JPH11286771A - Vacuum vessel - Google Patents

Vacuum vessel

Info

Publication number
JPH11286771A
JPH11286771A JP10355298A JP10355298A JPH11286771A JP H11286771 A JPH11286771 A JP H11286771A JP 10355298 A JP10355298 A JP 10355298A JP 10355298 A JP10355298 A JP 10355298A JP H11286771 A JPH11286771 A JP H11286771A
Authority
JP
Japan
Prior art keywords
vacuum
vacuum vessel
vessel
container
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10355298A
Other languages
Japanese (ja)
Other versions
JP3989083B2 (en
Inventor
Sakae Sumiya
さかえ 角谷
Yukie Sato
幸恵 佐藤
Sonoko Tsukahara
園子 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP10355298A priority Critical patent/JP3989083B2/en
Publication of JPH11286771A publication Critical patent/JPH11286771A/en
Application granted granted Critical
Publication of JP3989083B2 publication Critical patent/JP3989083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology in which the pressure dropping rate in a vacuum vessel is made high at the time of evacuating the vessel. SOLUTION: In this method, since the inner wall of a vessel main body 11 is coated with a film hard to be adhered with moisture such as silicon, germanium or the like, moisture in the vessel main body 11 is hard to adhere to the inner wall and is made easy to be exhausted at the time of evacuation, so that the time required for the evacuation can be made shorter compared to the conventional case.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属材料等からな
り、真空排気可能な真空容器に関し、特に真空排気に要
する時間を短縮することができる真空容器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum container made of a metal material or the like and capable of evacuating, and more particularly to a vacuum container capable of shortening the time required for evacuating.

【0002】[0002]

【従来の技術】図3(a)において符号100は従来の真
空容器である。この真空容器100は半導体装置の製造
装置等の真空処理装置に用いられ、ステンレス鋼等の腐
食しにくい材料で構成されている。
2. Description of the Related Art In FIG. 3A, reference numeral 100 denotes a conventional vacuum vessel. The vacuum vessel 100 is used for a vacuum processing apparatus such as a semiconductor device manufacturing apparatus and is made of a material which is hardly corroded such as stainless steel.

【0003】この真空容器100を真空処理装置に用い
てスパッタリングやエッチング等の真空処理を行う際に
は、まず不図示の排気系などで真空容器100の内部を
真空排気し、内部が所望の真空状態に到達した後、真空
状態を維持しながら処理対象となる半導体基板などを真
空容器100内に搬入し、成膜処理やエッチング処理を
開始する。従って、真空状態に到達するまでの排気時間
や、プロセスガス導入後に真空状態まで回復する排気時
間は、処理能力に大きな影響を与えるためできるだけ排
気時間を短縮したいという要求がある。
When vacuum processing such as sputtering or etching is performed using this vacuum vessel 100 as a vacuum processing apparatus, first, the inside of the vacuum vessel 100 is evacuated by an exhaust system (not shown) or the like, and the inside is evacuated to a desired vacuum. After reaching the state, a semiconductor substrate or the like to be processed is carried into the vacuum vessel 100 while maintaining a vacuum state, and a film forming process and an etching process are started. Accordingly, since the evacuation time required to reach a vacuum state and the evacuation time required to recover to a vacuum state after the introduction of the process gas greatly affect the processing capacity, there is a demand to reduce the evacuation time as much as possible.

【0004】一般に、真空容器100の内壁の表面に
は、通常図3(b)に示すような凹凸102があるので、
内壁の表面積は大きく、表面には多量のガス分子が吸着
する。また、凹凸102の凹部内に入り込んだ吸着した
ガス分子は真空排気の際に排出されにくくなるため、所
定の真空状態に到達するまでの排気時間が長くなってし
まうという問題がある。
Generally, the surface of the inner wall of the vacuum container 100 has irregularities 102 as shown in FIG.
The surface area of the inner wall is large, and a large amount of gas molecules are adsorbed on the surface. Further, the adsorbed gas molecules that have entered the concave portions of the unevenness 102 are difficult to be exhausted during vacuum evacuation, so that there is a problem that the evacuation time until reaching a predetermined vacuum state becomes longer.

