JP3988468B2 - Cold speed correction method and correction device for vehicle speed control device - Google Patents

Cold speed correction method and correction device for vehicle speed control device Download PDF

Info

Publication number
JP3988468B2
JP3988468B2 JP2002009524A JP2002009524A JP3988468B2 JP 3988468 B2 JP3988468 B2 JP 3988468B2 JP 2002009524 A JP2002009524 A JP 2002009524A JP 2002009524 A JP2002009524 A JP 2002009524A JP 3988468 B2 JP3988468 B2 JP 3988468B2
Authority
JP
Japan
Prior art keywords
accelerator opening
vehicle speed
decrease
vehicle
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002009524A
Other languages
Japanese (ja)
Other versions
JP2003206802A (en
Inventor
利光 丸木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2002009524A priority Critical patent/JP3988468B2/en
Publication of JP2003206802A publication Critical patent/JP2003206802A/en
Application granted granted Critical
Publication of JP3988468B2 publication Critical patent/JP3988468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、シャシーダイナモメータ等の車両試験装置上で車両を運転するときの車両速度制御装置に関し、特にそのコールドスタート時の補正方法及び補正装置に関するものである。
【0002】
【従来の技術】
従来、シャシーダイナモメータ上で車両を運転するときの速度制御方式には、図2に示すような加速度マイナ付速度制御方式がある(特公昭61−18433号)。この方式においては、車速指令信号VSと車両4の車速検出信号Vとの偏差信号を速度制御器1で比例演算して加速度指令信号を得るとともに、車速検出信号Vを微分演算器5で微分演算して加速度検出信号を得、この両加速度信号の偏差を加速度演算器2で比例積分演算してアクセルペダルストローク指令θSとし、さらにストローク制御器3によりアクセルペダルストローク制御信号θとし、アクセルペダルを操作して車速Vを車速指令VSと一致するように制御している。なお、構成要素のブロック内の記号は、各構成要素の伝達関数を示す。
【0003】
上記した従来の加速度マイナ付速度制御は、フィードバック制御であるので、速度制御器1等のゲイン調整を行う必要があり、また車両4の伝達関数MG(S)は多数の変化要素があり、これらの変化要素が変化する毎にやはり速度制御器1等のゲイン調整が必要となった。さらに、フィードバック制御ループは閉ループ伝達関数として表され、速度制御器1等のゲインによって決まる制御応答の遅れが存在する。
【0004】
これらの点を改善するため、本出願人は車両の伝達関数MG(S)の逆関数MG(S)-1を用いたフィードフォワード制御方式を提案した(特願平6−75532号)。この制御方式は、図3に示すように、車両の伝達関数MG(S)の逆関数MG(S)-1を伝達関数として有する逆関数回路6を用いて、車速指令VSに車速Vを一致させるために必要なアクセルペダルストロークθAを直接演算により算出し、このθAをアクセルアクチュエータ操作信号θSとして出力する。これにより、ストローク制御器3を介してアクセルアクチュエータストロークθ=θAとし、車両4のアクセルペダルを動かし、車速指令VSに車速Vを一致させる。
【0005】
【発明が解決しようとする課題】
上記のような車速速度制御装置においては、車両のコールドスタート時のデータを得ることも必要となるが、車両を少し運転するとエンジンがホット状態となり、ホット状態の特性となってしまい、また短時間ではコールド状態に戻らないために、コールドスタート時のデータを得ることは非常に困難であった。
【0006】
この発明は上記のような課題を解決するために成されたものであり、車両のホット状態のデータを得ることができるとともに、車両のコールドスタート時のデータを得ることもできる車両速度制御装置のコールドスタート時補正方法及び補正装置を得ることを目的とする。
【0007】
【課題を解決するための手段】
この発明の請求項1に係る車両速度制御装置のコールドスタート時補正方法は、コールドスタート時にアクセル開度指令を減少させるとともに、この減少分を冷却水温の上昇またはアクセル開度指令の増大に従って小さくするものである。
【0008】
請求項2に係る車両速度制御装置のコールドスタート時補正装置は、冷却水温の上昇に従って小さくなるアクセル開度の減少分を出力するアクセル開度の減少分出力部と、アクセル開度指令の増大に従って小さくなって1に近づく係数を発生する係数発生部と、減少分出力部の出力と係数発生部の出力を乗算してアクセル開度指令の減少分を演算し、この減少分をアクセル開度指令から減算する演算部を設けたものである。
【0009】
【発明の実施の形態】
以下、この発明の実施の形態を図面とともに説明する。図1はこの実施形態による車両速度制御装置のブロック図を示す。車速指令VSは加速度演算部7と走行抵抗部8に入力され、加速度演算部7は加速度指令αSを出力し、走行抵抗部8は走行抵抗FRLを出力する。乗算部9は加速度指令αSを入力されて車重Wを乗算し、加速力指令Fα Sを出力する。加速力指令Fα Sと走行抵抗FRLは加算部10に入力されて加算され、駆動力指令FRSを出力する。乗算器11は駆動力指令FRSにタイヤ半径rを乗算してアクスル軸トルクτasを出力し、除算部12はアクスル軸トルクτasをトランスミッション比iMとデフ比iDを乗算したものにより除算し、エンジン出力トルクτesを出力する。逆エンジン特性部13はエンジン出力トルクτesを入力され、エンジン特性の逆関数関係によりアクセル開度指令θS′を出力する。なお、これらの各構成要素7〜13により、図3に示した、車両4の伝達関数の逆関数MG(S)-1を伝達関数に有する逆関数回路を構成する。
【0010】
14はエンジンの冷却水温T℃を入力されてアクセル開度の減少分Δθを出力する減少分出力部であり、減少分Δθは例えば冷却水温が50℃まではΔθ1(全アクセル動作角度の2%)とし、冷却水温が50℃を超えると直線的に減少させ、80℃で零になるようにする。又、15はアクセル開度指令θS′を入力されて係数gを出力する係数発生部であり、係数gは例えば開度指令がθ1(8%)まではg1(>1)一定とし、θ1を超えると直線的に減少させ、開度指令がθ2(15%)になると、1にする。
【0011】
乗算部16は減少分出力部14の出力と係数発生部15の出力を乗算し、アクセル開度指令θS′の減少分ΔθS′(マイナス値となる)を演算する。加算部17はアクセル開度指令θS′と上記減少分を加算し、この加算値がマイナス値とならないようにリミッタ18に入力して新たなアクセル開度指令θSを得る。従って、加算部17の出力がマイナス値の場合には、リミッタ18の出力は零になる。
【0012】
従って、コールドスタート時に、エンジンの冷却水温T℃が50℃以下でアクセル開度指令θS′がθ1以下の場合には、減少分出力部14からはアクセルの全動作角度の2%分Δθ1が出力され、係数発生部15からは1より大きい係数g1が出力され、乗算部16ではΔθ1とg1が乗算されてアクセル開度指令θS′の減少分ΔθS′(マイナス値)が演算され、θS′とこの減少分ΔθS′が加算部17で加算され、リミッタ18を介して新たなアクセル開度指令θSが得られ、このθSに応じて車速制御が行われる。コールドスタート時、θSはθS′より小さくなり、正常なコールドスタート時の制御が行われ、コールドスタート時のデータが得られる。冷却水温T℃が上昇すると、減少分出力部14の出力Δθは次第に零に近づき、アクセル開度指令θS′が大きくなると係数発生部15の出力は次第に1に近づく。従って、エンジンがホット状態になると、乗算部16からの出力は零となり、通常の車速制御が行われる。
【0013】
アクセル開度指令θSは開度制御部19に入力され、アクセル開度制御信号θを出力する。制御信号θは車両4に入力される。車両4においては、まずエンジン特性部21が制御信号θ及びエンジン回転数Neに応じたエンジン出力トルクτeを出力し、出力トルクτeは乗算部22に入力され、iM×iDを乗算されてアクセル軸トルクτaが演算され、この軸トルクτaは除算部23でタイヤ半径rで除算されて駆動力FRとなる。加算部24では駆動力FRから走行抵抗部25の走行抵抗FRLが減算され、加速力Fαが得られ、除算部26は車重Wで除算して加速度αを得、積分器27は加速度αを積分して車速Vを得る。
【0014】
上記実施形態においては、速度制御系はホット状態に対応した特性に設定されており、コールドスタート時には減少分出力部14や係数発生部15等によりアクセル開度指令θS′の減少分ΔθS′が演算され、アクセル開度指令が小さくなるので、コールドスタート時の制御が行われ、コールドスタート時の制御が行われる。エンジンの冷却水温が上昇すると減少分ΔθS′が零となり、ホット状態の制御が行われ、ホット状態のデータが得られる。
【0015】
【発明の効果】
以上のようにこの発明によれば、コールドスタート時にはアクセル開度指令を減少させるとともに、この減少分をエンジンの冷却水温の上昇またはアクセル開度指令の増大に従って小さくするようにしており、コールドスタート時にはコールドスタート時の制御を行うことができてコールドスタート時のデータが得られると共に、ホット状態になった際にはホット状態の制御を行うことができ、ホット状態のデータを得ることができる。
【図面の簡単な説明】
【図1】この発明による車両速度制御装置のブロック図である。
【図2】従来装置のブロック図である。
【図3】他の従来装置のブロック図である。
【符号の説明】
4…車両
14…減少分出力部
15…係数発生部
16…乗算部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle speed control device for driving a vehicle on a vehicle test device such as a chassis dynamometer, and more particularly to a correction method and a correction device at the time of cold start.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a speed control method for driving a vehicle on a chassis dynamometer, there is a speed control method with an acceleration minor as shown in FIG. 2 (Japanese Patent Publication No. 61-18433). In this method, a deviation signal between the vehicle speed command signal V S and the vehicle speed detection signal V of the vehicle 4 is proportionally calculated by the speed controller 1 to obtain an acceleration command signal, and the vehicle speed detection signal V is differentiated by the differentiation calculator 5. An acceleration detection signal is obtained by calculation, and the deviation between the two acceleration signals is proportionally integrated by the acceleration calculator 2 to obtain an accelerator pedal stroke command θ S, and further, an accelerator pedal stroke control signal θ is obtained by the stroke controller 3. To control the vehicle speed V so as to coincide with the vehicle speed command V S. The symbols in the component blocks indicate the transfer function of each component.
[0003]
Since the conventional speed control with acceleration minor is feedback control, it is necessary to adjust the gain of the speed controller 1 and the like, and the transfer function MG (S) of the vehicle 4 has a large number of changing elements. Every time the change factor of the change, the gain adjustment of the speed controller 1 or the like is also necessary. Further, the feedback control loop is expressed as a closed loop transfer function, and there is a delay in control response determined by the gain of the speed controller 1 or the like.
[0004]
In order to improve these points, the present applicant has proposed a feedforward control method using an inverse function MG (S) −1 of the vehicle transfer function MG (S) (Japanese Patent Application No. 6-75532). As shown in FIG. 3, this control method uses an inverse function circuit 6 having an inverse function MG (S) −1 of a vehicle transfer function MG (S) as a transfer function, and sets the vehicle speed V to the vehicle speed command V S. The accelerator pedal stroke θ A necessary for matching is directly calculated, and this θ A is output as an accelerator actuator operation signal θ S. As a result, the accelerator actuator stroke θ = θ A is set via the stroke controller 3, the accelerator pedal of the vehicle 4 is moved, and the vehicle speed V is matched with the vehicle speed command V S.
[0005]
[Problems to be solved by the invention]
In the vehicle speed control device as described above, it is necessary to obtain data at the time of cold start of the vehicle, but if the vehicle is driven a little, the engine becomes hot and becomes a characteristic of the hot state. Then, since it did not return to the cold state, it was very difficult to obtain data at the cold start.
[0006]
The present invention has been made to solve the above-described problems, and is a vehicle speed control device that can obtain data on a hot state of a vehicle and also obtain data at a cold start of the vehicle. An object is to obtain a cold start correction method and correction device.
[0007]
[Means for Solving the Problems]
In the cold start correction method for a vehicle speed control device according to claim 1 of the present invention, the accelerator opening command is decreased at the cold start, and the decrease is reduced as the cooling water temperature increases or the accelerator opening command increases. Is.
[0008]
The cold start correction device of the vehicle speed control device according to claim 2 outputs an accelerator opening decrease output unit that outputs an accelerator opening decrease that decreases as the coolant temperature increases, and an accelerator opening command increase. The coefficient generator that generates a coefficient that decreases and approaches 1 and the output of the decrease output unit multiplied by the output of the coefficient generator calculate the decrease of the accelerator opening command, and this decrease is used as the accelerator opening command. Is provided with a calculation unit for subtracting from the calculation unit.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a block diagram of a vehicle speed control apparatus according to this embodiment. The vehicle speed command V S is input to the acceleration calculation unit 7 and the travel resistance unit 8, the acceleration calculation unit 7 outputs the acceleration command α S , and the travel resistance unit 8 outputs the travel resistance F RL . Multiplier 9 receives acceleration command α S and multiplies vehicle weight W, and outputs acceleration force command F α S. The acceleration force command F α S and the running resistance F RL are input to the adding unit 10 and added to output a driving force command F RS . The multiplier 11 multiplies the driving force command FRS by the tire radius r and outputs the axle shaft torque τ as , and the division unit 12 multiplies the axle shaft torque τ as by the transmission ratio i M and the differential ratio i D. Divide and output engine output torque τ es . The reverse engine characteristic unit 13 receives the engine output torque τ es and outputs an accelerator opening degree command θ S ′ according to the inverse function relation of the engine characteristic. These constituent elements 7 to 13 constitute the inverse function circuit having the transfer function inverse function MG (S) −1 of the transfer function of the vehicle 4 shown in FIG.
[0010]
Reference numeral 14 denotes a decrease output unit that receives the engine coolant temperature T ° C. and outputs the accelerator opening decrease Δθ. The decrease Δθ is, for example, Δθ 1 until the coolant temperature reaches 50 ° C. %), When the cooling water temperature exceeds 50 ° C., the temperature decreases linearly and reaches zero at 80 ° C. A coefficient generator 15 receives the accelerator opening command θ S ′ and outputs a coefficient g. The coefficient g is constant g 1 (> 1) until the opening command is θ 1 (8%), for example. , Θ 1 is linearly decreased, and when the opening degree command becomes θ 2 (15%), it is set to 1.
[0011]
The multiplication unit 16 multiplies the output of the decrease output unit 14 and the output of the coefficient generation unit 15 to calculate a decrease Δθ S ′ (which becomes a negative value) of the accelerator opening command θ S ′. The adder 17 adds the accelerator opening command θ S ′ and the decrease, and inputs it to the limiter 18 so that the added value does not become a negative value, thereby obtaining a new accelerator opening command θ S. Therefore, when the output of the adder 17 is a negative value, the output of the limiter 18 becomes zero.
