JP3839392B2 - Gas sensor calibration method - Google Patents

Gas sensor calibration method Download PDF

Info

Publication number
JP3839392B2
JP3839392B2 JP2002328112A JP2002328112A JP3839392B2 JP 3839392 B2 JP3839392 B2 JP 3839392B2 JP 2002328112 A JP2002328112 A JP 2002328112A JP 2002328112 A JP2002328112 A JP 2002328112A JP 3839392 B2 JP3839392 B2 JP 3839392B2
Authority
JP
Japan
Prior art keywords
gas
gas sensor
detection element
detected
compensation element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002328112A
Other languages
Japanese (ja)
Other versions
JP2004163204A (en
Inventor
泰 児島
博 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002328112A priority Critical patent/JP3839392B2/en
Publication of JP2004163204A publication Critical patent/JP2004163204A/en
Application granted granted Critical
Publication of JP3839392B2 publication Critical patent/JP3839392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば燃料電池車両に搭載される接触燃焼式ガスセンサ等のガスセンサの較正方法に関する。
【0002】
【従来の技術】
従来、ガスセンサとしては、例えば白金等の触媒からなるガス検出素子と温度補償素子とを一対備え、被検出ガスが白金等の触媒に接触した際の燃焼により発生する熱によってガス検出素子が相対的に高温の状態になったときに、例えば雰囲気温度下等の相対的に低温の状態の温度補償素子との間に生じる電気抵抗値の差異に応じて、被検出ガスの濃度を検出するガス接触燃焼式のガスセンサが知られている(例えば、特許文献1参照)。そして、このようなガス接触燃焼式のガスセンサのうち、特に、水素センサを、例えば燃料電池を動力源とした燃料電池車両等の車両に搭載し、水素ガスが漏洩していないことを確認するために用いることが検討されている。
【0003】
【特許文献1】
特開平7−113776号公報
【0004】
【発明が解決しようとする課題】
ところで、上述したようなガスセンサにおいて、被検出ガスの検出時に、例えば検出素子の発熱により加熱された検出素子周辺の雰囲気ガスが補償素子の周辺に移動して補償素子の温度を上昇させることにより、被検出ガスのガス濃度に関わりなく、この雰囲気ガスの移動方向に係る鉛直方向と、検出素子と補償素子との配列方向とのなす角度に応じて検出素子と補償素子との電気抵抗値の差異が変化する場合がある。
このため、例えば実装状態が異なる複数のガスセンサによって、同等のガス濃度の被検出ガスを検出した場合には、各実装状態つまり鉛直方向と、検出素子と補償素子との配列方向とのなす角度の差異に応じて、複数のガスセンサ同士の出力の大きさにばらつきが生じ、被検出ガスのガス濃度を精度良く検出することが困難になるという問題が生じる。
本発明は上記事情に鑑みてなされたもので、ガスセンサの実装状態に応じて被検出ガスのガス濃度に対する検出結果が変動することを防止することが可能なガスセンサの較正方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決して係る目的を達成するために、請求項1に記載の本発明のガスセンサの較正方法は、検出素子(例えば、実施の形態での検出素子31)と補償素子(例えば、実施の形態での温度補償素子32)との電気抵抗値の差異に基づき被検出ガスのガス濃度を検出するガスセンサの較正方法であって、実装時における前記検出素子と前記補償素子との配列方向が互いに異なる第1のガスセンサ(例えば、実施の形態でのガスセンサ11a)と第2のガスセンサ(例えば、実施の形態でのガスセンサ11b)を較正する際に、較正用ガスが充填される較正用容器(例えば、実施の形態での較正用容器51)内に、前記第1のガスセンサをその検出素子と補償素子との配列方向が実装時の配列方向と同等になるように装着するとともに、前記第2のガスセンサをその検出素子と補償素子との配列方向が実装時の配列方向と同等になるように装着し、前記較正用容器内に所定濃度の較正用ガスを充填し、該較正用ガスのガス濃度の変化に応じた前記第1のガスセンサと前記第2のガスセンサの出力の変動を検出し、検出した前記第1のガスセンサと前記第2のガスセンサ毎の出力変動に基づき、これらの第1のガスセンサと第2のガスセンサ間の出力変動が同等となるように前記第1のガスセンサと前記第2のガスセンサの出力を調整して較正を行うことを特徴としている。
【0006】
上記のガスセンサの較正方法によれば、例えば検出素子の発熱により加熱された検出素子周辺の雰囲気ガスが補償素子の周辺に移動して補償素子の温度を上昇させることにより、被検出ガスの濃度に関わりなく、この雰囲気ガスの移動方向に係る鉛直方向と、検出素子と補償素子との配列方向とのなす角度に応じて検出素子と補償素子との電気抵抗値の差異が変化する場合であっても、被検出ガスのガス濃度に対する検出結果が変動してしまうことを防止することができる。
なお、検出素子と補償素子との配列方向とは、例えば各素子の中心位置を結ぶ直線が伸びる方向とされる。
【0008】
また、較正用器内に、前記第1のガスセンサをその検出素子と補償素子との配列方向が実装時の配列方向と同等になるように装着するとともに、前記第2のガスセンサをその検出素子と補償素子との配列方向が実装時の配列方向と同等になるように装着して較正を行うので、第1のガスセンサと第2のガスセンサの実装状態に関わらず、同等の濃度の被検出ガスが検出された際には、同等の大きさの出力が得られるようになる。
【0009】
【発明の実施の形態】
以下、本発明の一実施形態に係るガスセンサの較正方法について添付図面を参照しながら説明する。
本実施形態に係るガスセンサは、例えば水素を検出する水素センサをなし、例えば図1に示すように、燃料電池車両等の車両1の車室内や、例えば図2に示すように、制御装置2と、記憶装置3と、警報装置4と、車両の動力源とされる燃料電池5と、燃料電池5に接続された各配管6,7,8,9とを備える燃料電池システム10において、燃料電池5に接続された各配管6,7,8,9のうち、酸素極側の出口側配管9等に設けられ、車室内や出口側配管9に水素が排出されていないことを確認するためのものである。
なお、制御装置2は、車両1のルーフ1aに取り付けられたガスセンサ11aおよび燃料電池5の酸素極側の出口側配管9に取り付けられたガスセンサ11bに接続され、例えば、各ガスセンサ11a,11bから出力される検出信号と、記憶装置3に格納されている所定の判定閾値との比較結果に応じて、燃料電池5の異常状態が発生しているか否かを判定し、異常状態であると判定した際には、警報装置4によって警報等を出力する。ここで、記憶装置3は、各ガスセンサ11a,11bの検出値(出力)に対する所定の判定閾値のマップ等を記憶している。
【0010】
燃料電池5は、例えば電気自動車等の動力源として車両1に搭載されており、例えば陽イオン交換膜等からなる固体高分子電解質膜を燃料極と酸素極で挟持した電解質電極構造体を、更に一対のセパレータで挟持してなる燃料電池セル(図示略)を多数組積層して構成されている。
燃料極に入口側配管6から供給された水素などの燃料ガスにより、燃料極の触媒電極上で水素がイオン化され、適度に加湿された固体高分子電解質膜を介して酸素極へと移動する、その間に生じた電子が外部回路に取り出され、直流の電気エネルギとして利用される。酸素極には、例えば、酸素などの酸化剤ガスあるいは空気が入口側配管7を介して供給されているために、この酸素極において、水素イオン、電子及び酸素が反応して水が生成される。そして、燃料極側、酸素極側共に出口側配管8、9から反応済みのいわゆるオフガスが系外に排出される。
【0011】
各ガスセンサ11a,11bは、車両1のルーフ1aの前後方向つまり水平方向(例えば、図1における水平方向H)や、鉛直方向(例えば、図2における鉛直方向V)に伸びる出口側配管9の長手方向、つまり鉛直方向に沿って長い直方形状のケース21を備えている。
例えば図3に示すように、ケース21は、例えばポリフェニレンサルファイド製であって、長手方向両端部にフランジ部22を備えている。フランジ部22にはカラー23が取り付けられており、このカラー23内にボルト24が挿入されることで、フランジ部22は、ルーフ1aに設けられた取付座(図示略)や、例えば図4に示すように、酸素極側の出口側配管9に設けられた取付座25に締め付け固定されるようになっている。
また、例えば図4に示すように、ケース21の厚さ方向の端面には筒状部26が形成され、筒状部26の内部はガス検出室27として形成され、ガス検出室27の内部側面には、内側に向かってフランジ部28が形成され、フランジ部28の内周部分がガス導入部29として開口形成されている。
【0012】
ケース21内には樹脂で封止された回路基板30が設けられ、筒状部26の内部に配置された検出素子31および温度補償素子32は、回路基板30に接続されている。そして、各素子31,32は回路基板30に接続された複数、例えば4個のピン33により、ガス検出室27の底面27A上に配置されたベース34から、各ガスセンサ11a,11bの厚さ方向に所定距離だけ離間した位置において、所定間隔を隔てて対をなすようにして配置されている。
なお、例えば図1に示すように、車両1のルーフ1aに取り付けられたガスセンサ11aの厚さ方向は鉛直方向Vであり、例えば図4に示すように、燃料電池5の酸素極側の出口側配管9に取り付けられたガスセンサ11bの厚さ方向は水平方向Hである。
また、例えば図4に示すように、酸素極側の出口側配管9に取り付けられるガスセンサ11bにおいては、筒状部26の外周面にシール材35が取り付けられ、このシール材35が出口側配管9の貫通孔9aの内周壁に密接して気密性を確保している。
【0013】
なお、例えば図4に示すように、酸素極側の出口側配管9に取り付けられるガスセンサ11bにおいては、出口側配管9内におけるオフガスの流通方向Pが鉛直方向Vの下方側から上方側に向かうように設定された状態で、検出素子31は、温度補償素子32よりも鉛直方向Vの上方の位置、より好ましくは、例えば図5に示すように、温度補償素子32の中心位置からこの位置を含む鉛直線Lに対する傾斜角度θが5°以内の円錐状領域AL内に、その中心位置が配置されており、例えば本実施形態では傾斜角度がゼロに(つまり、検出素子31が鉛直方向Vにおける温度補償素子32の真上に配置されるように)設定されている。
【0014】
検出素子31は周知の素子であって、例えば図6に示すように、電気抵抗に対する温度係数が高い白金等を含む金属線のコイル31aの表面が、被検出ガスとされる水素に対して活性な貴金属等からなる触媒31bを坦持するアルミナ等の坦体で被覆されて形成されている。
温度補償素子32は、被検出ガスに対して不活性とされ、例えば検出素子31と同等のコイル32aの表面がアルミナ等の坦体で被覆されて形成されている。そして、被検出ガスである水素が検出素子31の触媒31bに接触した際に生じる燃焼反応の発熱により高温となった検出素子31と、被検出ガスによる燃焼反応が発生せず検出素子31よりも低温の温度補償素子32との間に電気抵抗値の差が生ずることを利用し、雰囲気温度による電気抵抗値の変化分を相殺して水素濃度を検出することができるようになっている。
【0015】
例えば図6に示すように、検出素子31(抵抗値R4)及び温度補償素子32(抵抗値R3)が直列接続されてなる枝辺と、固定抵抗41(抵抗値R1)及び固定抵抗42(抵抗値R2)が直列接続されてなる枝辺とが、外部の電源43から供給される電圧に基づいて所定の基準電圧を印加する基準電圧発生回路44に対して並列に接続されてなるブリッジ回路において、検出素子31と温度補償素子32同志の接続点PSと、固定抵抗41,42同志の接続点PRとの間に、これらの接続点PS,PR間の電圧を検出する検出回路45が接続されており、さらに、検出回路45には出力回路46が接続されている。
【0016】
ここで、ガス検出室27内に導入された検査対象ガス中に被検出ガスである水素が存在しないときには、ブリッジ回路はバランスしてR1×R4=R2×R3の状態にあり、検出回路45の出力がゼロとなる。一方、水素が存在すると、検出素子31の触媒31bにおいて水素が燃焼し、コイル31aの温度が上昇し、抵抗値R4が増大する。これに対して温度補償素子32においては水素は燃焼せず、抵抗値R3は変化しない。これにより、ブリッジ回路の平衡が破れて検出回路45に、水素濃度の増大変化に応じて増大傾向に変化する適宜の電圧が印加される。この検出回路45から出力される電圧の検出値は出力回路46へ出力され、出力回路46は入力された検出値を制御装置2へ出力する。そして、制御装置2においては、この電圧の検出値の変化に応じて予め設定された水素濃度のマップ等に基づいて、水素濃度が算出される。
【0017】
次に、上述した本実施の形態のガスセンサ11a,11bを較正する方法について説明する。
なお、以下において、検出素子31と温度補償素子32の配列方向とは、例えば図7に示すように、各素子31,32の中心位置Q1,Q2を結ぶ直線LQが伸びる方向Qである。また、例えば図7において、検出素子31と温度補償素子32の配列方向Qと、鉛直方向Vとのなす角度は、例えば直線LQと鉛直線Lとのなす角度φとされている。
【0018】
例えば図8に示すように、被検出ガスのガス濃度に応じた各素子31,32の素子温度の変化において、各素子31,32の配列方向がルーフ1aの前後方向つまり水平方向Hとされるガスセンサ11aにおける温度補償素子32の温度変化(例えば、図8に示す破線T1)に比べて、各素子31,32の配列方向が出口側配管9の長手方向つまり鉛直方向Vとされ、検出素子31が鉛直方向Vでの温度補償素子32の真上に配置されるガスセンサ11bにおける温度補償素子32の温度変化(例えば、図8に示す実線T2)では、ガス濃度に対する素子温度の変化率が小さくなる。
【0019】
すなわち、ガス濃度の増大に伴い検出素子31の素子温度(例えば、図8に示す一点破線T0)が増大すると、検出素子31周辺の雰囲気ガスは加熱され、鉛直方向Vの上方に向かい上昇するようにして移動する。このため、検出素子31よりも鉛直方向Vの上方に温度補償素子32が配置されていると、検出素子31によって加熱された雰囲気ガスが温度補償素子32の周辺に到達し、温度補償素子32が加熱される。
これにより、上述した本実施形態のガスセンサ11bのように、検出素子31よりも鉛直方向Vの下方に温度補償素子32が配置されていると、検出素子31によって加熱された雰囲気ガスのうち、温度補償素子32の周辺に到達する雰囲気ガスの量は相対的に少なくなり、検出素子31の発熱に起因する温度補償素子32の温度上昇は相対的に小さくなる。
また、上述した本実施形態のガスセンサ11aのように、検出素子31と温度補償素子32とが水平方向Hに配列されていると、検出素子31の発熱に起因する温度補償素子32の温度上昇は、検出素子31よりも鉛直方向Vの下方に温度補償素子32が配置されている場合よりも大きく、かつ、検出素子31よりも鉛直方向Vの上方に温度補償素子32が配置されている場合よりも小さくなる。
【0020】
これにより、検出素子31と温度補償素子32とが水平方向Hに配列されている場合に比べて、検出素子31よりも鉛直方向Vの下方に温度補償素子32が配置されている場合の方が、検出素子31と温度補償素子32との素子温度の差が大きくなる。これに伴い、例えば図9に示すように、ガス濃度の変化に応じたガスセンサ1の出力の大きさに対して、検出素子31と温度補償素子32とが水平方向Hに配列されている場合の出力(例えば、図9に示す破線C1)に比べて、検出素子31よりも鉛直方向Vの下方に温度補償素子32が配置されている場合の出力(例えば、図9に示す実線C2)の方が、ガス濃度に対する出力の値が大きくなる。
【0021】
従って、ガスセンサ11a,11bの感度調整等の較正処理を行う際には、検出素子31と温度補償素子32との配列方向が、ガスセンサ11a,11bの実装時における検出素子31と温度補償素子32との配列方向と同等となるように設定する。
すなわち、例えば図10に示すように、先ず、ガスセンサ11a,11bに対する較正用ガス(例えば、所定濃度の水素ガス等)が充填される較正用容器51内に、検出素子31と温度補償素子32とが水平方向Hに配列されるようにしてガスセンサ11aを装着し、検出素子31が鉛直方向Vにおいて温度補償素子32の真上に配列されるようにしてガスセンサ11bを装着する(例えば図11に示すステップS01)。
次に、較正用容器51内に所定濃度の較正用ガスを充填し、例えば図9に示すような、ガス濃度の変化に応じた各ガスセンサ11a,11bの出力の変動を検出する(ステップS02)。
そして、検出した各ガスセンサ11a,11b毎の出力変動に基づき、これらの各ガスセンサ11a,11b間の出力変動が同等となるように、各ガスセンサ11a,11bの出力を調整する(ステップS03)。
これにより、各ガスセンサ11a,11bが、ルーフ1aや酸素極側の出口側配管9に実装されたときであっても、同等の濃度の被検出ガスが検出された際には、同等の大きさの出力が得られるようになる。
【0022】
上述したように、本実施の形態によるガスセンサの較正方法によれば、各ガスセンサ11a,11bの実装状態に関わらず、同等の濃度の被検出ガスが検出された際には、同等の大きさの出力が得られるようになる。これにより、被検出ガスの濃度に関わりなく、検出素子31の発熱により加熱された検出素子31周辺の雰囲気ガスの移動方向に係る鉛直方向Vと、検出素子31と温度補償素子32との配列方向とのなす角度に応じて検出素子31と温度補償素子32との電気抵抗値の差異が変化する場合であっても、被検出ガスのガス濃度に対する検出結果が変動してしまうことを確実に防止することができる。
【0023】
なお、上述した本実施の形態においては、較正処理時に各ガスセンサ11a,11bの感度調整を行うとしたが、これに加えて、例えば較正用ガスのガス濃度に応じた出力変動の検出値が、予め検出値に対して設定された所定の許容範囲を逸脱するか否かを判定することにより、各ガスセンサ11a,11bの良否判定を行うようにしてもよい。
【0024】
なお、上述した本実施の形態において、ガスセンサ1を水素センサとしたが、これに限定されず、その他のガス、例えば一酸化炭素やメタン等の可燃性ガスを検出するガスセンサであってもよい。
また、上述した本実施の形態においては、各素子31,32を接続してなる回路をブリッジ回路としたが、これに限定されず、例えば直列回路等のその他の回路であってもよく、検出素子31の抵抗値R4に関連した状態量として、所定接点間の電圧や電流の検出値が制御装置2へ出力されてもよい。
【0025】
【発明の効果】
以上説明したように、本発明のガスセンサの較正方法によれば、被検出ガスの濃度に関わりなく、検出素子の発熱により加熱された検出素子周辺の雰囲気ガスの移動方向に係る鉛直方向と、検出素子と補償素子との配列方向とのなす角度に応じて検出素子と補償素子との電気抵抗値の差異が変化する場合であっても、被検出ガスのガス濃度に対する検出結果が変動してしまうことを確実に防止することができる。
また、第1のガスセンサと第2のガスセンサの実装状態に関わらず、同等の濃度の被検出ガスが検出された際には、同等の大きさの出力が得られるようになる。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係るガスセンサを備える車両の要部構成図である。
【図2】 本発明の一実施形態に係るガスセンサを備える燃料電池システムの要部構成図である。
【図3】 図1または図2に示すガスセンサの断面図である。
【図4】 図3に示すA−A線に沿う概略断面図である。
【図5】 図4に示す検出素子と温度補償素子との位置関係を示す拡大図である。
【図6】 図1に示すガスセンサの回路図である。
【図7】 検出素子と温度補償素子との位置関係の一例を示す図である。
【図8】 ガス濃度に応じた素子温度の変化を示すグラフ図である。
【図9】 ガス濃度に応じたガスセンサの出力の変化を示すグラフ図である。
【図10】 較正処理時における各ガスセンサの配置方向を示す模式図である。
【図11】 ガスセンサを較正する方法を示すフローチャートである。
【符号の説明】
11a,11b ガスセンサ
31 検出素子
32 温度補償素子(補償素子)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a calibration method for a gas sensor such as a catalytic combustion gas sensor mounted on a fuel cell vehicle.
[0002]
[Prior art]
Conventionally, as a gas sensor, for example, a gas detection element made of a catalyst such as platinum and a temperature compensation element are provided, and the gas detection element is relatively moved by heat generated by combustion when a gas to be detected comes into contact with the catalyst such as platinum. Gas contact that detects the concentration of the gas to be detected in accordance with the difference in electrical resistance value generated between the temperature compensation element and the temperature compensation element in a relatively low temperature state such as under atmospheric temperature, for example. A combustion type gas sensor is known (see, for example, Patent Document 1). Of such gas contact combustion type gas sensors, in particular, a hydrogen sensor is mounted on a vehicle such as a fuel cell vehicle using a fuel cell as a power source, for example, to confirm that hydrogen gas does not leak. It is being studied for use in
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-113776
[Problems to be solved by the invention]
By the way, in the gas sensor as described above, when the gas to be detected is detected, for example, the ambient gas around the detection element heated by the heat generation of the detection element moves to the periphery of the compensation element to increase the temperature of the compensation element. Regardless of the gas concentration of the gas to be detected, the difference in electrical resistance value between the detection element and the compensation element according to the angle formed by the vertical direction of the atmospheric gas movement direction and the arrangement direction of the detection element and the compensation element May change.
For this reason, for example, when a gas to be detected having the same gas concentration is detected by a plurality of gas sensors having different mounting states, the angle between each mounting state, that is, the vertical direction, and the arrangement direction of the detection element and the compensation element is Depending on the difference, the output magnitudes of the plurality of gas sensors vary, and there is a problem that it is difficult to accurately detect the gas concentration of the gas to be detected.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a gas sensor calibration method capable of preventing the detection result for the gas concentration of the gas to be detected from fluctuating depending on the mounting state of the gas sensor. And
[0005]
[Means for Solving the Problems]
In order to solve the above problems and achieve the object, a gas sensor calibration method according to the first aspect of the present invention includes a detection element (for example, the detection element 31 in the embodiment) and a compensation element (for example, implementation). a in the form method of calibrating a gas sensor that detects the gas concentration of the gas to be detected based on a difference in electrical resistance between the temperature compensating element 32) in the arrangement direction of the detecting element and the compensating element in the real Soji Calibration containers filled with a calibration gas when calibrating a first gas sensor (for example, the gas sensor 11a in the embodiment) and a second gas sensor (for example, the gas sensor 11b in the embodiment) that are different from each other (For example, in the calibration container 51 in the embodiment), the first gas sensor is mounted so that the arrangement direction of the detection element and the compensation element is equivalent to the arrangement direction at the time of mounting, The second gas sensor is mounted so that the arrangement direction of the detection element and the compensation element is equivalent to the arrangement direction at the time of mounting, and the calibration container is filled with a calibration gas having a predetermined concentration, Changes in the outputs of the first gas sensor and the second gas sensor according to changes in the gas concentration of the gas are detected, and based on the detected output fluctuations for the first gas sensor and the second gas sensor, these changes are detected. Calibration is performed by adjusting the outputs of the first gas sensor and the second gas sensor so that output fluctuations between the first gas sensor and the second gas sensor are equal .
[0006]
According to the above gas sensor calibration method, for example, the ambient gas around the detection element heated by the heat generation of the detection element moves to the periphery of the compensation element to increase the temperature of the compensation element, thereby increasing the concentration of the gas to be detected. Regardless, the difference in electrical resistance value between the detection element and the compensation element changes according to the angle formed by the vertical direction related to the moving direction of the atmospheric gas and the arrangement direction of the detection element and the compensation element. Moreover, it can prevent that the detection result with respect to the gas concentration of to-be-detected gas fluctuates.
The arrangement direction of the detection element and the compensation element is, for example, a direction in which a straight line connecting the center positions of the elements extends.
[0008]
Further, the first gas sensor is mounted in the calibration device so that the arrangement direction of the detection element and the compensation element is equal to the arrangement direction at the time of mounting, and the second gas sensor is attached to the detection element. Since the calibration is performed so that the arrangement direction with the compensation element is the same as the arrangement direction at the time of mounting, the detected gas having the same concentration can be obtained regardless of the mounting state of the first gas sensor and the second gas sensor. When detected, an output having the same magnitude can be obtained.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a gas sensor calibration method according to an embodiment of the present invention will be described with reference to the accompanying drawings.
The gas sensor according to the present embodiment is, for example, a hydrogen sensor that detects hydrogen. For example, as shown in FIG. 1, the vehicle interior of a vehicle 1 such as a fuel cell vehicle or the control device 2 as shown in FIG. In the fuel cell system 10 including the storage device 3, the alarm device 4, the fuel cell 5 as a power source of the vehicle, and the respective pipes 6, 7, 8, 9 connected to the fuel cell 5, the fuel cell Among the pipes 6, 7, 8, 9 connected to 5, provided in the outlet side pipe 9 etc. on the oxygen electrode side, for confirming that hydrogen is not discharged into the vehicle interior or the outlet side pipe 9 Is.
The control device 2 is connected to a gas sensor 11a attached to the roof 1a of the vehicle 1 and a gas sensor 11b attached to the outlet side pipe 9 on the oxygen electrode side of the fuel cell 5, for example, outputs from the gas sensors 11a and 11b. In accordance with a comparison result between the detected signal and a predetermined determination threshold stored in the storage device 3, it is determined whether or not an abnormal state of the fuel cell 5 has occurred, and it is determined that the fuel cell 5 is in an abnormal state. At that time, the alarm device 4 outputs an alarm or the like. Here, the memory | storage device 3 has memorize | stored the map etc. of the predetermined determination threshold value with respect to the detected value (output) of each gas sensor 11a, 11b.
[0010]
The fuel cell 5 is mounted on the vehicle 1 as a power source of, for example, an electric vehicle, and further includes an electrolyte electrode structure in which a solid polymer electrolyte membrane made of, for example, a cation exchange membrane is sandwiched between a fuel electrode and an oxygen electrode, A large number of fuel battery cells (not shown) sandwiched between a pair of separators are stacked.
Hydrogen is ionized on the catalyst electrode of the fuel electrode by a fuel gas such as hydrogen supplied from the inlet side pipe 6 to the fuel electrode, and moves to the oxygen electrode through a solid polymer electrolyte membrane that is appropriately humidified. Electrons generated in the meantime are taken out to an external circuit and used as direct current electric energy. For example, since an oxidant gas such as oxygen or air is supplied to the oxygen electrode through the inlet-side pipe 7, water is generated by reaction of hydrogen ions, electrons, and oxygen at the oxygen electrode. . Then, so-called off-gas that has been reacted is discharged out of the system from the outlet side pipes 8 and 9 on both the fuel electrode side and the oxygen electrode side.
[0011]
Each gas sensor 11a, 11b has a longitudinal direction of the outlet side pipe 9 extending in the front-rear direction of the roof 1a of the vehicle 1, that is, in the horizontal direction (for example, the horizontal direction H in FIG. 1) or in the vertical direction (for example, the vertical direction V in FIG. 2). A rectangular parallelepiped case 21 is provided along the direction, that is, the vertical direction.
For example, as shown in FIG. 3, the case 21 is made of, for example, polyphenylene sulfide, and includes flange portions 22 at both ends in the longitudinal direction. A collar 23 is attached to the flange portion 22, and a bolt 24 is inserted into the collar 23, so that the flange portion 22 is attached to a mounting seat (not shown) provided on the roof 1 a, for example, in FIG. 4. As shown, it is fastened and fixed to a mounting seat 25 provided on the outlet side pipe 9 on the oxygen electrode side.
For example, as shown in FIG. 4, a cylindrical portion 26 is formed on the end surface in the thickness direction of the case 21, and the inside of the cylindrical portion 26 is formed as a gas detection chamber 27. A flange portion 28 is formed inwardly, and an inner peripheral portion of the flange portion 28 is formed as an opening as a gas introduction portion 29.
[0012]
A circuit board 30 sealed with resin is provided in the case 21, and the detection element 31 and the temperature compensation element 32 disposed inside the cylindrical portion 26 are connected to the circuit board 30. The elements 31 and 32 are arranged in the thickness direction of the gas sensors 11a and 11b from the base 34 disposed on the bottom surface 27A of the gas detection chamber 27 by a plurality of, for example, four pins 33 connected to the circuit board 30. Are arranged so as to be paired at a predetermined interval at positions separated by a predetermined distance.
For example, as shown in FIG. 1, the thickness direction of the gas sensor 11a attached to the roof 1a of the vehicle 1 is the vertical direction V. For example, as shown in FIG. 4, the outlet side on the oxygen electrode side of the fuel cell 5 The thickness direction of the gas sensor 11b attached to the pipe 9 is the horizontal direction H.
For example, as shown in FIG. 4, in the gas sensor 11 b attached to the outlet side pipe 9 on the oxygen electrode side, a sealing material 35 is attached to the outer peripheral surface of the cylindrical portion 26, and the sealing material 35 is connected to the outlet side pipe 9. The airtightness is secured by being in close contact with the inner peripheral wall of the through hole 9a.
[0013]
For example, as shown in FIG. 4, in the gas sensor 11b attached to the outlet side pipe 9 on the oxygen electrode side, the off-gas flow direction P in the outlet side pipe 9 is directed from the lower side to the upper side in the vertical direction V. , The detection element 31 includes a position above the temperature compensation element 32 in the vertical direction V, more preferably from the center position of the temperature compensation element 32, for example, as shown in FIG. The center position is arranged in the conical region AL whose inclination angle θ with respect to the vertical line L is 5 ° or less. For example, in this embodiment, the inclination angle is zero (that is, the temperature of the detection element 31 in the vertical direction V). Set so that it is positioned directly above the compensation element 32).
[0014]
The detection element 31 is a well-known element. As shown in FIG. 6, for example, the surface of a metal wire coil 31a containing platinum or the like having a high temperature coefficient with respect to electric resistance is active against hydrogen as a detection gas. It is formed by being coated with a carrier such as alumina carrying a catalyst 31b made of a noble metal or the like.
The temperature compensation element 32 is inactive with respect to the gas to be detected. For example, the surface of the coil 32a equivalent to the detection element 31 is covered with a carrier such as alumina. And the detection element 31 which became high temperature by the heat_generation | fever of the combustion reaction produced when hydrogen which is to-be-detected gas contacts the catalyst 31b of the detection element 31, and the combustion reaction by a to-be-detected gas does not generate | occur | produce rather than the detection element 31. By utilizing the fact that a difference in electrical resistance value occurs between the temperature compensation element 32 and the low temperature compensation element 32, it is possible to detect the hydrogen concentration by offsetting the change in the electrical resistance value due to the ambient temperature.
[0015]
For example, as shown in FIG. 6, a branch side in which a detection element 31 (resistance value R4) and a temperature compensation element 32 (resistance value R3) are connected in series, a fixed resistance 41 (resistance value R1), and a fixed resistance 42 (resistance value) In a bridge circuit in which a branch edge having a value R2) connected in series is connected in parallel to a reference voltage generation circuit 44 that applies a predetermined reference voltage based on a voltage supplied from an external power supply 43 The detection circuit 45 for detecting the voltage between the connection points PS and PR is connected between the connection point PS between the detection element 31 and the temperature compensation element 32 and the connection point PR between the fixed resistors 41 and 42. Furthermore, an output circuit 46 is connected to the detection circuit 45.
[0016]
Here, when hydrogen, which is a gas to be detected, does not exist in the inspection target gas introduced into the gas detection chamber 27, the bridge circuit is balanced and is in a state of R1 × R4 = R2 × R3. Output is zero. On the other hand, when hydrogen is present, hydrogen burns in the catalyst 31b of the detection element 31, the temperature of the coil 31a rises, and the resistance value R4 increases. On the other hand, in the temperature compensation element 32, hydrogen does not burn and the resistance value R3 does not change. As a result, the balance of the bridge circuit is broken and an appropriate voltage is applied to the detection circuit 45 that changes in an increasing trend in response to an increasing change in the hydrogen concentration. The detection value of the voltage output from the detection circuit 45 is output to the output circuit 46, and the output circuit 46 outputs the input detection value to the control device 2. In the control device 2, the hydrogen concentration is calculated based on a hydrogen concentration map or the like set in advance according to the change in the detected voltage value.
[0017]
Next, a method for calibrating the gas sensors 11a and 11b of the present embodiment described above will be described.
In the following, the arrangement direction of the detection element 31 and the temperature compensation element 32 is a direction Q in which a straight line LQ connecting the center positions Q1 and Q2 of the elements 31 and 32 extends as shown in FIG. For example, in FIG. 7, the angle formed by the arrangement direction Q of the detection element 31 and the temperature compensation element 32 and the vertical direction V is, for example, an angle φ formed by the straight line LQ and the vertical line L.
[0018]
For example, as shown in FIG. 8, in the change in the element temperature of each element 31, 32 according to the gas concentration of the gas to be detected, the arrangement direction of each element 31, 32 is the front-rear direction of the roof 1a, that is, the horizontal direction H. Compared to the temperature change of the temperature compensation element 32 in the gas sensor 11a (for example, the broken line T1 shown in FIG. 8), the arrangement direction of the elements 31 and 32 is the longitudinal direction of the outlet side pipe 9, that is, the vertical direction V. In the temperature change of the temperature compensation element 32 in the gas sensor 11b arranged directly above the temperature compensation element 32 in the vertical direction V (for example, the solid line T2 shown in FIG. 8), the change rate of the element temperature with respect to the gas concentration is small. .
[0019]
That is, when the element temperature of the detection element 31 (for example, the one-dot broken line T0 shown in FIG. 8) increases as the gas concentration increases, the ambient gas around the detection element 31 is heated and rises upward in the vertical direction V. And move. For this reason, when the temperature compensation element 32 is disposed above the detection element 31 in the vertical direction V, the atmospheric gas heated by the detection element 31 reaches the periphery of the temperature compensation element 32, and the temperature compensation element 32 is Heated.
Accordingly, when the temperature compensation element 32 is arranged below the detection element 31 in the vertical direction V as in the gas sensor 11b of the present embodiment described above, the temperature of the atmospheric gas heated by the detection element 31 is increased. The amount of atmospheric gas that reaches the periphery of the compensation element 32 is relatively small, and the temperature rise of the temperature compensation element 32 due to the heat generation of the detection element 31 is relatively small.
Further, when the detection element 31 and the temperature compensation element 32 are arranged in the horizontal direction H as in the gas sensor 11a of the present embodiment described above, the temperature rise of the temperature compensation element 32 due to the heat generation of the detection element 31 is increased. The temperature compensation element 32 is larger than the case where the temperature compensation element 32 is arranged below the detection element 31 in the vertical direction V, and more than the case where the temperature compensation element 32 is arranged above the detection element 31 in the vertical direction V. Becomes smaller.
[0020]
Thereby, compared with the case where the detection element 31 and the temperature compensation element 32 are arranged in the horizontal direction H, the case where the temperature compensation element 32 is arranged below the detection element 31 in the vertical direction V is better. The difference in element temperature between the detection element 31 and the temperature compensation element 32 increases. Accordingly, for example, as shown in FIG. 9, when the detection element 31 and the temperature compensation element 32 are arranged in the horizontal direction H with respect to the magnitude of the output of the gas sensor 1 according to the change in gas concentration. Compared with the output (for example, the broken line C1 shown in FIG. 9), the output (for example, the solid line C2 shown in FIG. 9) when the temperature compensation element 32 is disposed below the detection element 31 in the vertical direction V. However, the output value with respect to the gas concentration increases.
[0021]
Therefore, when performing calibration processing such as sensitivity adjustment of the gas sensors 11a and 11b, the arrangement direction of the detection elements 31 and the temperature compensation elements 32 is determined by the detection elements 31 and the temperature compensation elements 32 when the gas sensors 11a and 11b are mounted. Set to be equivalent to the array direction.
That is, for example, as shown in FIG. 10, first, the detection element 31 and the temperature compensation element 32 are placed in a calibration container 51 filled with a calibration gas (for example, hydrogen gas having a predetermined concentration) for the gas sensors 11a and 11b. Are mounted in the horizontal direction H, and the gas sensor 11b is mounted so that the detection elements 31 are arranged directly above the temperature compensation elements 32 in the vertical direction V (for example, as shown in FIG. 11). Step S01).
Next, the calibration container 51 is filled with a calibration gas having a predetermined concentration, and fluctuations in the outputs of the gas sensors 11a and 11b according to changes in the gas concentration, for example, as shown in FIG. 9 are detected (step S02). .
Then, based on the detected output fluctuation of each gas sensor 11a, 11b, the output of each gas sensor 11a, 11b is adjusted so that the output fluctuation between these gas sensors 11a, 11b becomes equal (step S03).
Thereby, even when each gas sensor 11a, 11b is mounted on the roof 1a or the outlet side pipe 9 on the oxygen electrode side, when the detected gas having the same concentration is detected, the same size is obtained. Output will be obtained.
[0022]
As described above, according to the gas sensor calibration method according to the present embodiment, when a gas to be detected having the same concentration is detected regardless of the mounting state of the gas sensors 11a and 11b, the gas sensor 11a and 11b have the same size. Output will be obtained. Thus, regardless of the concentration of the gas to be detected, the vertical direction V related to the moving direction of the ambient gas around the detection element 31 heated by the heat generation of the detection element 31 and the arrangement direction of the detection element 31 and the temperature compensation element 32 Even if the difference in the electrical resistance value between the detection element 31 and the temperature compensation element 32 changes according to the angle between the detection element 31 and the temperature compensation element 32, the detection result with respect to the gas concentration of the gas to be detected is reliably prevented from fluctuating. can do.
[0023]
In the present embodiment described above, the sensitivity adjustment of each gas sensor 11a, 11b is performed at the time of calibration processing. In addition to this, for example, a detection value of output fluctuation according to the gas concentration of the calibration gas is The quality of each gas sensor 11a, 11b may be determined by determining whether or not a predetermined allowable range set in advance for the detected value is deviated.
[0024]
In the above-described embodiment, the gas sensor 1 is a hydrogen sensor. However, the present invention is not limited to this, and may be a gas sensor that detects other gases, for example, a combustible gas such as carbon monoxide or methane.
In the above-described embodiment, the circuit formed by connecting the elements 31 and 32 is a bridge circuit. However, the circuit is not limited to this, and may be another circuit such as a series circuit. As a state quantity related to the resistance value R4 of the element 31, a detected value of a voltage or current between predetermined contacts may be output to the control device 2.
[0025]
【The invention's effect】
As described above, according to the gas sensor calibration method of the present invention, regardless of the concentration of the gas to be detected, the vertical direction related to the moving direction of the ambient gas around the detection element heated by the heat generation of the detection element, and the detection Even if the difference in the electrical resistance value between the detection element and the compensation element changes according to the angle formed by the arrangement direction of the element and the compensation element, the detection result for the gas concentration of the gas to be detected varies. This can be reliably prevented.
In addition, regardless of the mounting state of the first gas sensor and the second gas sensor, an output having the same magnitude can be obtained when the detected gas having the same concentration is detected.
[Brief description of the drawings]
FIG. 1 is a main part configuration diagram of a vehicle including a gas sensor according to an embodiment of the present invention.
FIG. 2 is a main part configuration diagram of a fuel cell system including a gas sensor according to an embodiment of the present invention.
3 is a cross-sectional view of the gas sensor shown in FIG. 1 or FIG.
4 is a schematic cross-sectional view taken along line AA shown in FIG.
5 is an enlarged view showing a positional relationship between a detection element and a temperature compensation element shown in FIG.
FIG. 6 is a circuit diagram of the gas sensor shown in FIG.
FIG. 7 is a diagram illustrating an example of a positional relationship between a detection element and a temperature compensation element.
FIG. 8 is a graph showing changes in element temperature according to gas concentration.
FIG. 9 is a graph showing changes in the output of the gas sensor according to the gas concentration.
FIG. 10 is a schematic diagram showing the arrangement direction of each gas sensor during a calibration process.
FIG. 11 is a flowchart illustrating a method for calibrating a gas sensor.
[Explanation of symbols]
11a, 11b Gas sensor 31 Detection element 32 Temperature compensation element (compensation element)

Claims (1)

検出素子と補償素子との電気抵抗値の差異に基づき被検出ガスのガス濃度を検出するガスセンサの較正方法であって、
装時における前記検出素子と前記補償素子との配列方向が互いに異なる第1のガスセンサと第2のガスセンサを較正する際に、
較正用ガスが充填される較正用容器内に、前記第1のガスセンサをその検出素子と補償素子との配列方向が実装時の配列方向と同等になるように装着するとともに、前記第2のガスセンサをその検出素子と補償素子との配列方向が実装時の配列方向と同等になるように装着し、前記較正用容器内に所定濃度の較正用ガスを充填し、該較正用ガスのガス濃度の変化に応じた前記第1のガスセンサと前記第2のガスセンサの出力の変動を検出し、検出した前記第1のガスセンサと前記第2のガスセンサ毎の出力変動に基づき、これらの第1のガスセンサと第2のガスセンサ間の出力変動が同等となるように前記第1のガスセンサと前記第2のガスセンサの出力を調整して較正を行うことを特徴とするガスセンサの較正方法。
A gas sensor calibration method for detecting a gas concentration of a gas to be detected based on a difference in electrical resistance value between a detection element and a compensation element ,
When the arrangement direction of the detecting element and the compensating element in the real Soji to calibrate the different first gas sensor and the second gas sensor,
The first gas sensor is mounted in a calibration container filled with a calibration gas so that the arrangement direction of the detection element and the compensation element is equal to the arrangement direction at the time of mounting, and the second gas sensor is mounted. Is mounted so that the arrangement direction of the detection element and the compensation element is equal to the arrangement direction at the time of mounting, the calibration container is filled with a calibration gas having a predetermined concentration, and the gas concentration of the calibration gas is adjusted. Changes in the outputs of the first gas sensor and the second gas sensor in response to changes are detected, and based on the detected output fluctuations for the first gas sensor and the second gas sensor, A calibration method for a gas sensor, wherein calibration is performed by adjusting outputs of the first gas sensor and the second gas sensor so that output fluctuations between the second gas sensors are equal .
JP2002328112A 2002-11-12 2002-11-12 Gas sensor calibration method Expired - Fee Related JP3839392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002328112A JP3839392B2 (en) 2002-11-12 2002-11-12 Gas sensor calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002328112A JP3839392B2 (en) 2002-11-12 2002-11-12 Gas sensor calibration method

Publications (2)

Publication Number Publication Date
JP2004163204A JP2004163204A (en) 2004-06-10
JP3839392B2 true JP3839392B2 (en) 2006-11-01

Family

ID=32806501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002328112A Expired - Fee Related JP3839392B2 (en) 2002-11-12 2002-11-12 Gas sensor calibration method

Country Status (1)

Country Link
JP (1) JP3839392B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031419A (en) * 2019-04-08 2019-07-19 中国矿业大学 A kind of automatic calibrator of non-dispersive infrared methane sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4798773B2 (en) * 2006-03-03 2011-10-19 理研計器株式会社 Combustible gas detector
CN110736769B (en) * 2019-09-05 2022-10-14 金卡智能集团股份有限公司 Automatic calibration device and method for gas alarm

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031419A (en) * 2019-04-08 2019-07-19 中国矿业大学 A kind of automatic calibrator of non-dispersive infrared methane sensor

Also Published As

Publication number Publication date
JP2004163204A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
CA2485604C (en) Method and device for diagnosing gas sensor degradation
JP4897354B2 (en) Gas detector
JP3705994B2 (en) Hydrogen sensor, battery overcharge / overdischarge detection device, and fuel cell hydrogen leak detection device
US7418855B2 (en) Gas sensor and control method therefor
JP2006153598A (en) Gas detector and control method of gas detecting element
JP3905800B2 (en) Fuel cell protection device
JP3746778B2 (en) Gas sensor control device
JP3839360B2 (en) Gas sensor calibration method
JP4011429B2 (en) Fuel cell system including gas sensor and fuel cell vehicle including gas sensor
JP4083652B2 (en) Gas sensor control device
JP3839392B2 (en) Gas sensor calibration method
JP4602124B2 (en) Gas detector
JP3986984B2 (en) Calibration method for catalytic combustion type hydrogen sensor
JP3875164B2 (en) Gas sensor
JP3836403B2 (en) Gas detection method
JP3801950B2 (en) Gas sensor, gas sensor failure detection apparatus, and gas sensor failure detection method
JP4021827B2 (en) Gas sensor
JP3857218B2 (en) Gas sensor
JP3875163B2 (en) Gas sensor state determination device
JP2006308440A (en) Gas detector
JP3850368B2 (en) Gas sensor
JP3987016B2 (en) Gas sensor control device
JP4131801B2 (en) Degradation detection method of hydrogen sensor provided in fuel cell system
JP3850349B2 (en) Gas sensor, gas sensor gas detection method, and gas sensor failure detection method
JP2006010622A (en) Gas detection system and fuel cell vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees