JP3988087B2 - Multilayer wiring board - Google Patents

Multilayer wiring board Download PDF

Info

Publication number
JP3988087B2
JP3988087B2 JP09995496A JP9995496A JP3988087B2 JP 3988087 B2 JP3988087 B2 JP 3988087B2 JP 09995496 A JP09995496 A JP 09995496A JP 9995496 A JP9995496 A JP 9995496A JP 3988087 B2 JP3988087 B2 JP 3988087B2
Authority
JP
Japan
Prior art keywords
wiring board
temperature
weight
multilayer wiring
comparative example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09995496A
Other languages
Japanese (ja)
Other versions
JPH09286664A (en
Inventor
光一郎 栗原
隆 坪井
博之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP09995496A priority Critical patent/JP3988087B2/en
Publication of JPH09286664A publication Critical patent/JPH09286664A/en
Application granted granted Critical
Publication of JP3988087B2 publication Critical patent/JP3988087B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回路基板、特に多層配線基板に用いられる誘電体材料に関する。
【0002】
【従来の技術】
半導体及び回路部品の高密度集積化に伴い、部品を小型化できる多層配線基板が多く用いられるようになってきている。多層配線基板は、一般に誘電体シートの表面に導電材料を印刷し、これを磁器の焼結と同時に焼成し一体化することにより製造されるものであり、誘電体材料としては従来主にアルミナ系セラミックスが使用されてきた。ところがアルミナは絶縁性、機械的強度には優れているが、焼結温度が1500℃以上と高いために、誘電体と導電層の形成を同時に行うには導電層としてアルミナよりも融点の高いMoやW等の高融点金属を用いていた。しかし、MoやWは電気抵抗が比較的高く導通を確保するためには、導電層の厚みや幅を大きく取る必要があり、基板の小型化、高密度化が困難であるという問題点を有していた。
【0003】
そこで、導電層材料として融点が比較的低いが電気抵抗の低いAg、Au、Cu等を用いるために900℃以下で焼成可能な誘電体材料の開発が進められてきた。
従来、900℃以下で焼成可能な多層配線基板に用いる誘電体材料として、例えば、特開昭64−45743号公報には、SiO2:35〜65wt%、Al23:1〜20wt%、MgO+CaO+SrO+BaO:1〜30wt%、Li2O+Na2O+K2O:0〜15wt%、PbO:1.5〜55wt%、ZnO:0〜10wt%、ZrO2+TiO2:0〜10wt%、B23:0〜0.9wt%からなるガラス粉末を35〜95wt%とセラミック粉末を5〜65wt%、酸化剤を0〜10wt%からなるガラスセラミックス複合材料が提案されており、ガラス成分中のPbOやLi2O、Na2O、K2Oの作用により低温で緻密化させている。
【0004】
また、特公昭63−201036号公報には、SiO2:30〜55wt%、Al23:1〜15wt%、B23:15〜25wt%、MgO+CaO+BaO:15〜40wt%、ZnO:1〜15wt%、ZrO2:0.5〜5wt%、からなるガラス粉末とセラミック粉末からなるガラスセラミックス複合材料が提案されており、ガラス成分中のB23の作用により低温で緻密化させている。
さらに、特開平1−141837号公報には,MgO:20〜40wt%、B23:10〜30wt%、SiO2:10〜35wt%、BaO:5〜22wt%、ZrO2:5〜20wt%、Al23:2〜15wt%、CaO:0〜5wt%の比率で含有するガラスと前記ガラスを予め熱処理して結晶化させたセラミックスからなる誘電体材料が開示されている。
【0005】
【発明が解決しようとする課題】
しかし、従来のガラスセラミック複合材料では、焼成時の昇温中にガラス成分の流動性を利用した緻密化(焼成)が開始する温度と最高到達温度である終了温度の差は200℃程度あり、900℃で緻密化する場合、700℃近傍から収縮が開始する。従って、従来のガラスセラミック複合材料での多層基板の製造工程の脱バインダー工程において、前記700℃以下つまり緻密化開始温度以下で十分脱バインダーを行うことが必要であるが、比較的熱分解しやすいアクリル系のバインダーを用いて、長時間かけて脱バインダーを行った場合でも完全に脱バインダーすることは非常に困難であり、残留したカーボンの影響により基板強度が劣化したり、内部配線導体の収縮異常による断線が発生するという問題点があった。
そこで、本発明は信頼性の高い多層基板を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記問題点を解決するために、酸化物系誘電体材料であって、
Al23を3.0〜8.0重量%、SiO2を9.0〜29.0重量%、B23を7.0〜10.5重量%、MgOを20.0〜30.5重量%、CaOを4.5〜24.0重量%、BaOを16.0〜24.5重量%含有することを特徴とする誘電体材料である。
また誘電体と内部電極を含む多層基板において、誘電体は酸化物系誘電体材料であって、Al23を3.0〜8.0重量%、SiO2を9.0〜29.0重量%、B23を7.0〜10.5重量%、MgOを20.0〜30.5重量%、CaOを4.5〜24.0重量%、BaOを16.0〜24.5重量%含有し、内部電極はAg、AuまたはCuの少なくとも1種であることを特徴とする多層配線基板である。
【0007】
本発明において、Al23は機械的強度を向上するが、多すぎると焼結温度が高くなる。Al23の含有量が3.0重量%未満では焼成体の緻密化が不十分で抗折強度が低下する(比較例、表2資料番号32参照)。また、8.0重量%を越えると900℃では緻密化せず、焼成不可能である(比較例、表2資料番号26参照)。より好ましいAl23の範囲は5.0%〜6.0%である。
SiO2は含有量が多くても少なくても焼成温度が高くなる。SiO2の含有量が9.0重量%未満ではガラスの結晶化が速まり、焼成性が悪化し1000℃を越えても焼成不可能である(比較例、表2資料番号33参照)。また、29.0重量%を越えると結晶化が遅くなり焼成温度が高くなり、900℃では緻密化しない(比較例、表2資料番号27参照)。より好ましいSiO2の範囲は12%〜25%である。
23の添加はガラスの流動性を低下させ、低温焼成において、緻密化させる効果がある。B23の含有量が7.0重量%未満では低温でのガラス化が困難となり、また10.5重量%を越えると900℃では緻密化せず、強度が不足または焼成不可能である。(比較例、表2試料番号28、29参照)より好ましいB23の範囲は8%〜10%である。
【0008】
MgOの含有量が20.0重量%未満では焼結可能な温度の幅が狭く焼成温度が高くなり、900℃では緻密化しない。(比較例、表2試料番号30参照)また、30.5重量%を越えると焼成体の抗折強度が低下する(比較例、表2資料番号34参照)。より好ましいMgOの範囲は22%〜28%である。
CaOの含有量が4.5重量%未満では焼成温度が高くなり、900℃では緻密化しない(比較例、表2試料番号35参照)。また、24.0重量%を越えると焼成体の抗折強度が低下する(比較例、表2試料番号36参照)。より好ましいCaOの範囲は6%〜22%である。
BaOの含有量が16.0重量%未満では焼成温度が高くなり、900℃では緻密化しない(比較例、表2試料番号31参照)。また、24.5重量%を越えると焼成体の抗折強度が低下する(比較例、表2試料番号37参照)。より好ましいBaOの範囲は18%〜22%である。
【0009】
原料粉末は全て酸化物を用いても良いが、容易に入手でき、品質の経時変化や耐湿性を考慮すると、CaOはCaCO3(炭酸カルシウム)、BaOはBaCO3(炭酸バリウム)、B23はH3BO3(ホウ酸)で供給するのが適当である。
原料粉末は微細な方が原子間の移動、拡散が起こりやすく、一次粒子の粒径は1μm以下が好ましい。但し、ホウ酸のように水に可溶のものはボールミルでの混合時に溶解してしまうので特に粒径を考慮する必要はない。
【0010】
【発明の実施の形態】
以下に、実施例に基づいて、詳述する。
(実施例)
酸化物換算で表1の試料番号1から25に示すような組成になるように、Al23、SiO2、CaCO3、BaCO3、MgO、H3BO3の原料粉末を合計で1kgになるように秤量した。これらを5リットルのボールミルポットに入れて、純水を加えて20時間ボールミル混合を行った。次にポットからスラリーを取り出し、ステンレス製のバットに移し、乾燥機中、120℃で水分を蒸発させた。乾燥固化した混合粉を乳鉢で解砕し、アルミナ製のこう鉢の中に入れて大気中、800℃で2時間の熱処理(仮焼)を行った。
【0011】
前記熱処理した粉末に、有機バインダーとしてPVB(ポリビニルブチラール)、可塑剤としてBPBG(ブチルフタリルブチルグリコレート)、有機溶剤としてエタノールおよびブタノールを各々添加してボールミルで混合し、スラリーを作成した。このスラリーをドクターブレード法によりシリコン処理を行ったポリエステル製のキャリアフィルム上に厚さ100μmのシート状に形成した。これをフィルムから剥離し、約50mm角のシートに切断し、所定の導電パターンをAgペーストにより印刷した。位置合わせ用のガイド穴が設けられているステンレス製の枠にシートを貼り付けた。上記グリーンシートが貼り付けられた枠を、位置合わせ用のガイドピンが設けられている穴明け金型に、前記枠のガイド穴を合わせてセットし、所定の位置にスルーホールを形成した。
【0012】
次に、スルーホールが形成されたグリーンシートに、前記と同様にガイドピンとガイド穴による位置合わせ方法により、スルーホールの位置に対して所定の導体パターンの位置が合うように、Agペーストにより導電パターンを印刷した。
次に、前記印刷されたグリーンシートを、前記と同様にガイドピン、ガイド穴を用いた位置合わせ方法により、所定の大きさに切断し、積層金型内に、成形体内部の導電パターンが目的とする構造になるように積み重ねた。
次に、これら積み重ねたグリーンシートを、温度120℃、圧力200kg/cm2の条件で熱圧着し、積層体を作製した。
これを、大気中、600℃で脱バインダーを行い、続いて、900℃で1時間焼成した。試料番号1の収縮挙動を図1に示す。焼成体の比誘電率とQ(品質係数)を表1に記している。
【0013】
【表1】

Figure 0003988087
【0014】
さらに、Ag−Pdを主成分とする表面電極を塗布し、800℃で焼き付け、電子部品搭載用多層基板を得た。
前記基板を3点曲げ試験(スパン:20mm)により、抗折強度の評価をしたところ、表1のA列に示すように、1900kg/cm2以上であり、基板として実用できることを確認した。
【0015】
(実施例2)
前記実施例1と同様の材料、方法で積層体を得た後、焼成後に3.2mm×1.6mmになるように切断機でチップ形状に切り離した。
これを、大気中、500℃で脱バインダーを行い、続いて、900℃で1時間焼成した。次に、バレル研磨により焼成体の稜部の面取りを行った。
さらに、Agを主成分とするペーストを端子電極部分に塗布し、800℃で焼き付けた。
最後に、この端子電極上に電解バレルめっきにより、Niめっきおよび半田めっきを施し、積層チップ部品を得た。
前記積層チップ部品を3点曲げ試験(スパン:2mm)により、抗折強度評価したところ、表1のB列に示すように、1900kg/cm2以上で積層チップ部品の基板として実用できることを確認した。
【0016】
(実施例3)
前記実施例1と同様の材料で、導電パターンにはCuペーストを用いて積層体を作製した後、切断機でチップ形状に切り離した。
これを、窒素−水素−水蒸気の混合雰囲気中、600℃で脱バインダーを行い、続いて、900℃で1時間焼成した。次に、バレル研磨により焼成体の稜部の面取りを行った。
さらに、Cuを主成分とするペーストを端子電極部分に塗布し、窒素−水素−水蒸気の混合雰囲気中、800℃で焼き付けた。
最後に、この端子電極上に電解バレルめっきにより、Niめっきおよび半田めっきを施し、積層チップ部品を得た。
前記積層チップ部品を3点曲げ試験(スパン:2mm)により、抗折強度評価したところ、表1のC列に示すように、1900kg/cm2以上で積層チップ部品の基板として実用できることを確認した。
【0017】
(比較例)
酸化物換算で表2の試料番号26から37に示すような本発明の組成範囲からはずれる比較例の組成になるように、Al23、SiO2、CaCO3、BaCO3、MgO、H3BO3の原料粉末を合計で1kgになるように秤量した。これらを5リットルのボールミルポットに入れて、純水を加えて20時間ボールミル混合を行った。次にポットからスラリーを取り出し、ステンレス製のバットに移し、乾燥機中、120℃で水分を蒸発させた。乾燥固化した混合粉を乳鉢で解砕し、アルミナ製のこう鉢の中に入れて大気中、800℃で2時間の熱処理(仮焼)を行った。
【0018】
【表2】
Figure 0003988087
【0019】
前記熱処理した粉末に、有機バインダーとしてPVB(ポリビニルブチラール)、可塑剤としてBPBG(ブチルフタリルブチルグリコレート)、有機溶剤としてエタノールおよびブタノールを各々添加してボールミルで混合し、スラリーを作成した。このスラリーをドクターブレード法によりシリコン処理を行ったポリエステル製のキャリアフィルム上に厚さ100μmのシート状に形成した。これをフィルムから剥離し、約50mm角のシートに切断し、所定の導電パターンをAgペーストにより印刷した。位置合わせ用のガイド穴が設けられているステンレス製の枠にシートを貼り付けた。上記グリーンシートが貼り付けられた枠を、位置合わせ用のガイドピンが設けられている穴明け金型に、前記枠のガイド穴を合わせてセットし、所定の位置にスルーホールを形成した。
【0020】
次に、スルーホールが形成されたグリーンシートに、前記と同様にガイドピンとガイド穴による位置合わせ方法により、スルーホールの位置に対して所定の導体パターンの位置が合うように、Agペーストにより導電パターンを印刷した。
次に、前記印刷されたグリーンシートを、前記と同様にガイドピン、ガイド穴を用いた位置合わせ方法により、所定の大きさに切断し、積層金型内に、成形体内部の導電パターンが目的とする構造になるように積み重ねた。
次に、これら積み重ねたグリーンシートを、温度120℃、圧力200kg/cm2の条件で熱圧着し、積層体を作製した。
これを、大気中、600℃で脱バインダーを行い、続いて、900℃で1時間焼成した。焼成後の結果を表2に示す。本発明の組成範囲からはずれるものはいずれも健全な焼結体を得ることは出来なかった。
【0021】
【発明の効果】
本発明によると基板の焼成による収縮挙動は図1に示すように850℃近傍まで収縮はほとんど起こっていない。このため、多層基板でしばしば問題となる脱バインダー不十分による特性不良が発生しにくい。即ち、収縮前にバインダーがほとんど全て分解、酸化するため、焼成体の密度は十分上がり、基板の強度を得られ、かつ、内部配線導体の収縮異常は起こらないため、断線不良は発生しない。更に、前記理由に加えて、PbO等の還元されやすい金属酸化物を含有しないため、大気中に比べて、脱バインダーが困難な非酸化性の雰囲気でもバインダーを十分分解できる。
本発明によれば、900℃以下で焼成できるため、内部回路導体をAg100%にすることができる。また、還元されやすい材料を含まないため、非酸化雰囲気中で焼成すれば、Cu100%の内部回路導体も使用できる。従って、配線回路の電気抵抗を小さくでき、高電流やマイクロ波等の高周波への対応が可能となる。
また、鉛含有物を使用しないため、生産に従事する者に対する健康の管理、環境の整備は不要であり、粉塵や廃液の処理など設備的な投資も不要である。
更に、アルカリ金属を含まないため、絶縁された配線同士の絶縁抵抗の劣化が起こらず高い信頼性が得られる。
【図面の簡単な説明】
【図1】本発明における成形体の収縮挙動を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric material used for a circuit board, particularly a multilayer wiring board.
[0002]
[Prior art]
Along with the high density integration of semiconductors and circuit components, a multilayer wiring board capable of miniaturizing components is often used. Multi-layer wiring boards are generally manufactured by printing a conductive material on the surface of a dielectric sheet and firing and integrating it with the sintering of the porcelain. Ceramics have been used. However, although alumina is excellent in insulation and mechanical strength, the sintering temperature is as high as 1500 ° C. or higher. Therefore, in order to form a dielectric and a conductive layer simultaneously, Mo having a melting point higher than that of alumina is used as a conductive layer. Or high melting point metals such as W were used. However, since Mo and W have relatively high electrical resistance, it is necessary to increase the thickness and width of the conductive layer in order to ensure conduction, and it is difficult to reduce the size and density of the substrate. Was.
[0003]
Accordingly, development of dielectric materials that can be fired at 900 ° C. or lower has been advanced in order to use Ag, Au, Cu or the like having a relatively low melting point but a low electrical resistance as the conductive layer material.
Conventionally, as a dielectric material used for a multilayer wiring board that can be fired at 900 ° C. or lower, for example, JP-A No. 64-45743 discloses SiO 2 : 35 to 65 wt%, Al 2 O 3 : 1 to 20 wt%, MgO + CaO + SrO + BaO: 1 to 30 wt%, Li 2 O + Na 2 O + K 2 O: 0 to 15 wt%, PbO: 1.5 to 55 wt%, ZnO: 0 to 10 wt%, ZrO 2 + TiO 2 : 0 to 10 wt%, B 2 O 3 : A glass-ceramic composite material composed of 35 to 95 wt% of glass powder composed of 0 to 0.9 wt%, 5 to 65 wt% of ceramic powder, and 0 to 10 wt% of an oxidizer has been proposed. It is densified at low temperature by the action of Li 2 O, Na 2 O, and K 2 O.
[0004]
Japanese Patent Publication No. 63-201036 discloses SiO 2 : 30 to 55 wt%, Al 2 O 3 : 1 to 15 wt%, B 2 O 3 : 15 to 25 wt%, MgO + CaO + BaO: 15 to 40 wt%, ZnO: 1 A glass-ceramic composite material composed of glass powder and ceramic powder composed of ˜15 wt% and ZrO 2 : 0.5 to 5 wt% has been proposed, and is densified at low temperature by the action of B 2 O 3 in the glass component. Yes.
Furthermore, Japanese Patent Laid-Open No. 1-141837 discloses MgO: 20 to 40 wt%, B 2 O 3 : 10 to 30 wt%, SiO 2 : 10 to 35 wt%, BaO: 5 to 22 wt%, ZrO 2 : 5 to 20 wt. %, Al 2 O 3 : 2 to 15 wt%, CaO: 0 to 5 wt%, and a dielectric material made of ceramics obtained by heat-treating the glass in advance and crystallized.
[0005]
[Problems to be solved by the invention]
However, in the conventional glass ceramic composite material, the difference between the temperature at which densification (firing) utilizing the fluidity of the glass component starts during the temperature rise during firing and the end temperature, which is the highest temperature, is about 200 ° C. In the case of densification at 900 ° C., shrinkage starts from around 700 ° C. Accordingly, it is necessary to sufficiently remove the binder at a temperature not higher than 700 ° C., that is, not higher than the densification start temperature, in the debinding step of the manufacturing process of the multilayer substrate with the conventional glass ceramic composite material. Even if the binder is removed over a long period of time using an acrylic binder, it is very difficult to remove the binder completely. The strength of the substrate deteriorates due to the residual carbon, and the internal wiring conductor shrinks. There was a problem that disconnection due to abnormality occurred.
Therefore, an object of the present invention is to provide a highly reliable multilayer substrate.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides an oxide-based dielectric material,
Al 2 O 3 of 3.0 to 8.0 wt%, a SiO 2 9.0 to 29.0 wt%, B 2 O 3 and 7.0 to 10.5 wt%, the MgO from 20.0 to 30 It is a dielectric material characterized by containing 0.5 wt%, CaO 4.5 to 24.0 wt%, and BaO 16.0 to 24.5 wt%.
In the multilayer substrate including the dielectric and the internal electrode, the dielectric is an oxide-based dielectric material, and Al 2 O 3 is 3.0 to 8.0 wt%, and SiO 2 is 9.0 to 29.0. Wt%, B 2 O 3 7.0 to 10.5 wt%, MgO 20.0 to 30.5 wt%, CaO 4.5 to 24.0 wt%, BaO 16.0 to 24. The multilayer wiring board is characterized by containing 5% by weight and the internal electrode is at least one of Ag, Au, or Cu.
[0007]
In the present invention, Al 2 O 3 improves the mechanical strength, but if it is too much, the sintering temperature increases. When the content of Al 2 O 3 is less than 3.0% by weight, the sintered body is insufficiently densified and the bending strength is lowered (see Comparative Example, Table 2, Material No. 32). On the other hand, if it exceeds 8.0% by weight, it is not densified at 900 ° C. and cannot be baked (see Comparative Example, Table 2, Material No. 26). A more preferable range of Al 2 O 3 is 5.0% to 6.0%.
Even if the content of SiO 2 is large or small, the firing temperature becomes high. When the content of SiO 2 is less than 9.0% by weight, the crystallization of the glass is accelerated, the calcination property is deteriorated, and even when the temperature exceeds 1000 ° C., it cannot be baked (see Comparative Example, Table 2, Material No. 33). On the other hand, if it exceeds 29.0% by weight, the crystallization is slowed and the firing temperature is increased, and it is not densified at 900 ° C. (see Comparative Example, Table 2, Material No. 27). A more preferable range of SiO 2 is 12% to 25%.
Addition of B 2 O 3 has the effect of reducing the fluidity of the glass and densifying it at low temperature firing. If the content of B 2 O 3 is less than 7.0% by weight, vitrification at low temperature becomes difficult, and if it exceeds 10.5% by weight, it does not become densified at 900 ° C., and the strength is insufficient or cannot be fired. . (Refer to Comparative Example, Table 2, Sample Nos. 28 and 29) A more preferable range of B 2 O 3 is 8% to 10%.
[0008]
If the content of MgO is less than 20.0% by weight, the temperature range for sintering is narrow and the firing temperature is high, and at 900 ° C., it is not densified. (Refer to Comparative Example, Table 2, Sample No. 30) Further, if it exceeds 30.5% by weight, the bending strength of the fired body decreases (Comparative Example, see Table 2, Material No. 34). A more preferable range of MgO is 22% to 28%.
When the CaO content is less than 4.5% by weight, the firing temperature is high, and when the CaO content is 900 ° C., it is not densified (see Comparative Example, Sample No. 35 in Table 2). On the other hand, if it exceeds 24.0% by weight, the bending strength of the fired product is lowered (see Comparative Example, Table 2, Sample No. 36). A more preferable range of CaO is 6% to 22%.
When the content of BaO is less than 16.0% by weight, the firing temperature is high, and at 900 ° C., it is not densified (see Comparative Example, Sample No. 31 in Table 2). On the other hand, if it exceeds 24.5% by weight, the bending strength of the fired body is lowered (see Comparative Example, Table 2, Sample No. 37). A more preferable range of BaO is 18% to 22%.
[0009]
Oxides may be used for all raw material powders, but they are easily available, and considering the quality change with time and moisture resistance, CaO is CaCO 3 (calcium carbonate), BaO is BaCO 3 (barium carbonate), B 2 O. 3 is suitably supplied as H 3 BO 3 (boric acid).
The finer the raw material powder, the easier the movement and diffusion between atoms occur, and the primary particle size is preferably 1 μm or less. However, water soluble substances such as boric acid are dissolved during mixing with a ball mill, so there is no need to consider the particle size.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Below, it explains in full detail based on an Example.
(Example)
The total raw material powder of Al 2 O 3 , SiO 2 , CaCO 3 , BaCO 3 , MgO, H 3 BO 3 is adjusted to 1 kg so as to have the composition shown in sample numbers 1 to 25 in Table 1 in terms of oxide. Weighed so that These were put into a 5 liter ball mill pot, pure water was added, and ball mill mixing was performed for 20 hours. Next, the slurry was taken out from the pot, transferred to a stainless steel vat, and water was evaporated at 120 ° C. in a dryer. The dried and solidified mixed powder was crushed in a mortar, placed in an alumina mortar, and subjected to heat treatment (calcination) at 800 ° C. for 2 hours in the air.
[0011]
To the heat-treated powder, PVB (polyvinyl butyral) as an organic binder, BPBG (butyl phthalyl butyl glycolate) as a plasticizer, and ethanol and butanol as organic solvents were added and mixed with a ball mill to prepare a slurry. This slurry was formed into a sheet having a thickness of 100 μm on a polyester carrier film subjected to silicon treatment by a doctor blade method. This was peeled from the film, cut into a sheet of about 50 mm square, and a predetermined conductive pattern was printed with an Ag paste. The sheet was attached to a stainless steel frame provided with alignment guide holes. The frame on which the green sheet was attached was set in a drilling die provided with alignment guide pins by aligning the guide holes of the frame, and through holes were formed at predetermined positions.
[0012]
Next, the conductive pattern is formed on the green sheet on which the through hole is formed using Ag paste so that the position of the predetermined conductor pattern is aligned with the position of the through hole by the alignment method using the guide pin and the guide hole as described above. Printed.
Next, the printed green sheet is cut into a predetermined size by an alignment method using guide pins and guide holes in the same manner as described above, and the conductive pattern inside the molded body is formed in the laminated mold. It was piled up so that it might become a structure.
Next, these stacked green sheets were thermocompression bonded under the conditions of a temperature of 120 ° C. and a pressure of 200 kg / cm 2 to prepare a laminate.
This was debindered at 600 ° C. in the atmosphere, and then calcined at 900 ° C. for 1 hour. The shrinkage behavior of sample number 1 is shown in FIG. Table 1 shows the relative dielectric constant and Q (quality factor) of the fired body.
[0013]
[Table 1]
Figure 0003988087
[0014]
Furthermore, the surface electrode which has Ag-Pd as a main component was apply | coated, and it baked at 800 degreeC, and obtained the multilayer substrate for electronic component mounting.
When the bending strength of the substrate was evaluated by a three-point bending test (span: 20 mm), as shown in Table A, it was 1900 kg / cm 2 or more, and it was confirmed that it could be used as a substrate.
[0015]
(Example 2)
After obtaining a laminated body with the same material and method as in Example 1, it was cut into chips by a cutting machine so that it became 3.2 mm × 1.6 mm after firing.
This was debindered at 500 ° C. in the atmosphere, and then baked at 900 ° C. for 1 hour. Next, the ridges of the fired body were chamfered by barrel polishing.
Further, a paste mainly composed of Ag was applied to the terminal electrode portion and baked at 800 ° C.
Finally, Ni plating and solder plating were performed on the terminal electrode by electrolytic barrel plating to obtain a multilayer chip component.
When the bending strength of the multilayer chip component was evaluated by a three-point bending test (span: 2 mm), it was confirmed that the multilayer chip component could be used as a substrate for the multilayer chip component at 1900 kg / cm 2 or more as shown in Table B. .
[0016]
(Example 3)
A laminate was made of the same material as in Example 1 using Cu paste as the conductive pattern, and then cut into chips by a cutting machine.
This was debindered at 600 ° C. in a nitrogen-hydrogen-water vapor mixed atmosphere, and then calcined at 900 ° C. for 1 hour. Next, the ridges of the fired body were chamfered by barrel polishing.
Further, a paste containing Cu as a main component was applied to the terminal electrode portion and baked at 800 ° C. in a mixed atmosphere of nitrogen, hydrogen, and water vapor.
Finally, Ni plating and solder plating were performed on the terminal electrode by electrolytic barrel plating to obtain a multilayer chip component.
When the bending strength of the multilayer chip component was evaluated by a three-point bending test (span: 2 mm), it was confirmed that it could be used as a substrate for the multilayer chip component at 1900 kg / cm 2 or more as shown in Table C. .
[0017]
(Comparative example)
So that the composition of Comparative Example departing from the composition range of the present invention shown from Sample No. 26 in Table 2 to 37 in terms of oxide, Al 2 O 3, SiO 2 , CaCO 3, BaCO 3, MgO, H 3 BO 3 raw material powder was weighed to a total of 1 kg. These were put into a 5 liter ball mill pot, pure water was added, and ball mill mixing was performed for 20 hours. Next, the slurry was taken out from the pot, transferred to a stainless steel vat, and water was evaporated at 120 ° C. in a dryer. The dried and solidified mixed powder was crushed in a mortar, placed in an alumina mortar, and subjected to heat treatment (calcination) at 800 ° C. for 2 hours in the air.
[0018]
[Table 2]
Figure 0003988087
[0019]
To the heat-treated powder, PVB (polyvinyl butyral) as an organic binder, BPBG (butyl phthalyl butyl glycolate) as a plasticizer, and ethanol and butanol as organic solvents were added and mixed with a ball mill to prepare a slurry. This slurry was formed into a sheet having a thickness of 100 μm on a polyester carrier film subjected to silicon treatment by a doctor blade method. This was peeled from the film, cut into a sheet of about 50 mm square, and a predetermined conductive pattern was printed with an Ag paste. The sheet was attached to a stainless steel frame provided with alignment guide holes. The frame on which the green sheet was affixed was set in a drilling die provided with alignment guide pins by aligning the guide holes of the frame, and through holes were formed at predetermined positions.
[0020]
Next, the conductive pattern is formed on the green sheet on which the through hole is formed using Ag paste so that the position of the predetermined conductor pattern is aligned with the position of the through hole by the alignment method using the guide pin and the guide hole as described above. Printed.
Next, the printed green sheet is cut into a predetermined size by the alignment method using guide pins and guide holes in the same manner as described above, and the conductive pattern inside the molded body is formed in the laminated mold. It was piled up so that it might become a structure.
Next, these stacked green sheets were thermocompression bonded under the conditions of a temperature of 120 ° C. and a pressure of 200 kg / cm 2 to produce a laminate.
This was debindered at 600 ° C. in the atmosphere, and then calcined at 900 ° C. for 1 hour. The results after firing are shown in Table 2. Anything outside the composition range of the present invention could not obtain a sound sintered body.
[0021]
【The invention's effect】
According to the present invention, the shrinkage behavior due to the baking of the substrate hardly shrinks to around 850 ° C. as shown in FIG. For this reason, characteristic failure due to insufficient binder removal, which is often a problem in multilayer substrates, is unlikely to occur. That is, since almost all the binder is decomposed and oxidized before shrinkage, the density of the fired body is sufficiently increased, the strength of the substrate can be obtained, and the shrinkage abnormality of the internal wiring conductor does not occur, so that no disconnection failure occurs. Furthermore, in addition to the above reasons, since it does not contain a metal oxide that is easily reduced, such as PbO, the binder can be sufficiently decomposed even in a non-oxidizing atmosphere in which debinding is difficult compared to the atmosphere.
According to this invention, since it can bake at 900 degrees C or less, an internal circuit conductor can be made into Ag100%. Further, since it does not contain a material that is easily reduced, an internal circuit conductor of 100% Cu can be used if fired in a non-oxidizing atmosphere. Therefore, the electrical resistance of the wiring circuit can be reduced, and it is possible to cope with high currents and high frequencies such as microwaves.
Moreover, since no lead-containing material is used, there is no need for health management and environmental maintenance for those engaged in production, and no investment in facilities such as dust and waste liquid treatment.
Furthermore, since no alkali metal is contained, the insulation resistance between the insulated wires does not deteriorate and high reliability is obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing the shrinkage behavior of a molded body in the present invention.

Claims (1)

誘電体と内部電極を含む多層基板において、誘電体は酸化物系誘電体材料であって、Al .0〜8.0重量%、SiO .0〜29.0重量%、B .0〜10.5重量%、MgO20.0〜30.5重量%、CaO6〜22重量%、BaO16.0〜24.5重量%からなり、内部電極はAg、AuまたはCuの少なくとも1種以上である多層配線基板であって、前記多層配線基板の抗折強度が1900kg/cm以上であることを特徴とする多層配線基板。In the multilayer substrate including the dielectric and the internal electrode, the dielectric is an oxide-based dielectric material, and Al 2 O 3 3 . 0 to 8.0% by weight, SiO 2 9 . 0 to 29.0% by weight, B 2 O 3 7 . 0 to 10.5 wt%, Mg O2 from 0.0 to 30.5 wt%, Ca O6 through 22 wt%, consists of Ba O1 6.0 to 24.5 wt%, the internal electrode Ag, and Au, or Cu A multilayer wiring board which is at least one kind, wherein the multilayer wiring board has a bending strength of 1900 kg / cm 2 or more.
JP09995496A 1996-04-22 1996-04-22 Multilayer wiring board Expired - Lifetime JP3988087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09995496A JP3988087B2 (en) 1996-04-22 1996-04-22 Multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09995496A JP3988087B2 (en) 1996-04-22 1996-04-22 Multilayer wiring board

Publications (2)

Publication Number Publication Date
JPH09286664A JPH09286664A (en) 1997-11-04
JP3988087B2 true JP3988087B2 (en) 2007-10-10

Family

ID=14261096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09995496A Expired - Lifetime JP3988087B2 (en) 1996-04-22 1996-04-22 Multilayer wiring board

Country Status (1)

Country Link
JP (1) JP3988087B2 (en)

Also Published As

Publication number Publication date
JPH09286664A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
JP4883228B2 (en) Low-temperature sintered ceramic sintered body and multilayer ceramic substrate
WO2010079696A1 (en) Ceramic material for low-temperature sintering, and ceramic substrate
WO2010092969A1 (en) Low temperature cofired ceramic material and ceramic substrate
JP2003040668A (en) Low temperature fired ceramic sintered compact and its manufacturing method and wiring board
JP4577461B2 (en) Conductive paste composition and multilayer capacitor
JP4610114B2 (en) Manufacturing method of ceramic wiring board
JP3988087B2 (en) Multilayer wiring board
JP2006256956A (en) Glass ceramic sintered compact and circuit member for microwave
JP4028810B2 (en) Manufacturing method of multilayer wiring board
JP2657008B2 (en) Metallized composition for ceramics
JP2000034136A (en) Glass ceramic sintered compact, its production and glass ceramic wiring board using the same sintered compact and its production
JPH11330705A (en) Substrate containing capacitor and manufacture thereof
JPH11102835A (en) Laminated ceramic electronic component and manufacture thereof
JP2004256346A (en) Glass-ceramic composition, glass-ceramic sintered compact, its producing method, wiring board using the sintered compact body, and its mounting structure
JP2020015635A (en) Ceramic composition and electronic component using the same
JP2005285968A (en) Capacitor built-in glass ceramic multilayer wiring board
JP3426820B2 (en) Copper metallized composition and method for producing glass ceramic wiring board using the same
JP2002043759A (en) Multilayer wiring board
JPH11157945A (en) Production of ceramic electronic part and green sheet for dummy used therefor
JP2002353626A (en) Multilayer wiring board and method of manufacturing the same
JP3850245B2 (en) Manufacturing method of glass ceramic substrate
JP3872282B2 (en) Manufacturing method of glass ceramic substrate
JP4906258B2 (en) Wiring board and manufacturing method thereof
JPH1125754A (en) Manufacture of copper-metallized composition and glass-ceramic substrate
JP2001233677A (en) Method for producing glass ceramic substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

EXPY Cancellation because of completion of term