[0012]
Therefore, when the engine coolant temperature T ° C. is 50 ° C. or less and the accelerator opening command θ S ′ is θ 1 or less at the cold start, the decrease output unit 14 outputs Δθ corresponding to 2% of the total operation angle of the accelerator. 1 is output, a coefficient g 1 greater than 1 is output from the coefficient generator 15, and the multiplier 16 multiplies Δθ 1 and g 1 to reduce the accelerator opening command θ S ′ by Δθ S ′ (minus value). ) Is calculated, and θ S ′ and the decrease Δθ S ′ are added by the adding unit 17, and a new accelerator opening command θ S is obtained via the limiter 18, and vehicle speed control is performed according to the θ S. Is called. At the cold start, θ S becomes smaller than θ S ′, and the control at the normal cold start is performed, and the data at the cold start is obtained. When the cooling water temperature T ° C rises, the output Δθ of the decrease output unit 14 gradually approaches zero, and the output of the coefficient generation unit 15 gradually approaches 1 when the accelerator opening command θ S 'increases. Therefore, when the engine is in a hot state, the output from the multiplication unit 16 becomes zero, and normal vehicle speed control is performed.
[0013]
The accelerator opening command θ S is input to the opening control unit 19 and outputs an accelerator opening control signal θ. The control signal θ is input to the vehicle 4. In the vehicle 4, first, the engine characteristic unit 21 outputs an engine output torque τ e corresponding to the control signal θ and the engine speed N e , and the output torque τ e is input to the multiplication unit 22 to obtain i M × i D. are multiplied is calculated the accelerator shaft torque tau a, the shaft torque tau a becomes the driving force F R is divided by the tire radius r at the divider 23. The adder 24 subtracts the running resistance F RL of the running resistor 25 from the driving force F R to obtain the acceleration force F α , the divider 26 divides by the vehicle weight W to obtain the acceleration α, and the integrator 27 The vehicle speed V is obtained by integrating the acceleration α.
[0014]
In the above embodiment, the speed control system is set to a characteristic corresponding to the hot state, and at the time of cold start, the decrease output unit 14, the coefficient generation unit 15, and the like decrease the accelerator opening command θ S ′ by Δθ S ′ Is calculated, and the accelerator opening command becomes small. Therefore, the control at the cold start is performed, and the control at the cold start is performed. When the coolant temperature of the engine rises, the decrease Δθ S ′ becomes zero, the hot state is controlled, and hot state data is obtained.
[0015]
【The invention's effect】
As described above, according to the present invention, at the time of cold start, the accelerator opening command is decreased, and the decrease is made smaller as the engine coolant temperature increases or the accelerator opening command increases. Cold start control can be performed to obtain cold start data, and when a hot state occurs, the hot state control can be performed and hot state data can be obtained.
[Brief description of the drawings]
FIG. 1 is a block diagram of a vehicle speed control device according to the present invention.
FIG. 2 is a block diagram of a conventional apparatus.
FIG. 3 is a block diagram of another conventional apparatus.
[Explanation of symbols]
4 ... Vehicle 14 ... Decrease output unit 15 ... Coefficient generation unit 16 ... Multiplication unit

Claims (2)

アクセル開度を制御して車両の速度を制御する車両速度制御装置のコールドスタート時補正方法において、コールドスタート時にアクセル開度指令を減少させるとともに、この減少分を冷却水温の上昇またはアクセル開度指令の増大に従って小さくすることを特徴とする車両速度制御装置のコールドスタート時補正方法。In the cold start correction method of the vehicle speed control device that controls the speed of the vehicle by controlling the accelerator opening, the accelerator opening command is decreased at the cold start, and this decrease is used to increase the cooling water temperature or the accelerator opening command. A cold start correction method for a vehicle speed control device, characterized in that the vehicle speed control device is made smaller in accordance with an increase in the vehicle speed. アクセル開度を制御して車両の速度を制御する車両速度制御装置において、冷却水温の上昇に従って小さくなるアクセル開度の減少分を出力するアクセル開度の減少分出力部と、アクセル開度指令の増大に従って小さくなって1に近づく係数を発生する係数発生部と、減少分出力部の出力と係数発生部の出力を乗算してアクセル開度指令の減少分を演算し、この減少分をアクセル開度指令から減算する演算部を備えたことを特徴とする車両速度制御装置のコールドスタート時補正装置。In a vehicle speed control device for controlling the accelerator opening to control the speed of the vehicle, an accelerator opening decrease output unit that outputs a decrease in the accelerator opening that decreases as the cooling water temperature increases, and an accelerator opening command The coefficient generator that generates a coefficient that decreases as the value increases and approaches 1 is calculated. The output of the output part of the decrease is multiplied by the output of the coefficient generator to calculate the decrease of the accelerator opening command. A cold start correction device for a vehicle speed control device, comprising a calculation unit for subtracting from a degree command.
JP2002009524A 2002-01-18 2002-01-18 Cold speed correction method and correction device for vehicle speed control device Expired - Fee Related JP3988468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002009524A JP3988468B2 (en) 2002-01-18 2002-01-18 Cold speed correction method and correction device for vehicle speed control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002009524A JP3988468B2 (en) 2002-01-18 2002-01-18 Cold speed correction method and correction device for vehicle speed control device

Publications (2)

Publication Number Publication Date
JP2003206802A JP2003206802A (en) 2003-07-25
JP3988468B2 true JP3988468B2 (en) 2007-10-10

Family

ID=27647515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002009524A Expired - Fee Related JP3988468B2 (en) 2002-01-18 2002-01-18 Cold speed correction method and correction device for vehicle speed control device

Country Status (1)

Country Link
JP (1) JP3988468B2 (en)

Also Published As

Publication number Publication date
JP2003206802A (en) 2003-07-25

Similar Documents

Publication Publication Date Title
US8010272B2 (en) Control device for internal combustion engine
JP2551420B2 (en) Clutch control device
JP4349187B2 (en) Vehicle speed control device
JP3536820B2 (en) Hybrid vehicle control device
JP3899133B2 (en) Method and apparatus for calculating vehicle engine torque
JPH07323859A (en) Controller for movement of vehicle
JP6020510B2 (en) Vehicle control device
US6401016B1 (en) Vehicle control device
KR970066213A (en) Method and apparatus for control of continuously variable transmission
US5752210A (en) Method and apparatus for controlling speed-change transient mode of automatic transmissions
JP3988468B2 (en) Cold speed correction method and correction device for vehicle speed control device
US5428537A (en) Control method for electric power steering apparatus for vehicle
US5107429A (en) Adaptive throttle controller for vehicle traction control
JP4061908B2 (en) Vehicle speed control device
JP2010133488A (en) Device and method of controlling slip of torque converter
JP3901852B2 (en) Clutch control device
JPH07164925A (en) Method and device for controlling driving unit of vehicle
JP3503187B2 (en) Vehicle speed control device
JP3711927B2 (en) Control device for hybrid vehicle
JP5299256B2 (en) Control device for right / left driving force adjusting device for vehicle
JPH0617684A (en) Method for controlling acceleration of automobile
JP2004343926A (en) Driving force controlling device for vehicle
JP3498578B2 (en) Control device for continuously variable transmission
JPH0324575B2 (en)
JP2004276669A (en) Driving force control device of vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3988468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees