. The Pirani gauge 2 measures a relatively high pressure such as near atmospheric pressure.
[0017]
In this embodiment, after the exhaust system 20, the B-A vacuum gauge 1 and the Pirani vacuum gauge 2 are attached to the vacuum container 10, the oil rotary pump 5 is activated to evacuate the vacuum container 10, and the Pirani vacuum gauge 2 The measurement of the internal pressure of the vacuum vessel 10 was started.
[0018]
And after the internal pressure of the vacuum vessel 10 fell and the measured value of the Pirani vacuum gauge 2 reached 10 Pa, the turbo molecular pump 4 was started. After the turbo molecular pump 4 was in a steady operation, the BA vacuum gauge 1 was turned on and the pressure in the vacuum vessel 10 was measured.
[0019]
The measurement result thus made is shown in the curve (A) of FIG. FIG. 3 is a graph showing the change over time of the measured value of the B-A vacuum gauge 1. The horizontal axis indicates the exhaust time, the vertical axis indicates the internal pressure, and the time when the oil rotary pump 5 starts exhausting is 0. It's time.
[0020]
This curve (A) shows that when the exhaust time is 10 hours, the internal pressure has already decreased to 10 −7 Pa or less and has reached an ultra-high vacuum state of nearly 10 −8 Pa. It is shown.
[0021]
When the measurement of the vacuum container 10 of the present example was completed, it was removed, and the same measurement was performed on a vacuum container that had been subjected to conventional electrolytic polishing for comparison purposes. Here, a vacuum vessel made of stainless steel and having the same volume and inner surface area as the vacuum vessel 10 was used. The measurement result of such a conventional vacuum vessel is shown in the curve (B) of FIG.
[0022]
This curve (B) shows that the internal pressure has not yet decreased below 10 −7 Pa when the exhaust time is 10 hours. At this point, the internal pressure has already reached nearly 10 −8 Pa in the curve (A), and it can be seen that the pressure drop rate of the container is larger in the vacuum container of this embodiment shown in the curve (A).
[0023]
Further, it can be seen from FIG. 3 that the curve (A) requires about 2 hours until the internal pressure reaches 10 −7 Pa, whereas the curve (B) requires 20 hours or more. . Therefore, in the vacuum container 10 of the present Example, it turned out that the time until it reaches the same pressure is shortened to about 1/10 of the conventional vacuum container.
[0024]
By the way, for the purpose of increasing the pressure drop speed of the container, there is a vacuum container in which a TiN film is formed on the inner wall of the container, but the inventors of the present invention measure the same pressure drop speed for such a container. went.
[0025]
Here, the same stainless steel as the vacuum container 10 of the present embodiment was used as the material of the vacuum container, and both the volume and the inner surface area were the same as those of the vacuum container 10. On the inner wall of such a vacuum container, a film thickness of 0.1 Pa under the conditions of an argon pressure of 0.1 Pa, a nitrogen pressure of 0.1 Pa, a bias voltage of −100 V, and a film formation rate of 80 nm / min is applied by a reactive vapor deposition method using a holocathode discharge. A 5 μm TiN film was formed.
[0026]
The measurement result of the pressure drop rate of the vacuum vessel whose inner wall is covered with the TiN film is shown in the curve (C) of FIG. Looking at this curve (C), it can be seen that the exhaust time is slightly shortened compared to the curve (B) which is the measurement result of the conventional container. The fact that the pressure has not yet dropped below 10 −7 Pa is the same as curve (B), and does not reach the pressure drop rate of the container of curve (A).
Moreover, it takes about 20 hours for the internal pressure to reach 10 −7 Pa, which is considerably different from the 2 hours of curve (A).
[0027]
Thus, it can be seen that the pressure drop rate of the vacuum vessel 10 of the present embodiment is large even when compared with the vacuum vessel having the TiN film formed therein, and the effect of the present invention that the pressure drop rate of the vessel is increased. Proven.
[0028]
In the present embodiment, silicon is used as the material of the coating 12, but the material is not limited to this, and any film of silicon oxide, germanium, or germanium oxide that hardly adsorbs water may be used.
[0029]
Further, although the sputtering method is used to form the film 12, a vacuum vapor deposition method, a chemical vapor deposition method, or the like may be used, for example. Further, although stainless steel is used as the material of the container body 11, a metal material that is not easily corroded, such as an aluminum alloy or a titanium alloy, may be used.
[0030]
Furthermore, although the thickness of the coating 12 is 0.4 μm, it may be 0.005 μm or more as long as the surface can be completely covered. Further, in order to prevent the coating film 12 from being peeled off by stress, it may be 5 μm or less.
[0031]
Further, when a component is provided in the container, a film may be formed on the surface of the component. In this case, for example, a silicon oxide film may be formed on the inner wall of the container main body 11 and a germanium oxide film may be formed on the component.
[0032]
Furthermore, in the present embodiment, the coating 12 covers the entire inner wall of the container body 11, but it does not necessarily have to cover the entire surface, and the coating 12 covers most of the inner wall of the container body 11. For example, the pressure drop rate of the container can be increased as compared with the conventional case.
[0033]
【The invention's effect】
The exhaust time can be shortened as compared with a conventional vacuum vessel.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the configuration of a measuring apparatus for measuring the time required for evacuation of a vacuum container according to an embodiment of the present invention. FIG. 2 shows the evacuation time and the interior of the vacuum container according to the present embodiment and a conventional vacuum container. Graph showing the relationship with pressure [Fig. 3] (a): Cross-sectional view showing the structure of a conventional vacuum vessel
(b): The figure explaining the surface state of the inner wall of the conventional vacuum vessel
(c): Diagram explaining the surface condition of the vacuum vessel with the inner wall being electropolished [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... BA vacuum gauge 2 ... Pirani vacuum gauge 3 ... Orifice 4 ... Turbo molecular pump 5 ... Oil rotary pump 10 ... Vacuum container 11 ... Vessel main body 12 ... Coating 20 ... Exhaust system 30 ... Measurement apparatus

Claims (2)

真空排気可能な真空容器であって、
容器本体と、シリコンからなる被膜とを有し、
前記被膜は、前記容器本体内部の真空雰囲気に接する全面に配置されたことを特徴とする真空容器。
A vacuum vessel that can be evacuated,
Having a container body and a coating made of silicon ;
The vacuum container, wherein the coating is disposed on the entire surface in contact with the vacuum atmosphere inside the container body.
前記被膜は、5μm以下の厚みであることを特徴とする請求項1記載の真空容器。The vacuum container according to claim 1, wherein the coating has a thickness of 5 μm or less.
JP10355298A 1998-03-31 1998-03-31 Vacuum vessel Expired - Lifetime JP3989083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10355298A JP3989083B2 (en) 1998-03-31 1998-03-31 Vacuum vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10355298A JP3989083B2 (en) 1998-03-31 1998-03-31 Vacuum vessel

Publications (2)

Publication Number Publication Date
JPH11286771A JPH11286771A (en) 1999-10-19
JP3989083B2 true JP3989083B2 (en) 2007-10-10

Family

ID=14356997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10355298A Expired - Lifetime JP3989083B2 (en) 1998-03-31 1998-03-31 Vacuum vessel

Country Status (1)

Country Link
JP (1) JP3989083B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030010288A1 (en) * 2001-02-08 2003-01-16 Shunpei Yamazaki Film formation apparatus and film formation method
JP2007250569A (en) * 2006-03-13 2007-09-27 Tokyo Electron Ltd Plasma treatment apparatus and member to be exposed in plasma
JP5710591B2 (en) * 2009-04-20 2015-04-30 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Enhanced removal of residual fluorine radicals using a silicon coating on the process chamber walls

Also Published As

Publication number Publication date
JPH11286771A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
JP3990881B2 (en) Semiconductor manufacturing apparatus and cleaning method thereof
US6217715B1 (en) Coating of vacuum chambers to reduce pump down time and base pressure
US8663789B2 (en) Thin film getter devices
EP1169489B1 (en) Method for increasing the yield in processes of deposition of thin layers onto a substrate
US6743296B2 (en) Apparatus and method for self-centering a wafer in a sputter chamber
JP2012052221A (en) Film forming apparatus, and calibration method
JP2016103638A (en) Plasma etching apparatus
US6241477B1 (en) In-situ getter in process cavity of processing chamber
JP3122228B2 (en) Process equipment
JP3989083B2 (en) Vacuum vessel
KR20190089882A (en) Non-evaporable getter coating parts, containers, preparation, apparatus
JPH0677216A (en) Plasma annealing method for enhancement of barrier characteristic of vapor-deposited thin film
JP4644343B2 (en) Surface structure for vacuum processing chamber
KR20210027394A (en) Hermetically sealed packages containing getters, components containing such hermetically sealed packages, and associated manufacturing processes
JPH09263931A (en) Vacuum treatment and vacuum treating device
KR100469527B1 (en) Method for increasing the yield in processes of deposition of thin layers onto a substrate
JPS6376321A (en) Manufacture of semiconductor device
JP4162764B2 (en) Preparation / extraction chamber and vacuum processing apparatus having the preparation / extraction chamber
JP4522569B2 (en) Heat treatment method
JP3446352B2 (en) Vacuum evacuation method for vacuum pre-chamber
EP0790533A2 (en) Process and apparatus for surface cleaning
JPH0382758A (en) Device for forming film material onto porous substrate
JPH10265935A (en) Ultra-high vacuum vessel and ultra-high vacuum parts
JP2004115899A (en) Surface treatment method, and vacuum vessel
JPS5880835A (en) Formation of high melting point metallic silicide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070606

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term