【0005】そこで図3(c)に示すように、内壁の表面
に電解研磨や、バフ研磨等の研磨処理を施して平坦化す
るという対処法が行われている。この対処法によると内
壁の表面にあった凹部が減ってガスが排出されやすくな
り、また表面積も小さくなるため内壁表面に吸着するガ
スの量が減るので、目的とする圧力までの排気時間を短
縮することができる。
Therefore, as shown in FIG. 3C, a countermeasure has been taken to flatten the surface of the inner wall by performing a polishing process such as electrolytic polishing or buffing. According to this countermeasure, the concave portion on the inner wall surface is reduced and gas is easily discharged, and the surface area is reduced, so the amount of gas adsorbed on the inner wall surface is reduced, so that the exhaust time to the target pressure is reduced. can do.

【0006】しかしながら、このような研磨処理によっ
ても、真空状態に到達するまでの排気時間を充分には短
縮できないという問題があった。
However, even with such a polishing treatment, there is a problem that the evacuation time until the vacuum state is reached cannot be sufficiently reduced.

【0007】[0007]

【発明が解決しようとする課題】本発明は、このような
従来の技術の課題を解決するために創作されたもので、
その目的は、従来の真空容器に比して、真空排気に要す
る時間を短縮することができる技術を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made in order to solve such problems of the prior art.
It is an object of the present invention to provide a technique capable of reducing the time required for evacuation compared to a conventional vacuum vessel.

【0008】[0008]

【課題を解決するための手段】本発明の発明者等は、真
空容器に研磨処理を施しても、所定の真空状態に到達す
るまでの排気時間を充分に短縮できない原因を考えたと
ころ、水分の存在に思い当たった。
Means for Solving the Problems The inventors of the present invention have considered the cause of the fact that even if a vacuum treatment is performed on a vacuum container, the evacuation time until reaching a predetermined vacuum state cannot be sufficiently shortened. Came up with the existence of.

【0009】一旦容器の内壁表面に吸着した水分の表面
からの放出速度は、凹凸などのような表面の形状より
も、表面の材質によるものが大きく、ステンレス鋼等の
ように水分を吸着しやすい物質の表面に水分が吸着した
場合には、いかに研磨によって表面を平坦にしても、真
空排気の際に排出されにくいので、排気時間が充分には
短縮できない。
The rate of release of moisture once adsorbed on the inner wall surface of the container from the surface is greater depending on the surface material than on the surface shape such as unevenness, and moisture is easily absorbed like stainless steel. If moisture is adsorbed on the surface of the substance, no matter how much the surface is flattened by polishing, it is difficult to be exhausted during vacuum evacuation, so that the evacuation time cannot be shortened sufficiently.

【0010】かかる知見に基づいてなされた本発明は、
請求項1に記載するように、真空排気可能な真空容器で
あって、容器本体と、シリコン、ゲルマニウム、シリコ
ン酸化物又はゲルマニウム酸化物のうちいずれか一種類
又は複数種類からなる被膜とを有し、前記被膜は、前記
容器本体内部の真空雰囲気に接する面に配置されたこと
を特徴とする真空容器である。
[0010] The present invention made on the basis of such knowledge,
As described in claim 1, a vacuum vessel capable of evacuating, comprising a vessel body, and a coating made of one or more of silicon, germanium, silicon oxide, and germanium oxide. And the coating is disposed on a surface of the container main body that is in contact with a vacuum atmosphere.

【0011】シリコンやゲルマニウムのような半導体材
料は水の初期付着確率が低く、又これらの半導体材料
は、大気中の水及び酸素により自然酸化されて表面が安
定な酸化物あるいは水酸化物になる。こうしてできた酸
化物や水酸化物は不活性であり、通常真空容器の材料と
して用いられるステンレス鋼やアルミニウム合金などよ
りも水が吸着しにくいという性質がある。
Semiconductor materials such as silicon and germanium have low initial adhesion probability of water, and these semiconductor materials are naturally oxidized by water and oxygen in the atmosphere to form stable oxides or hydroxides. . The oxides and hydroxides thus formed are inert and have a property that water is less likely to be adsorbed than stainless steel, aluminum alloy, etc., which are usually used as materials for vacuum vessels.

【0012】被膜としてシリコンやゲルマニウムを用い
た場合でも、これらは自然酸化されてシリコンやゲルマ
ニウムの酸化物となるので、これらの酸化物からなる被
膜が形成されることになる。かかる酸化物からなる被膜
で覆われた容器の内壁には水が吸着しにくくなるので、
真空排気の際に容器内の水が排出されやすくなり、目的
とする真空状態に到達するまでの排気時間を短縮するこ
とが可能になる。
Even when silicon or germanium is used as the coating, these are naturally oxidized to silicon and germanium oxides, so that a coating made of these oxides is formed. Since water is less likely to be adsorbed on the inner wall of the container covered with the coating made of such an oxide,
During vacuum evacuation, the water in the container is easily drained, and the evacuation time until reaching a target vacuum state can be shortened.

【0013】[0013]

【発明の実施の形態】以下、本発明の効果を定量的に検
証するための実施例について図面を参照しながら説明す
る。図1の符号10は本発明の実施例に係る真空容器で
ある。この真空容器10は、ステンレス鋼からなる容器
本体11の内壁が、シリコンからなる膜厚0.4μmの
被膜12で被覆されることによって構成されている。こ
の真空容器10の容積は2×10-2 3であり、内表面
積は0.4m2である。
An embodiment for quantitatively verifying the effect of the present invention will be described below with reference to the drawings. Reference numeral 10 in FIG. 1 denotes a vacuum vessel according to an embodiment of the present invention. The vacuum vessel 10 is configured such that the inner wall of a vessel body 11 made of stainless steel is covered with a coating 12 made of silicon and having a thickness of 0.4 μm. The volume of the vacuum vessel 10 is 2 × 10 −2 m 3 , and the inner surface area is 0.4 m 2 .

【0014】本実施例の被膜12は、アルゴン圧力0.
6Pa、RF電力800W、成膜レート15nm/分の条
件下でのRFマグネトロンスパッタリング法によって容
器本体11の内壁の全面に形成された。
The coating 12 of this embodiment has an argon pressure of 0.1.
The film was formed on the entire inner wall of the container body 11 by RF magnetron sputtering under the conditions of 6 Pa, RF power of 800 W, and a deposition rate of 15 nm / min.

【0015】本発明の発明者等は、このような真空容器
10を真空排気しながら容器内部の圧力を測定した。図
1において符号30はこの測定で用いられた測定装置で
ある。この測定装置30は、排気系20、B−A真空計
1及びピラニー真空計2を有する。排気系20は、直列
に接続されたオリフィス3、ターボ分子ポンプ4、油回
転ポンプ5を有し、オリフィス3で排気速度の調整をし
ながら真空排気ができるように構成されている。ここで
は、排気コンダクタンスが6×10-2 3/秒のオリフ
ィス3を用いた。また、ターボ分子ポンプ4及び油回転
ポンプ5の排気速度はそれぞれ、0.3 3/秒、0.
3/分である。
The inventors of the present invention measured the pressure inside the vacuum vessel 10 while evacuating the vacuum vessel 10 as described above. In FIG. 1, reference numeral 30 denotes a measuring device used in this measurement. This measuring device 30 has an exhaust system 20, a BA vacuum gauge 1, and a Pirani vacuum gauge 2. The exhaust system 20 has an orifice 3, a turbo molecular pump 4, and an oil rotary pump 5 connected in series, and is configured so that the orifice 3 can perform evacuation while adjusting the evacuation speed. Here, the orifice 3 having an exhaust conductance of 6 × 10 −2 m 3 / sec was used. The pumping speeds of the turbo molecular pump 4 and the oil rotary pump 5 are 0.3 m 3 / sec, 0.
3 m 3 / min.

【0016】B−A真空計1は電離真空計の一種であっ
て、高〜超高真空状態での圧力を測定するものである。
ピラニー真空計2は大気圧付近等の比較的高い圧力を測
定するものである。
The BA vacuum gauge 1 is a kind of ionization vacuum gauge and measures a pressure in a high to ultra-high vacuum state.
The Pirani vacuum gauge 2 measures a relatively high pressure such as near the atmospheric pressure.

【0017】本実施例では、真空容器10に排気系20
と、B−A真空計1及びピラニー真空計2を取り付けた
後に、油回転ポンプ5を起動して真空容器10を真空排
気し、ピラニー真空計2で真空容器10の内部圧力の測
定を開始した。
In this embodiment, the exhaust system 20 is
After installing the BA vacuum gauge 1 and the Pirani vacuum gauge 2, the oil rotary pump 5 was activated to evacuate the vacuum vessel 10, and the Pirani vacuum gauge 2 started measuring the internal pressure of the vacuum vessel 10. .

【0018】そして真空容器10の内部圧力が低下し、
ピラニー真空計2の測定値が10Paに到達した後にタ
ーボ分子ポンプ4を起動させた。ターボ分子ポンプ4が
定常運転になった後、B−A真空計1を点灯して真空容
器10内の圧力を測定した。
Then, the internal pressure of the vacuum vessel 10 decreases,
After the measured value of the Pirani vacuum gauge 2 reached 10 Pa, the turbo molecular pump 4 was started. After the turbo-molecular pump 4 was in a steady operation, the BA vacuum gauge 1 was turned on to measure the pressure in the vacuum vessel 10.

【0019】このようにしてなされた測定結果を図3の
曲線(A)に示す。図3はB−A真空計1の測定値の経時
変化を示すグラフであって、横軸が排気時間を、縦軸が
内部圧力をそれぞれ示し、油回転ポンプ5で排気を開始
した時点を0時間としている。
The measurement result thus obtained is shown as a curve (A) in FIG. FIG. 3 is a graph showing the change over time of the measured value of the BA vacuum gauge 1, wherein the horizontal axis represents the exhaust time, the vertical axis represents the internal pressure, and the time when the oil rotary pump 5 started exhausting is 0. And time.

【0020】この曲線(A)には、排気時間が10時間に
なった時点ですでに内部圧力が10 -7Pa以下に低下
し、ほとんど10-8Pa近くの超高真空状態に到達して
いることが示されている。
The curve (A) shows that the exhaust time is 10 hours.
When the internal pressure reaches 10 -7Lower than Pa
And almost 10-8Reaching ultra-high vacuum near Pa
Is shown.

【0021】本実施例の真空容器10の測定が終わった
らこれを取り外し、比較の目的で、従来の電解研磨がな
された真空容器についても同様の測定を行った。ここで
は、ステンレス鋼よりなり、容積及び内表面積が真空容
器10と同じ真空容器を用いた。かかる従来の真空容器
による測定結果を図3の曲線(B)に示す。
After the measurement of the vacuum vessel 10 of the present embodiment was completed, the vacuum vessel 10 was removed, and for the purpose of comparison, the same measurement was carried out on a conventional vacuum-polished vacuum vessel. Here, a vacuum vessel made of stainless steel and having the same volume and inner surface area as the vacuum vessel 10 was used. The result of measurement using such a conventional vacuum vessel is shown in curve (B) of FIG.

【0022】この曲線(B)には、排気時間が10時間に
なった時点で内部圧力はまだ10-7Pa以下に低下して
いないことが示されている。この時点で曲線(A)では内
部圧力がすでに10-8Pa近くまで達しているので、容
器の圧力降下速度は曲線(A)に示す本実施例の真空容器
の方が大きいことがわかる。
The curve (B) shows that the internal pressure has not yet dropped to 10 −7 Pa or less when the evacuation time has reached 10 hours. At this point, since the internal pressure has already reached nearly 10 −8 Pa in the curve (A), it can be seen that the pressure drop rate of the container is larger in the vacuum container of the present embodiment shown in the curve (A).

【0023】また、曲線(A)では内部圧力が10-7Pa
に到達するまでおよそ2時間を要しているのに対し、曲
線(B)では20時間以上を要していることが図3より読
みとれる。従って、本実施例の真空容器10では、同じ
圧力に到達するまでの時間が従来の真空容器の1/10
程度に短縮されていることがわかった。
In the curve (A), the internal pressure is 10 -7 Pa
It can be seen from FIG. 3 that the curve (B) requires more than 20 hours, while it takes about 2 hours to reach. Therefore, in the vacuum vessel 10 of the present embodiment, the time required to reach the same pressure is 1/10 of the conventional vacuum vessel.
It turned out that it was shortened to the extent.

【0024】ところで、容器の圧力降下速度を大きくす
る目的で、容器の内壁にTiNを成膜するという真空容
器があるが、本発明の発明者等はこのような容器につい
ても同様の圧力降下速度の測定を行った。
Incidentally, there is a vacuum container in which TiN is formed on the inner wall of the container for the purpose of increasing the pressure drop speed of the container. The inventors of the present invention have applied the same pressure drop speed to such a container. Was measured.

【0025】ここでは、真空容器の材料として本実施例
の真空容器10と同じステンレス鋼を用い、容積、内表
面積ともに真空容器10と同じにした。このような真空
容器の内壁に、ホロカソード放電を用いた反応性蒸着法
により、アルゴン圧力0.1Pa、窒素圧力0.1P
a、バイアス電圧−100V、成膜レート80nm/分の
条件で膜厚0.5μmのTiN膜を成膜した。
Here, the same stainless steel as the vacuum vessel 10 of the present embodiment was used as the material of the vacuum vessel, and both the volume and the internal surface area were the same as the vacuum vessel 10. An argon pressure of 0.1 Pa and a nitrogen pressure of 0.1 P were applied to the inner wall of such a vacuum vessel by a reactive evaporation method using a hollow cathode discharge.
a, a 0.5 μm-thick TiN film was formed under the conditions of a bias voltage of −100 V and a film formation rate of 80 nm / min.

【0026】TiN膜で内壁が被覆された真空容器の圧
力降下速度の測定結果を図3の曲線(C)に示す。この曲
線(C)をみると、確かに従来の容器の測定結果である曲
線(B)に比べると排気時間が若干短縮されていることが
わかるが、排気時間が10時間になった時点で内部圧力
はまだ10-7Pa以下に低下していないことについては
曲線(B)と同様であり、曲線(A)の容器の圧力降下速度
には及ばない。また、内部圧力が10-7Paに到達する
までの時間もおよそ20時間を要し、曲線(A)の2時間
と比べると相当の差がある。
The measurement result of the pressure drop rate of the vacuum vessel whose inner wall is covered with the TiN film is shown by a curve (C) in FIG. The curve (C) shows that the evacuation time is slightly shortened as compared with the curve (B) which is the measurement result of the conventional container. It is similar to the curve (B) that the pressure has not yet dropped to 10 −7 Pa or less, and does not reach the pressure drop rate of the vessel of the curve (A). Also, it takes about 20 hours for the internal pressure to reach 10 −7 Pa, which is considerably different from the curve (A) of 2 hours.

【0027】このようにTiN膜を内部に成膜した真空
容器に比しても、本実施例の真空容器10の圧力降下速
度は大きいことがわかり、容器の圧力降下速度が大きく
なるという本発明の効果が実証された。
It can be seen that the pressure drop rate of the vacuum vessel 10 of the present embodiment is higher than that of the vacuum vessel having the TiN film formed therein, and the present invention that the pressure drop rate of the vessel increases. The effect was demonstrated.

【0028】なお、本実施形態では、被膜12の材料と
してシリコンを用いたが、材料はこれに限らず、水が吸
着しにくいシリコン酸化物、ゲルマニウム、ゲルマニウ
ム酸化物のいずれかの膜を用いてもよい。
In the present embodiment, silicon is used as the material of the film 12, but the material is not limited to this, and any one of silicon oxide, germanium, and germanium oxide, to which water is hardly adsorbed, is used. Is also good.

【0029】また、被膜12を形成するのにスパッタ法
を用いたが、例えば真空蒸着法や、化学蒸着法等を用い
てもよい。さらに、容器本体11の材料としてステンレ
ス鋼を用いたが、アルミニウム合金、チタニウム合金な
どのような腐食しにくい金属材料を用いてもよい。
Although the sputtering method is used to form the coating 12, a vacuum deposition method, a chemical vapor deposition method, or the like may be used, for example. Further, stainless steel is used as the material of the container body 11, but a metal material that is not easily corroded, such as an aluminum alloy or a titanium alloy, may be used.

【0030】さらに、被膜12の厚さを0.4μmとし
たが、表面を完全に被覆できる厚さであれば0.005
μm以上であってもよい。また被膜12が応力で剥離し
ないようにするには、5μm以下であればよい。
Further, the thickness of the coating 12 is set to 0.4 μm, but it is 0.005 μm if the thickness can completely cover the surface.
It may be μm or more. In order to prevent the coating 12 from peeling off due to stress, the thickness may be 5 μm or less.

【0031】また、容器内に部品が設けられているとき
にはその部品の表面に被膜を形成してもよい。この場合
には、例えば容器本体11の内壁にはシリコン酸化膜を
形成し、部品にはゲルマニウム酸化膜を形成するという
ように、異なる材料の被膜を形成してもよい。
When a component is provided in the container, a coating may be formed on the surface of the component. In this case, for example, a film of a different material may be formed such that a silicon oxide film is formed on the inner wall of the container body 11 and a germanium oxide film is formed on the component.

【0032】さらに、本実施形態では被膜12は容器本
体11の内壁全面を被覆しているが、必ずしも全面を被
覆しなくともよく、容器本体11の内壁のうち大部分の
面積を被膜12が被覆していれば、従来に比して容器の
圧力降下速度を大きくすることはできる。
Further, in the present embodiment, the coating 12 covers the entire inner wall of the container body 11, but it is not always necessary to cover the entire surface, and the coating 12 covers most of the inner wall of the container body 11. If so, it is possible to increase the pressure drop rate of the container as compared with the related art.

【0033】[0033]

【発明の効果】従来の真空容器に比して排気時間を短縮
することができる。
According to the present invention, the evacuation time can be reduced as compared with the conventional vacuum vessel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の真空容器の真空排気に要する
時間を測定する測定装置の構成を説明する図
FIG. 1 is a diagram illustrating a configuration of a measuring apparatus for measuring a time required for evacuation of a vacuum vessel according to an embodiment of the present invention.

【図2】本実施例の真空容器と従来の真空容器につい
て、排気時間と内部圧力との関係を示すグラフ
FIG. 2 is a graph showing the relationship between the evacuation time and the internal pressure of the vacuum vessel of the present embodiment and a conventional vacuum vessel.

【図3】(a):従来の真空容器の構造を示す断面図 (b):従来の真空容器の内壁の表面状態を説明する図 (c):電解研磨が内壁になされた真空容器の表面状態を
説明する図
3A is a cross-sectional view showing a structure of a conventional vacuum vessel. FIG. 3B is a view for explaining a surface state of an inner wall of the conventional vacuum vessel. FIG. 3C is a surface of the vacuum vessel having electrolytic polishing performed on the inner wall. Diagram explaining the state

【符号の説明】[Explanation of symbols]

1…B−A真空計 2…ピラニー真空計 3…オリ
フィス 4…ターボ分子ポンプ 5…油回転ポンプ
10…真空容器 11…容器本体 12…被膜
20…排気系 30…測定装置
DESCRIPTION OF SYMBOLS 1 ... BA vacuum gauge 2 ... Pirani vacuum gauge 3 ... Orifice 4 ... Turbo molecular pump 5 ... Oil rotary pump
10 vacuum container 11 container body 12 coating
20: exhaust system 30: measuring device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】真空排気可能な真空容器であって、 容器本体と、シリコン、ゲルマニウム、シリコン酸化物
又はゲルマニウム酸化物のうちいずれか一種類又は複数
種類からなる被膜とを有し、 前記被膜は、前記容器本体内部の真空雰囲気に接する面
に配置されたことを特徴とする真空容器。
1. A vacuum container capable of evacuating, comprising: a container main body; and a coating made of one or more of silicon, germanium, silicon oxide, and germanium oxide, wherein the coating is A vacuum container disposed on a surface in contact with a vacuum atmosphere inside the container body.
JP10355298A 1998-03-31 1998-03-31 Vacuum vessel Expired - Lifetime JP3989083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10355298A JP3989083B2 (en) 1998-03-31 1998-03-31 Vacuum vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10355298A JP3989083B2 (en) 1998-03-31 1998-03-31 Vacuum vessel

Publications (2)

Publication Number Publication Date
JPH11286771A true JPH11286771A (en) 1999-10-19
JP3989083B2 JP3989083B2 (en) 2007-10-10

Family

ID=14356997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10355298A Expired - Lifetime JP3989083B2 (en) 1998-03-31 1998-03-31 Vacuum vessel

Country Status (1)

Country Link
JP (1) JP3989083B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250569A (en) * 2006-03-13 2007-09-27 Tokyo Electron Ltd Plasma treatment apparatus and member to be exposed in plasma
JP2008261058A (en) * 2001-02-08 2008-10-30 Semiconductor Energy Lab Co Ltd Film deposition apparatus and method for manufacturing light-emitting apparatus
JP2012524410A (en) * 2009-04-20 2012-10-11 アプライド マテリアルズ インコーポレイテッド Enhanced removal of residual fluorine radicals using a silicon coating on the process chamber walls

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261058A (en) * 2001-02-08 2008-10-30 Semiconductor Energy Lab Co Ltd Film deposition apparatus and method for manufacturing light-emitting apparatus
US7629025B2 (en) 2001-02-08 2009-12-08 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus and film formation method
JP2012214908A (en) * 2001-02-08 2012-11-08 Semiconductor Energy Lab Co Ltd Film-forming method
JP2007250569A (en) * 2006-03-13 2007-09-27 Tokyo Electron Ltd Plasma treatment apparatus and member to be exposed in plasma
JP2012524410A (en) * 2009-04-20 2012-10-11 アプライド マテリアルズ インコーポレイテッド Enhanced removal of residual fluorine radicals using a silicon coating on the process chamber walls

Also Published As

Publication number Publication date
JP3989083B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
US6217715B1 (en) Coating of vacuum chambers to reduce pump down time and base pressure
US6743296B2 (en) Apparatus and method for self-centering a wafer in a sputter chamber
US11127568B2 (en) Plasma etching apparatus
US8663789B2 (en) Thin film getter devices
US10643825B2 (en) Particle generation preventing method and vacuum apparatus
CN102686880B (en) Cryopump and vacuum pumping method
US20230399734A1 (en) Oxide film preparation method
JPH04329638A (en) Method of bonding fluorocarbon polymer film with substrate and substrate
JP3122228B2 (en) Process equipment
JPH0677216A (en) Plasma annealing method for enhancement of barrier characteristic of vapor-deposited thin film
JPH0819515B2 (en) Shield preparation methods for reducing particulates in physical vapor deposition chambers.
JPH11286771A (en) Vacuum vessel
US6361618B1 (en) Methods and apparatus for forming and maintaining high vacuum environments
US7176140B1 (en) Adhesion promotion for etch by-products
US6020273A (en) Method of stabilizing low dielectric constant films
JP2003068661A (en) Vacuum processing apparatus
JPS6376321A (en) Manufacture of semiconductor device
JPH09263931A (en) Vacuum treatment and vacuum treating device
JPS63291421A (en) Treatment of semiconductor wafer
JPH0382758A (en) Device for forming film material onto porous substrate
US6444585B1 (en) Method for manufacturing semiconductor device capable of expelling argon gas
JP2579588Y2 (en) Sputtering equipment
JP3446352B2 (en) Vacuum evacuation method for vacuum pre-chamber
JP4522569B2 (en) Heat treatment method
JP4162764B2 (en) Preparation / extraction chamber and vacuum processing apparatus having the preparation / extraction chamber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070606

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term