JP3986984B2 - Calibration method for catalytic combustion type hydrogen sensor - Google Patents

Calibration method for catalytic combustion type hydrogen sensor Download PDF

Info

Publication number
JP3986984B2
JP3986984B2 JP2003067141A JP2003067141A JP3986984B2 JP 3986984 B2 JP3986984 B2 JP 3986984B2 JP 2003067141 A JP2003067141 A JP 2003067141A JP 2003067141 A JP2003067141 A JP 2003067141A JP 3986984 B2 JP3986984 B2 JP 3986984B2
Authority
JP
Japan
Prior art keywords
hydrogen
gas
concentration
aging
catalytic combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003067141A
Other languages
Japanese (ja)
Other versions
JP2004279063A (en
Inventor
孝 佐々木
泰 児島
卓志 斉藤
強 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003067141A priority Critical patent/JP3986984B2/en
Publication of JP2004279063A publication Critical patent/JP2004279063A/en
Application granted granted Critical
Publication of JP3986984B2 publication Critical patent/JP3986984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば燃料電池車両等に搭載される接触燃焼式水素センサの較正方法に関する。
【0002】
【従来の技術】
従来、例えば白金等の触媒からなるガス検出素子と温度補償素子とを一対備え、被検出ガスが白金等の触媒に接触した際の燃焼により発生する熱によってガス検出素子が相対的に高温の状態になったときに、例えば雰囲気温度下等の相対的に低温の状態の温度補償素子との間に生じる電気抵抗値の差異に応じて、被検出ガスの濃度を検出する接触燃焼式のガスセンサが知られている。
そして、このような接触燃焼式のガスセンサに具備される触媒を活性化させる方法として、例えばパラジウムを含む触媒粉末に所定ガス雰囲気中で加熱処理を行うことで触媒粉末の残留塩素を除去すると共に、加熱処理後の触媒を具備するガス検出素子に所定ガスを含む空気中で所定時間に亘って所定電圧を印加する通電エージングを行う方法が知られている(例えば、特許文献1参照)。
また、接触燃焼式のガスセンサの所望の被検出ガスに対するガス選択性を向上させる方法として、例えばパラジウムを含む触媒を具備するガス検出素子に所定ガス雰囲気中で加熱処理を行うことで触媒中の残留塩素を除去すると共に触媒金属を還元し、さらに、酸素または空気中で所定時間に亘る加熱処理を行うことで触媒金属を酸化し、所望の被検出ガスに対する酸化燃焼能力を向上させる方法が知られている(例えば、特許文献2参照)。
【0003】
【特許文献1】
特開平9−318582号公報
【特許文献2】
特開平10−73557号公報
【0004】
【発明が解決しようとする課題】
ところで、上述したような接触燃焼式のガスセンサのうち水素ガスを検出対象とする接触燃焼式水素センサは、通電状態で所定濃度(例えば、雰囲気ガスの全体積中における水素ガスの体積の比率として数%等)の水素ガスに曝されることで検出基準値、いわゆるゼロ点がずれてしまったり、感度低下や感度上昇等の感度変化が生じる場合があり、水素ガス濃度を精度良く検出することが困難になる虞がある。
本発明は上記事情に鑑みてなされたもので、感度調整やゼロ点調整等の較正処理以後の実装状態でゼロ点変動や感度変化が生じてしまうことを抑制し、水素ガス濃度を精度良く検出することが可能な接触燃焼式水素センサの較正方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決して係る目的を達成するために、請求項1に記載の本発明の接触燃焼式水素センサの較正方法は、検出素子の触媒に接触する水素ガスの燃焼に応じて生じる前記検出素子と補償素子との電気抵抗値の差異に基づき水素濃度を検出する接触燃焼式水素センサの較正方法であって、前記検出素子および前記補償素子に通電した状態で所定時間に亘って所定水素濃度のエージング用ガスを供給し、所望の程度のゼロ点変動や感度変化を発生させた(例えば、実施の形態でのステップS01〜ステップS05)後に前記通電を終了し、既知水素濃度の較正用ガス雰囲気中にて通電状態で較正を行う(例えば、実施の形態でのステップS06)ことを特徴としている。
【0006】
上記の接触燃焼式水素センサの較正方法によれば、既知水素濃度の較正用ガスによって接触燃焼式水素センサの感度調整や検出基準点(いわゆるゼロ点)の調整等の較正を行う前段階において、所定水素濃度のエージング用ガスを例えば水素濃度に応じた所定時間に亘って通電状態の検出素子および補償素子に供給することで、予め所望の程度のゼロ点変動や感度変化を発生させることができ、例えば感度調整やゼロ点調整の較正処理以後の実装状態で接触燃焼式水素センサのゼロ点変動や感度変化が生じてしまうことを抑制することができる。
【0007】
さらに、請求項2に記載の本発明の接触燃焼式水素センサの較正方法は、前記所定水素濃度は前記エージング用ガスの全体積中における水素ガスの体積の比率が10〜100%となる濃度であり、前記所定時間は1秒〜3分であることを特徴としている。
【0008】
上記の接触燃焼式水素センサの較正方法によれば、エージング用ガスの供給を継続する時間が過剰に長くなることを防止して、所望の程度のゼロ点変動や感度変化を容易かつ効率よく発生させることができる。
ここで、所定水素濃度が、エージング用ガスの全体積中における水素ガスの体積の比率が10%未満となる濃度になると、所望の程度のゼロ点変動や感度変化を発生させるために要する時間が過剰に長くなってしまうという問題が生じる。また、所定時間が1秒未満であると、所望の程度のゼロ点変動や感度変化を発生させることが困難となり、一方、所定時間が3分を超えると、不必要にエージング用ガスを供給することになり、効率よくエージング処理を行うことができなくなる。
【0009】
【発明の実施の形態】
以下、本発明の一実施形態に係る接触燃焼式水素センサの較正方法について添付図面を参照しながら説明する。
本実施形態に係る接触燃焼式水素センサは、例えば図1に示すように、燃料電池車両等の車両1の車室内においてゼロを含む所定濃度の水素を検出する水素センサ11aや、例えば図2に示すように、制御装置2と、記憶装置3と、警報装置4と、車両1の動力源とされる燃料電池5と、燃料電池5に接続された各配管6,7,8,9とを備える燃料電池システム10において、酸素極側の出口側配管9に具備される水素センサ11bとされている。
【0010】
なお、制御装置2は、例えば、車両1のルーフ1aに取り付けられた水素センサ11aおよび燃料電池5の酸素極側の出口側配管9に取り付けられた水素センサ11bに接続され、各水素センサ11a,11bから出力される検出信号と、記憶装置3に格納されている所定の判定閾値との比較結果に応じて、燃料電池5の異常状態が発生しているか否かを判定し、異常状態であると判定した際には、警報装置4によって警報等を出力する。ここで、記憶装置3は、各水素センサ11a,11bの検出値(出力)に対する所定の判定閾値のマップ等を記憶している。
【0011】
燃料電池5は、例えば電気自動車等の動力源として車両1に搭載されており、例えば陽イオン交換膜等からなる固体高分子電解質膜を燃料極と酸素極で挟持した電解質電極構造体を、更に一対のセパレータで挟持してなる燃料電池セル(図示略)を多数組積層して構成されている。
燃料極に入口側配管6から供給された水素などの燃料ガスにより、燃料極の触媒電極上で水素がイオン化され、適度に加湿された固体高分子電解質膜を介して酸素極へと移動する、その間に生じた電子が外部回路に取り出され、直流の電気エネルギとして利用される。酸素極には、例えば、酸素などの酸化剤ガスあるいは空気が入口側配管7を介して供給されているために、この酸素極において、水素イオン、電子及び酸素が反応して水が生成される。そして、燃料極側、酸素極側共に出口側配管8、9から反応済みのいわゆるオフガスが系外に排出される。この出口側配管9の鉛直方向上部に水素センサ11bが配置され、酸素極側の出口側配管9内を流通するオフガス中に含まれる、ゼロを含む所定濃度の水素を検知できるようになっている。
【0012】
各水素センサ11a,11bは、例えば車両1のルーフ1aの前後方向つまり水平方向や、燃料電池5の出口側配管9の長手方向に沿って長い直方形状のケース21を備えている。
図3に示すように、ケース21は、例えばポリフェニレンサルファイド製であって、長手方向両端部にフランジ部22を備えている。フランジ部22にはカラー23が取り付けられており、このカラー23内にボルト24が挿入されることで、フランジ部22は、ルーフ1aに設けられた取付座(図示略)や、例えば図4に示すように、酸素極側の出口側配管9に設けられた取付座25に締め付け固定されるようになっている。
【0013】
また、例えば図4に示すように、ケース21の厚さ方向の端面には筒状部26が形成され、筒状部26の内部はガス検出室27とされ、ガス検出室27の内部側面には、内側に向かってフランジ部28が形成され、フランジ部28の内周部分がガス導入部29として開口形成されている。
そして、例えば図4に示すように、酸素極側の出口側配管9に取り付けられる水素センサ11bにおいて、筒状部26は酸素極側の出口側配管9の貫通孔9aに外側から挿通されている。この水素センサ11bにおいては、筒状部26の外周面にシール材35が取り付けられ、このシール材35が出口側配管9の貫通孔9aの内周壁に密接して気密性を確保している。
【0014】
なお、ルーフ1aに設けられた水素センサ11aは、筒状部26の先端面がルーフ1aとほぼ面一となるように設置されており、酸素極側の出口側配管9に設けられた水素センサ11bは、筒状部26の先端面が酸素極側の出口側配管9の内面とほぼ面一となるように設置されている。
【0015】
ケース21内には樹脂で封止された回路基板30が設けられ、筒状部26の内部に配置された検出素子31および温度補償素子32は回路基板30に接続されている。そして、各素子31,32は回路基板30に接続された複数、例えば4個のピン33により、ガス検出室27の底面27A上に配置されたベース34から各水素センサ11a,11bの厚さ方向に所定距離だけ離間した位置において、所定間隔を隔てて対をなすようにして配置されている。
【0016】
検出素子31は周知の素子であって、例えば図5に示すように、電気抵抗に対する温度係数が高い白金等を含む金属線のコイル31aの表面が、被検出ガスとされる水素に対して活性な貴金属(例えば、パラジウム)等からなる触媒31bを坦持するアルミナ等の坦体で被覆されて形成されている。
温度補償素子32は、被検出ガスに対して不活性とされ、例えば検出素子31と同等のコイル32aの表面がアルミナ等の坦体で被覆されて形成されている。そして、被検出ガスである水素が検出素子31の触媒31bに接触した際に生じる燃焼反応の発熱により高温となった検出素子31と、被検出ガスによる燃焼反応が発生せず検出素子31よりも低温の温度補償素子32との間に電気抵抗値の差が生ずることを利用し、雰囲気温度による電気抵抗値の変化分を相殺して水素濃度を検出することができるようになっている。
【0017】
例えば、検出素子31(抵抗値R4)及び温度補償素子32(抵抗値R3)が直列接続されてなる枝辺と、固定抵抗41(抵抗値R1)及び固定抵抗42(抵抗値R2)が直列接続されてなる枝辺とが、外部の電源43から供給される電圧に基づいて所定の基準電圧を印加する基準電圧発生回路44に対して並列に接続されてなるブリッジ回路において、検出素子31と温度補償素子32同志の接続点PSと、固定抵抗41,42同志の接続点PRとの間に、これらの接続点PS,PR間の電圧を検出する検出回路45が接続されており、さらに、検出回路45には出力回路46が接続されている。
【0018】
ここで、ガス検出室27内に導入された検査対象ガス中に被検出ガスである水素が存在しないときには、ブリッジ回路はバランスしてR1×R4=R2×R3の状態にあり、検出回路45の出力がゼロとなる。一方、水素が存在すると、検出素子31の触媒31bにおいて水素が燃焼し、コイル31aの温度が上昇し、抵抗値R4が増大する。これに対して温度補償素子32においては水素は燃焼せず、抵抗値R3は変化しない。これにより、ブリッジ回路の平衡が破れて検出回路45に、水素濃度の増大変化に応じて増大傾向に変化する適宜の電圧が印加される。この検出回路45から出力される電圧の検出値は出力回路46へ出力され、出力回路46は入力された検出値を制御装置2へ出力する。そして、制御装置2においては、この電圧の検出値の変化に応じて、後述する較正処理によって予め設定された水素濃度のマップ等に基づき、水素濃度が算出される。
【0019】
次に、上述した本実施の形態の水素センサ11a,11bを較正する方法について説明する。
接触燃焼式水素センサは、例えば使用開始時の初期段階等において、定常的な通電状態で所定濃度(例えば、雰囲気ガスの全体積中における水素ガスの体積の比率が数%となる濃度、つまり数vol%等)の水素ガスに曝されることで検出基準値、いわゆるゼロ点がずれてしまったり、感度低下や感度上昇等の感度変化が生じる場合がある。
【0020】
従って、各水素センサ11a,11bを所望の位置に実装して定常的な検出を開始する際には、例えば既知水素濃度の較正用水素ガスによって各水素センサ11a,11bの感度調整等を行う前段階において、所定水素濃度のエージング用水素ガスを、水素濃度に応じた所定時間に亘って各水素センサ11a,11bのガス検出室27内に供給し、予め適宜の程度のゼロ点変動や感度変化を発生させるエージング処理を行う。これにより、感度調整以後の実装状態で各水素センサ11a,11bのゼロ点変動や感度変化が生じてしまうことを抑制することができる。
【0021】
ここで、所定水素濃度とは、例えば大気雰囲気中の各水素センサ11a,11bのガス検出室27内にエージング用水素ガスを吹き付ける際の濃度であって、この所定水素濃度は、少なくともエージング用水素ガスの全体積中における水素ガスの体積の比率が10〜100%となる濃度、つまり10〜100vol%とされ、好ましくはエージング用水素ガスの全体積中における水素ガスの体積の比率が60〜100%となる濃度、つまり60〜100vol%とされている。
この場合、各水素センサ11a,11bのガス検出室27内での水素ガスの濃度は、吹き付けられたエージング用水素ガスに含まれる水素ガスが大気で希釈された適宜の値となる。
なお、ガス検出室27内に吹き付けるエージング用水素ガスの所定水素濃度は、各水素センサ11a,11bに対して設定される所定の上限検出濃度よりも高い値の水素濃度であってもよい。
【0022】
また、所定時間とは、少なくとも1秒〜3分の範囲以内であって、好ましくは5秒程度とされている。
なお、エージング用水素ガスの全体積中における水素ガスの体積の比率が10%未満となる濃度、つまり10vol%未満の低濃度の水素ガスでは所望の程度のゼロ点変動や感度変化を発生させるために要する時間が過剰に長くなってしまうという問題が生じ、例えばエージング用水素ガスの全体積中における水素ガスの体積の比率が1%程度となる濃度、つまり1vol%程度の水素ガスでは、数時間程度の長時間に亘ってガス検出室27内に水素ガスを供給する必要が生じる。
【0023】
すなわち、各水素センサ11a,11bの較正処理では、先ず、図6に示すステップS01において、例えば大気雰囲気中の各水素センサ11a,11bに通電を開始する。
次に、ステップS02においては、所定水素濃度(例えば、100vol%等)のエージング用水素ガスを大気雰囲気中の各水素センサ11a,11bのガス検出室27内に吹き付ける。
そして、ステップS03においては、エージング用水素ガスの吹き付けを開始してから所定時間(例えば、5秒等)が経過したか否かを判定する。
この判定結果が「NO」の場合には、上述したステップS02に戻る。
一方、この判定結果が「YES」の場合には、ステップS04に進む。
【0024】
ステップS04においては、エージング用水素ガスの吹き付けを終了する。
そして、ステップS05においては、各水素センサ11a,11bへの通電を終了する。
これにより、例えば図7に示すように、エージング用水素ガスの吹き付け以前における各水素センサ11a,11bの感度特性(図7に示す1点鎖線A)に比べて、ゼロ点位置が高濃度側に変動すると共に、相対的に低濃度の水素ガス濃度に対する感度が上昇した感度特性(図7に示す2点鎖線B)が得られる。
このエージング処理でのゼロ点変動や感度変化は、例えばエージング用水素ガスの全体積中における水素ガスの体積の比率として0〜10000ppmの濃度において、出力が0〜3000ppm程度変化する。
【0025】
そして、ステップS06においては、例えば各水素センサ11a,11bを較正用容器(図示略)内に装着し、ゼロを含む既知濃度の較正用水素ガスを較正用容器内に充填して、各水素センサ11a,11bのゼロ点調整や感度調整等を行い、一連の処理を終了する。
これにより、エージング処理によって生じたゼロ点変動や感度変化等を含む感度特性(図7に示す2点鎖線B)は、例えば図8に示すように、水素ガス濃度と出力とが同等の値となるように適切に対応した所定の感度特性(図8に示す実線C)へと調整される。
【0026】
以下に、既知水素濃度の較正用水素ガスによって各水素センサ11a,11bの感度調整等を行う前段階において、エージング処理として、大気雰囲気中の各水素センサ11a,11bのガス検出室27内にエージング用水素ガスを吹き付ける際に、水素ガスの濃度つまりエージング用水素ガスの全体積中における水素ガスの体積の比率を変化させて各水素センサ11a,11bの出力変動を検出した実施例について説明する。
【0027】
この実施例では、例えば、エージング用水素ガスの全体積中における水素ガスの体積の比率が適宜の初期値となる初期濃度から100%に亘る複数の異なる濃度のエージング用水素ガスを大気雰囲気中で通電状態の各水素センサ11a,11bのガス検出室27内に所定時間に亘って吹き付けるエージング処理の実行前後において、既知濃度の水素ガスによって各水素センサ11a,11bの感度特性を検出した。
そして、検出した感度特性における所定の低濃度値および高濃度値に対し、エージング処理の実行前後での感度(各水素センサ11a,11bの出力)の変動を検出した。
出力変動の検出結果を図9に示した。
【0028】
図9において、所定の高濃度値での出力P1は、エージング用水素ガスの濃度が20%程度以上となった場合に変動量が増大していることがわかる。
また、所定の低濃度値での出力P2は、エージング用水素ガスの濃度が60%程度以上となった場合に変動量が増大していることがわかる。
なお、上述したように、各水素センサ11a,11bのガス検出室27内での水素ガスの濃度は、ガス検出室27内に吹き付けられたエージング用水素ガスの水素濃度が大気で希釈された適宜の値となる。
【0029】
上述したように、本実施の形態による接触燃焼式水素センサの較正方法によれば、既知水素濃度の較正用水素ガスによって各水素センサ11a,11bのゼロ点調整や感度調整等を行う前段階において、エージング処理を行うことにより、ゼロ点調整および感度調整以後の実装状態で各水素センサ11a,11bのゼロ点変動や感度変化が生じてしまうことを抑制することができる。
【0030】
なお、上述した本実施の形態においては、各素子31,32を接続してなる回路をブリッジ回路としたが、これに限定されず、例えば直列回路等のその他の回路であってもよく、検出素子31の抵抗値R4に関連した状態量として、所定接点間の電圧や電流の検出値が制御装置2へ出力されてもよい。
【0031】
【発明の効果】
以上説明したように、本発明の接触燃焼式水素センサの較正方法によれば、予め所望の程度のゼロ点変動や感度変化を発生させることができ、例えば感度調整やゼロ点調整の較正処理以後の実装状態で接触燃焼式水素センサのゼロ点変動や感度変化が生じてしまうことを抑制することができる。
さらに、請求項2に記載の本発明の接触燃焼式水素センサの較正方法によれば、エージング用ガスの供給を継続する時間が過剰に長くなることを防止して、所望の程度のゼロ点変動や感度変化を容易かつ効率よく発生させることができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係る水素センサを備える車両の要部構成図である。
【図2】 本発明の一実施形態に係る水素センサを備える燃料電池システムの要部構成図である。
【図3】 図1または図2に示す水素センサの断面図である。
【図4】 図3に示すA−A線に沿う概略断面図である。
【図5】 図1または図2に示す水素センサの回路図である。
【図6】 図1または図2に示す水素センサを較正する方法を示すフローチャートである。
【図7】 エージング処理の実行前後における水素センサの感度特性の変化を示すグラフ図である。
【図8】 エージング処理の実行後における感度調整後の水素センサの感度特性の変化を示すグラフ図である。
【図9】 エージング処理の実行前後において、既知濃度の水素ガスによって検出した感度特性における所定の低濃度値および高濃度値に対する水素センサの出力の変動を示すグラフ図である。
【符号の説明】
11a,11b 水素センサ
31 検出素子
32 温度補償素子(補償素子)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a calibration method for a catalytic combustion type hydrogen sensor mounted on, for example, a fuel cell vehicle.
[0002]
[Prior art]
Conventionally, for example, a gas detection element made of a catalyst such as platinum and a temperature compensation element are provided in a pair, and the gas detection element is in a relatively high temperature state due to heat generated by combustion when the gas to be detected contacts the catalyst such as platinum. A contact combustion type gas sensor that detects the concentration of the gas to be detected in accordance with the difference in electric resistance value generated between the temperature compensation element and the temperature compensation element in a relatively low temperature state, for example, at ambient temperature. Are known.
And as a method of activating the catalyst provided in such a catalytic combustion type gas sensor, for example, the catalyst powder containing palladium is subjected to heat treatment in a predetermined gas atmosphere to remove residual chlorine in the catalyst powder, A method of performing energization aging in which a predetermined voltage is applied to a gas detection element including a catalyst after heat treatment in air containing a predetermined gas for a predetermined time is known (see, for example, Patent Document 1).
Further, as a method for improving the gas selectivity of a catalytic combustion type gas sensor with respect to a desired gas to be detected, for example, a gas detection element having a catalyst containing palladium is subjected to a heat treatment in a predetermined gas atmosphere, thereby remaining in the catalyst. A method is known in which the catalyst metal is reduced while removing chlorine, and further, the catalyst metal is oxidized by performing a heat treatment in oxygen or air for a predetermined time to improve the oxidative combustion ability for a desired gas to be detected. (For example, refer to Patent Document 2).
[0003]
[Patent Document 1]
JP-A-9-318582 [Patent Document 2]
Japanese Patent Laid-Open No. 10-73557 [0004]
[Problems to be solved by the invention]
By the way, among the catalytic combustion type gas sensors as described above, the catalytic combustion type hydrogen sensor that detects hydrogen gas is a certain concentration (for example, the ratio of the volume of hydrogen gas in the total volume of the atmospheric gas) in the energized state. %)), The detection reference value, the so-called zero point, may shift or the sensitivity may change due to a decrease in sensitivity or an increase in sensitivity. It can be difficult.
The present invention has been made in view of the above circumstances, and suppresses the occurrence of zero point fluctuations and sensitivity changes in the mounting state after calibration processing such as sensitivity adjustment and zero point adjustment, and accurately detects the hydrogen gas concentration. It is an object of the present invention to provide a method for calibrating a catalytic combustion hydrogen sensor that can be used.
[0005]
[Means for Solving the Problems]
In order to solve the above problems and achieve the object, the calibration method for the catalytic combustion type hydrogen sensor according to claim 1 of the present invention is the detection that occurs in response to the combustion of hydrogen gas that contacts the catalyst of the detection element. A catalytic combustion type hydrogen sensor calibration method for detecting a hydrogen concentration based on a difference in electrical resistance value between an element and a compensation element, wherein a predetermined hydrogen concentration is applied over a predetermined time while the detection element and the compensation element are energized. After the aging gas is supplied and the desired degree of zero point fluctuation or sensitivity change is generated (for example, step S01 to step S05 in the embodiment), the energization is terminated, and the calibration gas having a known hydrogen concentration is obtained. Calibration is performed in an energized state in an atmosphere (for example, step S06 in the embodiment).
[0006]
According to the calibration method of the catalytic combustion type hydrogen sensor described above, in the stage before performing calibration such as sensitivity adjustment of the catalytic combustion type hydrogen sensor or adjustment of the detection reference point (so-called zero point) with a calibration gas having a known hydrogen concentration, By supplying an aging gas having a predetermined hydrogen concentration to a detection element and a compensation element that are energized for a predetermined time corresponding to the hydrogen concentration, for example, a desired degree of zero point fluctuation and sensitivity change can be generated in advance. For example, it is possible to suppress occurrence of zero point fluctuation or sensitivity change of the catalytic combustion type hydrogen sensor in the mounting state after the calibration process of sensitivity adjustment or zero point adjustment.
[0007]
Furthermore, in the calibration method for the catalytic combustion type hydrogen sensor according to the second aspect of the present invention, the predetermined hydrogen concentration is a concentration at which the ratio of the volume of hydrogen gas in the total volume of the aging gas is 10 to 100%. The predetermined time is 1 second to 3 minutes.
[0008]
According to the above calibration method of the catalytic combustion type hydrogen sensor, it is possible to easily and efficiently generate a desired degree of zero point fluctuation and sensitivity change by preventing the time for which the aging gas is continuously supplied from being excessively long. Can be made.
Here, when the predetermined hydrogen concentration reaches a concentration at which the ratio of the volume of hydrogen gas in the total volume of the aging gas is less than 10%, the time required to generate a desired degree of zero point fluctuation and sensitivity change is obtained. There arises a problem that it becomes excessively long. If the predetermined time is less than 1 second, it becomes difficult to generate a desired degree of zero point fluctuation or sensitivity change. On the other hand, if the predetermined time exceeds 3 minutes, the aging gas is unnecessarily supplied. As a result, the aging process cannot be performed efficiently.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method for calibrating a catalytic combustion type hydrogen sensor according to an embodiment of the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, for example, the contact combustion type hydrogen sensor according to the present embodiment includes a hydrogen sensor 11a for detecting a predetermined concentration of hydrogen including zero in the vehicle interior of a vehicle 1 such as a fuel cell vehicle, As shown, a control device 2, a storage device 3, an alarm device 4, a fuel cell 5 as a power source of the vehicle 1, and respective pipes 6, 7, 8, 9 connected to the fuel cell 5 In the fuel cell system 10 provided, the hydrogen sensor 11b is provided in the outlet side pipe 9 on the oxygen electrode side.
[0010]
The control device 2 is connected to, for example, a hydrogen sensor 11a attached to the roof 1a of the vehicle 1 and a hydrogen sensor 11b attached to the outlet side pipe 9 on the oxygen electrode side of the fuel cell 5, and the hydrogen sensors 11a, It is determined whether or not an abnormal state of the fuel cell 5 has occurred according to the comparison result between the detection signal output from 11b and a predetermined determination threshold value stored in the storage device 3. When it is determined that, the alarm device 4 outputs an alarm or the like. Here, the memory | storage device 3 has memorize | stored the map etc. of the predetermined determination threshold value with respect to the detected value (output) of each hydrogen sensor 11a, 11b.
[0011]
The fuel cell 5 is mounted on the vehicle 1 as a power source of, for example, an electric vehicle, and further includes an electrolyte electrode structure in which a solid polymer electrolyte membrane made of, for example, a cation exchange membrane is sandwiched between a fuel electrode and an oxygen electrode, A large number of fuel battery cells (not shown) sandwiched between a pair of separators are stacked.
Hydrogen is ionized on the catalyst electrode of the fuel electrode by a fuel gas such as hydrogen supplied from the inlet side pipe 6 to the fuel electrode, and moves to the oxygen electrode through a solid polymer electrolyte membrane that is appropriately humidified. Electrons generated in the meantime are taken out to an external circuit and used as direct current electric energy. For example, since an oxidant gas such as oxygen or air is supplied to the oxygen electrode through the inlet-side pipe 7, water is generated by reaction of hydrogen ions, electrons, and oxygen at the oxygen electrode. . Then, so-called off-gas that has been reacted is discharged out of the system from the outlet side pipes 8 and 9 on both the fuel electrode side and the oxygen electrode side. A hydrogen sensor 11b is disposed at the upper part of the outlet side pipe 9 in the vertical direction so that a predetermined concentration of hydrogen, including zero, contained in the off-gas flowing through the outlet side pipe 9 on the oxygen electrode side can be detected. .
[0012]
Each of the hydrogen sensors 11a and 11b includes, for example, a long rectangular case 21 along the longitudinal direction of the roof 1a of the vehicle 1, that is, the horizontal direction, or the longitudinal direction of the outlet side pipe 9 of the fuel cell 5.
As shown in FIG. 3, the case 21 is made of, for example, polyphenylene sulfide, and includes flange portions 22 at both ends in the longitudinal direction. A collar 23 is attached to the flange portion 22, and a bolt 24 is inserted into the collar 23, so that the flange portion 22 is attached to a mounting seat (not shown) provided on the roof 1 a, for example, in FIG. 4. As shown, it is fastened and fixed to a mounting seat 25 provided on the outlet side pipe 9 on the oxygen electrode side.
[0013]
For example, as shown in FIG. 4, a cylindrical portion 26 is formed on the end surface in the thickness direction of the case 21, and the inside of the cylindrical portion 26 is a gas detection chamber 27. The flange portion 28 is formed inwardly, and the inner peripheral portion of the flange portion 28 is formed as an opening as a gas introduction portion 29.
For example, as shown in FIG. 4, in the hydrogen sensor 11 b attached to the oxygen electrode side outlet side pipe 9, the cylindrical portion 26 is inserted from the outside into the through hole 9 a of the oxygen electrode side outlet side pipe 9. . In the hydrogen sensor 11b, a sealing material 35 is attached to the outer peripheral surface of the cylindrical portion 26, and the sealing material 35 is in close contact with the inner peripheral wall of the through hole 9a of the outlet side pipe 9 to ensure airtightness.
[0014]
The hydrogen sensor 11a provided on the roof 1a is installed such that the front end surface of the cylindrical portion 26 is substantially flush with the roof 1a, and the hydrogen sensor provided on the outlet side pipe 9 on the oxygen electrode side. 11b is installed so that the front end surface of the cylindrical portion 26 is substantially flush with the inner surface of the outlet side pipe 9 on the oxygen electrode side.
[0015]
A circuit board 30 sealed with resin is provided in the case 21, and the detection element 31 and the temperature compensation element 32 disposed inside the cylindrical portion 26 are connected to the circuit board 30. The elements 31 and 32 are connected to the circuit board 30 by a plurality of, for example, four pins 33 from the base 34 disposed on the bottom surface 27A of the gas detection chamber 27 in the thickness direction of the hydrogen sensors 11a and 11b. Are arranged so as to be paired at a predetermined interval at positions separated by a predetermined distance.
[0016]
The detection element 31 is a well-known element. For example, as shown in FIG. 5, the surface of the coil 31a of a metal wire containing platinum or the like having a high temperature coefficient with respect to electric resistance is active against hydrogen as a detection gas. It is formed by being covered with a carrier such as alumina carrying a catalyst 31b made of a noble metal (for example, palladium).
The temperature compensation element 32 is inactive with respect to the gas to be detected. For example, the surface of the coil 32a equivalent to the detection element 31 is covered with a carrier such as alumina. And the detection element 31 which became high temperature by the heat_generation | fever of the combustion reaction produced when hydrogen which is to-be-detected gas contacts the catalyst 31b of the detection element 31, and the combustion reaction by a to-be-detected gas does not generate | occur | produce rather than the detection element 31 By utilizing the fact that a difference in electrical resistance value occurs between the temperature compensation element 32 and the low temperature compensation element 32, it is possible to detect the hydrogen concentration by offsetting the change in the electrical resistance value due to the ambient temperature.
[0017]
For example, a branch formed by connecting a detection element 31 (resistance value R4) and a temperature compensation element 32 (resistance value R3) in series, a fixed resistance 41 (resistance value R1), and a fixed resistance 42 (resistance value R2) are connected in series. In the bridge circuit in which the branch edge formed is connected in parallel to the reference voltage generation circuit 44 that applies a predetermined reference voltage based on the voltage supplied from the external power supply 43, the detection element 31 and the temperature A detection circuit 45 for detecting a voltage between the connection points PS and PR is connected between the connection point PS between the compensation elements 32 and the connection point PR between the fixed resistors 41 and 42. An output circuit 46 is connected to the circuit 45.
[0018]
Here, when hydrogen, which is a gas to be detected, does not exist in the inspection target gas introduced into the gas detection chamber 27, the bridge circuit is balanced and is in a state of R1 × R4 = R2 × R3. Output is zero. On the other hand, when hydrogen is present, hydrogen burns in the catalyst 31b of the detection element 31, the temperature of the coil 31a rises, and the resistance value R4 increases. On the other hand, in the temperature compensation element 32, hydrogen does not burn and the resistance value R3 does not change. As a result, the balance of the bridge circuit is broken and an appropriate voltage is applied to the detection circuit 45 that changes in an increasing trend in response to an increasing change in the hydrogen concentration. The detection value of the voltage output from the detection circuit 45 is output to the output circuit 46, and the output circuit 46 outputs the input detection value to the control device 2. In the control device 2, the hydrogen concentration is calculated based on a hydrogen concentration map or the like set in advance by a calibration process, which will be described later, in accordance with the change in the detected voltage value.
[0019]
Next, a method for calibrating the hydrogen sensors 11a and 11b of the present embodiment described above will be described.
For example, in the initial stage at the start of use, the catalytic combustion type hydrogen sensor has a predetermined concentration (for example, a concentration at which the ratio of the volume of hydrogen gas in the total volume of the atmospheric gas is several percent, that is, several The detection reference value, the so-called zero point, may shift due to exposure to hydrogen gas (vol%, etc.), and sensitivity changes such as sensitivity reduction and sensitivity increase may occur.
[0020]
Accordingly, when the hydrogen sensors 11a and 11b are mounted at desired positions and the steady detection is started, for example, before adjusting the sensitivity of the hydrogen sensors 11a and 11b with a calibration hydrogen gas having a known hydrogen concentration. In the stage, an aging hydrogen gas having a predetermined hydrogen concentration is supplied into the gas detection chamber 27 of each of the hydrogen sensors 11a and 11b for a predetermined time corresponding to the hydrogen concentration, and an appropriate degree of zero point fluctuation or sensitivity change in advance. Aging processing that generates Thereby, it can suppress that the zero point fluctuation | variation and sensitivity change of each hydrogen sensor 11a, 11b arise in the mounting state after sensitivity adjustment.
[0021]
Here, the predetermined hydrogen concentration is, for example, the concentration at which the aging hydrogen gas is blown into the gas detection chamber 27 of each of the hydrogen sensors 11a and 11b in the air atmosphere, and this predetermined hydrogen concentration is at least the aging hydrogen. The concentration at which the volume ratio of hydrogen gas in the total volume of gas is 10 to 100%, that is, 10 to 100 vol%, preferably the volume ratio of hydrogen gas in the total volume of aging hydrogen gas is 60 to 100. %, That is, 60 to 100 vol%.
In this case, the concentration of the hydrogen gas in the gas detection chamber 27 of each of the hydrogen sensors 11a and 11b is an appropriate value obtained by diluting the hydrogen gas contained in the sprayed aging hydrogen gas in the atmosphere.
The predetermined hydrogen concentration of the aging hydrogen gas blown into the gas detection chamber 27 may be a hydrogen concentration higher than a predetermined upper limit detection concentration set for each of the hydrogen sensors 11a and 11b.
[0022]
The predetermined time is within a range of at least 1 second to 3 minutes, and preferably about 5 seconds.
Note that the concentration of the hydrogen gas in the total volume of the aging hydrogen gas is less than 10%, that is, a low concentration of hydrogen gas of less than 10 vol% causes a desired zero point fluctuation or sensitivity change. For example, the concentration of hydrogen gas in the total volume of aging hydrogen gas is about 1%, that is, several hours at a hydrogen gas concentration of about 1 vol%. It is necessary to supply hydrogen gas into the gas detection chamber 27 for a long time.
[0023]
That is, in the calibration process of the hydrogen sensors 11a and 11b, first, in step S01 shown in FIG. 6, for example, energization of the hydrogen sensors 11a and 11b in the air atmosphere is started.
Next, in step S02, aging hydrogen gas having a predetermined hydrogen concentration (for example, 100 vol%) is blown into the gas detection chamber 27 of each of the hydrogen sensors 11a and 11b in the atmospheric air.
In step S03, it is determined whether or not a predetermined time (for example, 5 seconds) has elapsed since the start of the blowing of the aging hydrogen gas.
If this determination is “NO”, the flow returns to step S 02 described above.
On the other hand, if this determination is “YES”, the flow proceeds to step S 04.
[0024]
In step S04, the blowing of the aging hydrogen gas is terminated.
And in step S05, electricity supply to each hydrogen sensor 11a, 11b is complete | finished.
Thus, for example, as shown in FIG. 7, the zero point position is on the high concentration side as compared with the sensitivity characteristics of the hydrogen sensors 11a and 11b (one-dot chain line A shown in FIG. 7) before the aging hydrogen gas is blown. A sensitivity characteristic (a two-dot chain line B shown in FIG. 7) is obtained that fluctuates and has an increased sensitivity to a relatively low hydrogen gas concentration.
The zero point fluctuation and sensitivity change in this aging process change the output by about 0 to 3000 ppm at a concentration of 0 to 10000 ppm as a ratio of the volume of hydrogen gas in the total volume of the aging hydrogen gas, for example.
[0025]
In step S06, for example, the hydrogen sensors 11a and 11b are mounted in a calibration container (not shown), and a calibration-contained hydrogen gas containing zero is filled in the calibration container. The zero point adjustment of 11a, 11b, sensitivity adjustment, etc. are performed and a series of processes are complete | finished.
As a result, the sensitivity characteristic (the two-dot chain line B shown in FIG. 7) including the zero point fluctuation and the sensitivity change caused by the aging process is equivalent to the hydrogen gas concentration and the output as shown in FIG. 8, for example. It is adjusted to a predetermined sensitivity characteristic (solid line C shown in FIG. 8) corresponding appropriately.
[0026]
Hereinafter, as a aging process, aging is performed in the gas detection chamber 27 of each of the hydrogen sensors 11a and 11b in the atmospheric atmosphere before the sensitivity adjustment of each of the hydrogen sensors 11a and 11b is performed with a calibration hydrogen gas having a known hydrogen concentration. An embodiment will be described in which the output fluctuations of the hydrogen sensors 11a and 11b are detected by changing the concentration of the hydrogen gas, that is, the ratio of the volume of the hydrogen gas in the entire volume of the aging hydrogen gas when the working hydrogen gas is blown.
[0027]
In this embodiment, for example, a plurality of aging hydrogen gases having different concentrations ranging from the initial concentration at which the volume ratio of the hydrogen gas in the entire volume of the aging hydrogen gas has an appropriate initial value to 100% are set in the atmosphere. The sensitivity characteristics of the hydrogen sensors 11a and 11b were detected by hydrogen gas having a known concentration before and after the execution of the aging process in which the hydrogen sensors 11a and 11b in the energized state were blown into the gas detection chamber 27 for a predetermined time.
And the fluctuation | variation of the sensitivity (output of each hydrogen sensor 11a, 11b) before and behind execution of an aging process was detected with respect to the predetermined | prescribed low concentration value and high concentration value in the detected sensitivity characteristic.
The detection result of the output fluctuation is shown in FIG.
[0028]
In FIG. 9, it can be seen that the amount of fluctuation of the output P1 at a predetermined high concentration value increases when the concentration of the aging hydrogen gas is about 20% or more.
It can also be seen that the output P2 at a predetermined low concentration value increases in fluctuation when the concentration of the aging hydrogen gas is about 60% or more.
As described above, the concentration of the hydrogen gas in the gas detection chamber 27 of each of the hydrogen sensors 11a and 11b is appropriately determined when the hydrogen concentration of the aging hydrogen gas blown into the gas detection chamber 27 is diluted with the atmosphere. It becomes the value of.
[0029]
As described above, according to the calibration method of the catalytic combustion type hydrogen sensor according to the present embodiment, the zero point adjustment, sensitivity adjustment, etc. of each of the hydrogen sensors 11a, 11b are performed by the calibration hydrogen gas having a known hydrogen concentration. By performing the aging process, it is possible to suppress the occurrence of zero point fluctuations and sensitivity changes of the hydrogen sensors 11a and 11b in the mounting state after the zero point adjustment and the sensitivity adjustment.
[0030]
In the above-described embodiment, the circuit formed by connecting the elements 31 and 32 is a bridge circuit. However, the circuit is not limited to this, and may be another circuit such as a series circuit. As a state quantity related to the resistance value R <b> 4 of the element 31, a detected value of a voltage or current between predetermined contacts may be output to the control device 2.
[0031]
【The invention's effect】
As described above, according to the catalytic combustion hydrogen sensor calibration method of the present invention, a desired degree of zero point fluctuation and sensitivity change can be generated in advance, for example, after sensitivity calibration and zero point adjustment calibration processing. It is possible to suppress the occurrence of zero point fluctuation and sensitivity change of the catalytic combustion type hydrogen sensor in the mounted state.
Further, according to the calibration method of the catalytic combustion type hydrogen sensor of the present invention described in claim 2, it is possible to prevent the continuation of the supply of the aging gas from being excessively long and to achieve a desired zero point fluctuation. And sensitivity change can be generated easily and efficiently.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a main part of a vehicle including a hydrogen sensor according to an embodiment of the present invention.
FIG. 2 is a configuration diagram of a main part of a fuel cell system including a hydrogen sensor according to an embodiment of the present invention.
3 is a cross-sectional view of the hydrogen sensor shown in FIG. 1 or FIG.
4 is a schematic cross-sectional view taken along line AA shown in FIG.
FIG. 5 is a circuit diagram of the hydrogen sensor shown in FIG. 1 or FIG.
FIG. 6 is a flowchart showing a method for calibrating the hydrogen sensor shown in FIG. 1 or FIG.
FIG. 7 is a graph showing changes in sensitivity characteristics of a hydrogen sensor before and after execution of an aging process.
FIG. 8 is a graph showing changes in sensitivity characteristics of the hydrogen sensor after sensitivity adjustment after execution of aging processing.
FIG. 9 is a graph showing fluctuations in the output of the hydrogen sensor with respect to a predetermined low concentration value and high concentration value in sensitivity characteristics detected by a known concentration of hydrogen gas before and after the execution of the aging process.
[Explanation of symbols]
11a, 11b Hydrogen sensor 31 Detection element 32 Temperature compensation element (compensation element)

Claims (2)

検出素子の触媒に接触する水素ガスの燃焼に応じて生じる前記検出素子と補償素子との電気抵抗値の差異に基づき水素濃度を検出する接触燃焼式水素センサの較正方法であって、
前記検出素子および前記補償素子に通電した状態で所定時間に亘って所定水素濃度のエージング用ガスを供給し、所望の程度のゼロ点変動や感度変化を発生させた後に前記通電を終了し、既知水素濃度の較正用ガス雰囲気中にて通電状態で較正を行うことを特徴とする接触燃焼式水素センサの較正方法。
A method for calibrating a catalytic combustion type hydrogen sensor for detecting a hydrogen concentration based on a difference in electrical resistance value between the detection element and the compensation element generated in response to combustion of hydrogen gas contacting a catalyst of the detection element,
An aging gas having a predetermined hydrogen concentration is supplied over a predetermined time in a state where the detection element and the compensation element are energized, and the energization is terminated after a desired degree of zero point fluctuation or sensitivity change is generated. A method for calibrating a catalytic combustion type hydrogen sensor, wherein calibration is performed in an energized state in a gas atmosphere for calibration of hydrogen concentration.
前記所定水素濃度は前記エージング用ガスの全体積中における水素ガスの体積の比率が10〜100%となる濃度であり、
前記所定時間は1秒〜3分であることを特徴とする請求項1に記載の接触燃焼式水素センサの較正方法。
The predetermined hydrogen concentration is a concentration at which the ratio of the volume of hydrogen gas in the total volume of the aging gas is 10 to 100%,
The catalytic combustion type hydrogen sensor calibration method according to claim 1, wherein the predetermined time is 1 second to 3 minutes.
JP2003067141A 2003-03-12 2003-03-12 Calibration method for catalytic combustion type hydrogen sensor Expired - Fee Related JP3986984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003067141A JP3986984B2 (en) 2003-03-12 2003-03-12 Calibration method for catalytic combustion type hydrogen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003067141A JP3986984B2 (en) 2003-03-12 2003-03-12 Calibration method for catalytic combustion type hydrogen sensor

Publications (2)

Publication Number Publication Date
JP2004279063A JP2004279063A (en) 2004-10-07
JP3986984B2 true JP3986984B2 (en) 2007-10-03

Family

ID=33284843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003067141A Expired - Fee Related JP3986984B2 (en) 2003-03-12 2003-03-12 Calibration method for catalytic combustion type hydrogen sensor

Country Status (1)

Country Link
JP (1) JP3986984B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5103751B2 (en) 2006-02-17 2012-12-19 トヨタ自動車株式会社 Fuel cell system
JP4811934B2 (en) * 2006-06-22 2011-11-09 日本特殊陶業株式会社 Gas sensor processing method and gas sensor processing apparatus
US8028561B2 (en) 2008-09-30 2011-10-04 Qualitrol Company, Llc Hydrogen sensor with air access
US8707767B2 (en) 2011-03-31 2014-04-29 Qualitrol Company, Llc Combined hydrogen and pressure sensor assembly
US8511160B2 (en) 2011-03-31 2013-08-20 Qualitrol Company, Llc Combined hydrogen and pressure sensor assembly
US8839658B2 (en) 2011-03-31 2014-09-23 Qualitrol Company, Llc Combination of hydrogen and pressure sensors
JP6943612B2 (en) * 2017-05-15 2021-10-06 理研計器株式会社 Gas detector function recovery method and gas detector calibration device

Also Published As

Publication number Publication date
JP2004279063A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
JP3836440B2 (en) Degradation diagnosis method for gas sensor
JP4434525B2 (en) Abnormality detection method for fuel cell
JP4585402B2 (en) Gas sensor
JP2006153598A (en) Gas detector and control method of gas detecting element
JP3746778B2 (en) Gas sensor control device
JP3986984B2 (en) Calibration method for catalytic combustion type hydrogen sensor
JP3905800B2 (en) Fuel cell protection device
JP4011429B2 (en) Fuel cell system including gas sensor and fuel cell vehicle including gas sensor
JP4083652B2 (en) Gas sensor control device
JP2010019732A (en) Gas sensor
JP4602124B2 (en) Gas detector
JP3836403B2 (en) Gas detection method
JP3839360B2 (en) Gas sensor calibration method
JP2006308440A (en) Gas detector
JP3801950B2 (en) Gas sensor, gas sensor failure detection apparatus, and gas sensor failure detection method
JP3875163B2 (en) Gas sensor state determination device
JP4021827B2 (en) Gas sensor
JP3987016B2 (en) Gas sensor control device
JP4131801B2 (en) Degradation detection method of hydrogen sensor provided in fuel cell system
JP3839392B2 (en) Gas sensor calibration method
JP2004061244A (en) Gas sensor, gas detection method in the same, and fault detection method in the gas sensor
JP3857218B2 (en) Gas sensor
JP3850368B2 (en) Gas sensor
JP2012149894A (en) Control apparatus of gas sensor
JP2006010546A (en) Gas detector and fuel cell system equipped therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140720

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees