JP3850368B2 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
JP3850368B2
JP3850368B2 JP2002328111A JP2002328111A JP3850368B2 JP 3850368 B2 JP3850368 B2 JP 3850368B2 JP 2002328111 A JP2002328111 A JP 2002328111A JP 2002328111 A JP2002328111 A JP 2002328111A JP 3850368 B2 JP3850368 B2 JP 3850368B2
Authority
JP
Japan
Prior art keywords
gas sensor
gas
detection
compensation element
detection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002328111A
Other languages
Japanese (ja)
Other versions
JP2004163203A (en
Inventor
泰 児島
博 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002328111A priority Critical patent/JP3850368B2/en
Publication of JP2004163203A publication Critical patent/JP2004163203A/en
Application granted granted Critical
Publication of JP3850368B2 publication Critical patent/JP3850368B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば燃料電池車両に搭載される接触燃焼式ガスセンサ等のガスセンサに関する。
【0002】
【従来の技術】
従来、ガスセンサとしては、例えば白金等の触媒からなるガス検出素子と温度補償素子とを一対備え、被検出ガスが白金等の触媒に接触した際の燃焼により発生する熱によってガス検出素子が相対的に高温の状態になったときに、例えば雰囲気温度下等の相対的に低温の状態の温度補償素子との間に生じる電気抵抗値の差異に応じて、被検出ガスの濃度を検出するガス接触燃焼式のガスセンサが知られている(例えば、特許文献1参照)。そして、このようなガス接触燃焼式のガスセンサのうち、特に、水素センサを、例えば燃料電池を動力源とした燃料電池車両等の車両に搭載し、水素ガスが漏洩していないことを確認するために用いることが検討されている。
【0003】
【特許文献1】
特開平7−113776号公報
【0004】
【発明が解決しようとする課題】
ところで、上述したようなガスセンサにおいて、被検出ガスの検出時に、例えば検出素子の発熱により加熱された検出素子周辺の雰囲気ガスが補償素子の周辺に移動して補償素子の温度を上昇させることにより、被検出ガスのガス濃度に関わりなく、この雰囲気ガスの移動方向に係る鉛直方向と、検出素子と補償素子との配列方向とのなす角度に応じて検出素子と補償素子との電気抵抗値の差異が変化する場合がある。
特に、検出素子が補償素子よりも鉛直方向の下方の位置に配置されていると、検出素子の発熱による補償素子の温度上昇度合いが相対的に大きくなり、検出素子と補償素子との温度差つまり電気抵抗値の差異が小さくなり、被検出ガスのガス濃度に関わらず、ガスセンサの出力の大きさが小さくなり、被検出ガスに対する感度が低下するという問題が生じる。
本発明は上記事情に鑑みてなされたもので、ガスセンサ本体の実装状態に関わらず、被検出ガスに対する感度が低下することを抑制し、出力の安定性を向上させることが可能なガスセンサを提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決して係る目的を達成するために、請求項1に記載の本発明のガスセンサは、検出素子(例えば、実施の形態での検出素子31)と補償素子(例えば、実施の形態での温度補償素子32)との電気抵抗値の差異に基づき被検出ガスのガス濃度を検出するガスセンサであって、前記検出素子と前記補償素子とを備えてなる検出部(例えば、実施の形態での筒状部26)は、重心位置が前記検出素子側よりも前記補償素子側にずれた位置に設定され、前記検出素子と前記補償素子との配列方向が水平方向と交差する場合に前記検出素子が前記補償素子よりも鉛直方向の上方の位置に配置されるようにして、ガスセンサ本体(例えば、実施の形態でのケース21)に対して自動的に回転するように回転可能に設けられ、前記検出素子と前記補償素子との配列方向は前記ガスセンサ本体に対して自動的に変更されることを特徴としている。
【0006】
上記構成のガスセンサによれば、ガスセンサ本体の実装状態に関わらず、検出素子と補償素子との配列方向を変更することができる。このため、例えば検出素子の発熱により加熱された検出素子周辺の雰囲気ガスが補償素子の周辺に移動して補償素子の温度を上昇させることにより、被検出ガスの濃度に関わりなく、この雰囲気ガスの移動方向に係る鉛直方向と、検出素子と補償素子との配列方向とのなす角度に応じて検出素子と補償素子との電気抵抗値の差異が変化する場合であっても、被検出ガスのガス濃度に対する検出結果が変動し、検出精度が低下してしまうことを抑制することができる。
なお、検出素子と補償素子との配列方向とは、例えば各素子の中心位置を結ぶ直線が伸びる方向とされる。
さらに、上記構成のガスセンサによれば、検出素子と補償素子との配列方向が水平方向と交差する場合には、検出部の重心位置が検出素子側よりも補償素子側にずれた位置に設定されていることに起因して、検出素子が補償素子よりも鉛直方向の上方の位置に配置されるようにして検出部が自動的に回転する。
これにより、検出素子が補償素子よりも鉛直方向の上方の位置に配置されることによって、検出素子が補償素子よりも鉛直方向の下方の位置に配置される場合に比べて、検出素子の発熱により加熱された検出素子周辺の雰囲気ガスが補償素子の周辺に移動して補償素子の温度を上昇させてしまうことを抑制することができる。そして、被検出ガスの検出時における検出素子と補償素子との温度差つまり電気抵抗値の差異が、被検出ガスのガス濃度に関わりなく、小さくなることを抑制し、ガスセンサの出力つまり被検出ガスに対する感度が低下することを抑制することができる。
【0007】
さらに、請求項2に記載の本発明のガスセンサでは、前記検出部は円筒状の筒状部を備え、前記ガスセンサ本体は筒状部挿入穴を備え、前記筒状部は前記筒状部挿入穴の内径よりも小さい外径を有するように形成されて、前記ガスセンサ本体に対して回転可能とされており、前記筒状部に前記検出部の重心位置を検出素子側よりも補償素子側にずれた位置に設定するためのおもりを設けたことを特徴としている。
【0008】
さらに、請求項3に記載の本発明のガスセンサでは、前記検出部は円筒状の筒状部を備え、前記ガスセンサ本体は筒状部挿入穴を備え、前記筒状部は前記筒状部挿入穴の内径よりも小さい外径を有するように形成されて、前記ガスセンサ本体に対して回転可能とされており、前記筒状部挿入穴の内周面上には外周側に向かう切欠部が形成され、前記筒状部には外周面上から外周側に向かい突出して前記切欠部に挿入可能な突出部が形成され、前記突出部が前記切欠部に着脱可能に挿入された状態で、前記筒状部は軸線周りに±180°近傍まで回転可能とされることを特徴としている。
【0009】
【発明の実施の形態】
以下、本発明の一実施形態に係るガスセンサについて添付図面を参照しながら説明する。
本実施形態に係るガスセンサ1は、例えば水素を検出する水素センサをなし、例えば図1に示すように、制御装置2と、記憶装置3と、警報装置4と、車両の動力源とされる燃料電池5と、燃料電池5に接続された各配管6,7,8,9とを備える燃料電池システム10において、酸素極側の出口側配管9に設けられ、この出口側配管9から水素が排出されていないことを確認するためのものである。
制御装置2は、酸素極側の出口側配管9に取り付けられたガスセンサ1に接続され、例えば、ガスセンサ1から出力される検出信号と、記憶装置3に格納されている所定の判定閾値との比較結果に応じて、燃料電池5の異常状態が発生しているか否かを判定し、異常状態であると判定した際には、警報装置4によって警報等を出力する。ここで、記憶装置3は、燃料電池5の作動状態、例えば極間差圧や作動圧力等に応じた、ガスセンサ1の検出値に対する所定の判定閾値のマップ等を記憶している。
【0010】
燃料電池5は、例えば電気自動車等の動力源として車両に搭載されており、例えば陽イオン交換膜等からなる固体高分子電解質膜を燃料極と酸素極で挟持した電解質電極構造体を、更に一対のセパレータで挟持してなる燃料電池セル(図示略)を多数組積層して構成されている。
燃料極に入口側配管6から供給された水素などの燃料ガスにより、燃料極の触媒電極上で水素がイオン化され、適度に加湿された固体高分子電解質膜を介して酸素極へと移動する、その間に生じた電子が外部回路に取り出され、直流の電気エネルギとして利用される。酸素極には、例えば、酸素などの酸化剤ガスあるいは空気が入口側配管7を介して供給されているために、この酸素極において、水素イオン、電子及び酸素が反応して水が生成される。そして、燃料極側、酸素極側共に出口側配管8、9から反応済みのいわゆるオフガスが系外に排出される。
【0011】
例えば図2および図3に示すように、ガスセンサ1は鉛直方向(図2および図3における鉛直方向V)に伸びる出口側配管9の長手方向、つまり鉛直方向に沿って長い直方形状のケース21を備えている。ケース21は、例えばポリフェニレンサルファイド製であって、長手方向両端部にフランジ部22を備えている。フランジ部22にはカラー23が取り付けられており、例えば図3に示すように、このカラー23内にボルト24が挿入されることで、フランジ部22は酸素極側の出口側配管9に設けられた取付座25に締め付け固定されるようになっている。
また、例えば図3に示すように、ケース21の厚さ方向(例えば、図3に示す水平方向H)の一方の端面には筒状部26がケース21に対して回転可能に接続され、筒状部26の内部はガス検出室27として形成され、ガス検出室27の内部側面には、内側に向かってフランジ部28が形成され、フランジ部28の内周部分がガス導入部29として開口形成されている。
【0012】
例えば図2および図3に示すように、ケース21の厚さ方向(例えば、図3に示す水平方向H)の一方の端面には、ケース21内に連通する、例えば円形状の筒状部挿入穴21aが形成され、この筒状部挿入穴21aの内周面上の適宜の位置には外周側に向かう切欠部21b(例えば、ケース21の短手方向で対向する2つの切欠部21b等)が形成されている。そして、これらの筒状部挿入穴21aおよび切欠部21b近傍を除くケース21内には樹脂が充填され、ケース21内に配置された回路基板30が充填された樹脂により固定されている。
例えば円筒状の筒状部26は、ケース21の筒状部挿入穴21aの内径よりも僅かに小さな外径を有すると共に、筒状部26の外周面上から外周側に向かい突出し、筒状部挿入穴21aの切欠部21aに挿入可能な突出部26a(例えば、筒状部26の径方向で対向する2つの突出部26a,26a等)を備えている。すなわち、ケース21に対して筒状部26は着脱可能とされており、ケース21の筒状部挿入穴21aに筒状部26が挿入される際には、筒状部挿入穴21aの切欠部21bと筒状部26の突出部26aとの周方向における互いの位置が同等の位置に設定され、切欠部21bに突出部26aが挿入されるように設定された状態で、筒状部26がケース21の厚さ方向に押し込まれる。そして、筒状部26の突出部26aがケース21内に挿入された状態で、筒状部26が軸線周りに適宜の角度だけ回転させられることで、切欠部21bと突出部26aとの周方向における位置が互いにずれ、ケース21内から突出部26aが抜け出ることが防止された状態でケース21と筒状部26とが接続される。そして、この場合、筒状部26はケース21に接続された状態で軸線周りに±180°近傍まで回転可能とされる。
【0013】
筒状部26の内部には検出素子31および温度補償素子32が配置されており、各素子31,32は、適宜の長さの接続線30aを介して回路基板30に接続された複数、例えば4個のピン33により、ガス検出室27内に配置されたベース34から、ガスセンサ1の厚さ方向(例えば、図2および図3に示す水平方向H)に一定距離の高さで所定間隔を隔てて対をなすようにして配置された状態で、回路基板30に接続されている。
また、酸素極側の出口側配管9に取り付けられるガスセンサ1においては、ケース21の厚さ方向(例えば、図3に示す水平方向H)の一方の端面にシール材35が取り付けられ、このシール材35が出口側配管9の外周面に密接して気密性を確保している。
【0014】
さらに、筒状部26には、ケース21の厚さ方向(例えば、図3に示す水平方向H)に直交する方向での各素子31,32の配列方向における温度補償素子32側の適宜の位置に、筒状部26の重心位置を検出素子31側よりも温度補償素子32側にずれた位置に設定するためのおもり36が設けられている。
ここで、円筒状の筒状部26は、ケース21の筒状部挿入穴21aの内径よりも僅かに小さな外径を有するように形成され、ケース21に対して回転可能とされており、各素子31,32の配列方向が水平方向Hと交差するようにして配置されると、このおもり36の作用によって検出素子31が温度補償素子32よりも鉛直方向Vの上方の位置に配置されるようにして筒状部26が軸線周りに回転する。
例えば図3に示すように、出口側配管9内におけるオフガスの流通方向Pが鉛直方向Vの下方側から上方側に向かうように設定された状態で、出口側配管9の貫通孔9aに挿入された筒状部26は、おもり36が鉛直方向Vの下方側に移動するようにして回転する。これに伴い、筒状部26内に配置された検出素子31は温度補償素子32よりも鉛直方向Vの上方の位置、例えば本実施形態では鉛直方向Vにおける温度補償素子32の真上の位置に配置されるようになる。
【0015】
検出素子31は周知の素子であって、例えば図4に示すように、電気抵抗に対する温度係数が高い白金等を含む金属線のコイル31aの表面が、被検出ガスとされる水素に対して活性な貴金属等からなる触媒31bを坦持するアルミナ等の坦体で被覆されて形成されている。
温度補償素子32は、被検出ガスに対して不活性とされ、例えば検出素子31と同等のコイル32aの表面がアルミナ等の坦体で被覆されて形成されている。そして、被検出ガスである水素が検出素子31の触媒31bに接触した際に生じる燃焼反応の発熱により高温となった検出素子31と、被検出ガスによる燃焼反応が発生せず検出素子31よりも低温の温度補償素子32との間に電気抵抗値の差が生ずることを利用し、雰囲気温度による電気抵抗値の変化分を相殺して水素濃度を検出することができるようになっている。
【0016】
例えば図4に示すように、検出素子31(抵抗値R4)及び温度補償素子32(抵抗値R3)が直列接続されてなる枝辺と、固定抵抗41(抵抗値R1)及び固定抵抗42(抵抗値R2)が直列接続されてなる枝辺とが、外部の電源43から供給される電圧に基づいて所定の基準電圧を印加する基準電圧発生回路44に対して並列に接続されてなるブリッジ回路において、検出素子31と温度補償素子32同志の接続点PSと、固定抵抗41,42同志の接続点PRとの間に、これらの接続点PS,PR間の電圧を検出する検出回路45が接続されており、さらに、検出回路45には出力回路46が接続されている。
【0017】
ここで、ガス検出室27内に導入された検査対象ガス中に被検出ガスである水素が存在しないときには、ブリッジ回路はバランスしてR1×R4=R2×R3の状態にあり、検出回路45の出力がゼロとなる。一方、水素が存在すると、検出素子31の触媒31bにおいて水素が燃焼し、コイル31aの温度が上昇し、抵抗値R4が増大する。これに対して温度補償素子32においては水素は燃焼せず、抵抗値R3は変化しない。これにより、ブリッジ回路の平衡が破れて検出回路45に、水素濃度の増大変化に応じて増大傾向に変化する適宜の電圧が印加される。この検出回路45から出力される電圧の検出値は出力回路46へ出力され、出力回路46は入力された検出値を制御装置2へ出力する。そして、制御装置2においては、この電圧の検出値の変化に応じて予め設定された水素濃度のマップ等に基づいて、水素濃度が算出される。
【0018】
上述したように、本実施の形態によるガスセンサ1によれば、ガスセンサ本体の実装状態に関わらず、検出素子31と温度補償素子32との配列方向を適宜に変更することができ、被検出ガスの検出時において、鉛直方向と、各素子31,32の配列方向とのなす角度に応じて、検出素子31と温度補償素子32との温度差、つまり電気抵抗値の差異が変化する場合であっても、被検出ガスのガス濃度に対する検出結果が変動し、検出精度が低下してしまうことを抑制することができる。
しかも、ケース21に対して回転可能とされた筒状部26の重心位置は、検出素子31側よりも温度補償素子32側にずれた位置に設定されているため、各素子31,32の配列方向が水平方向Hに対して傾斜していると、自動的に検出素子31が温度補償素子32よりも鉛直方向Vの上方の位置に配置されるようになり、検出素子31の発熱による温度補償素子32の温度上昇を抑制することができる。
【0019】
なお、上述した本実施の形態において、筒状部26はケース21に対して着脱可能かつ回転可能に形成されるとしたが、これに限定されず、単に回転可能に形成されてもよい。
【0020】
なお、上述した本実施の形態において、ガスセンサ1を水素センサとしたが、これに限定されず、その他のガス、例えば一酸化炭素やメタン等の可燃性ガスを検出するガスセンサであってもよい。
また、上述した本実施の形態においては、各素子31,32を接続してなる回路をブリッジ回路としたが、これに限定されず、例えば直列回路等のその他の回路であってもよく、検出素子31の抵抗値R4に関連した状態量として、所定接点間の電圧や電流の検出値が制御装置2へ出力されてもよい。
【0021】
【発明の効果】
以上説明したように、請求項1に記載の本発明のガスセンサによれば、被検出ガスの濃度に関わりなく、この雰囲気ガスの移動方向に係る鉛直方向と、検出素子と補償素子との配列方向とのなす角度に応じて検出素子と補償素子との電気抵抗値の差異が変化する場合であっても、被検出ガスのガス濃度に対する検出結果が変動し、検出精度が低下してしまうことを抑制することができる。
さらに自動的に検出素子が補償素子よりも鉛直方向の上方の位置に配置されるように設定することができ、被検出ガスの検出時における検出素子と補償素子との温度差が、被検出ガスのガス濃度に関わりなく、小さくなることを抑制し、ガスセンサの出力つまり被検出ガスに対する感度が低下することを抑制することができると共に、被検出ガスのガス濃度に関わらずに検出素子の素子温度が変動してしまうことを抑制し、ガスセンサの出力の安定性を向上させることができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係るガスセンサを備える燃料電池システムの要部構成図である。
【図2】 図1に示すガスセンサの断面図である。
【図3】 図2に示すA−A線に沿う概略断面図である。
【図4】 図1に示すガスセンサの回路図である。
【符号の説明】
1 ガスセンサ
21 ケース(ガスセンサ本体)
26 筒状部(検出部)
31 検出素子
32 温度補償素子(補償素子)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas sensor such as a catalytic combustion type gas sensor mounted on a fuel cell vehicle.
[0002]
[Prior art]
Conventionally, as a gas sensor, for example, a gas detection element made of a catalyst such as platinum and a temperature compensation element are provided, and the gas detection element is relatively moved by heat generated by combustion when a gas to be detected comes into contact with the catalyst such as platinum. Gas contact that detects the concentration of the gas to be detected in accordance with the difference in electrical resistance value generated between the temperature compensation element and the temperature compensation element in a relatively low temperature state such as under atmospheric temperature, for example. A combustion type gas sensor is known (see, for example, Patent Document 1). Of such gas contact combustion type gas sensors, in particular, a hydrogen sensor is mounted on a vehicle such as a fuel cell vehicle using a fuel cell as a power source, for example, to confirm that hydrogen gas does not leak. It is being studied for use in
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-113776
[Problems to be solved by the invention]
By the way, in the gas sensor as described above, when the gas to be detected is detected, for example, the ambient gas around the detection element heated by the heat generation of the detection element moves to the periphery of the compensation element to increase the temperature of the compensation element. Regardless of the gas concentration of the gas to be detected, the difference in electrical resistance value between the detection element and the compensation element according to the angle formed by the vertical direction of the atmospheric gas movement direction and the arrangement direction of the detection element and the compensation element May change.
In particular, when the detection element is arranged at a position below the compensation element in the vertical direction, the temperature rise of the compensation element due to heat generation of the detection element is relatively large, and the temperature difference between the detection element and the compensation element, that is, The difference in electrical resistance value is reduced, and the magnitude of the output of the gas sensor is reduced regardless of the gas concentration of the gas to be detected, resulting in a problem that the sensitivity to the gas to be detected is reduced.
The present invention has been made in view of the above circumstances, and provides a gas sensor capable of suppressing a decrease in sensitivity to a gas to be detected and improving output stability regardless of the mounting state of the gas sensor body. For the purpose.
[0005]
[Means for Solving the Problems]
In order to solve the above problems and achieve the object, a gas sensor according to a first aspect of the present invention includes a detection element (for example, the detection element 31 in the embodiment) and a compensation element (for example, in the embodiment). Gas detector for detecting the gas concentration of the gas to be detected based on the difference in electrical resistance value from the temperature compensation element 32), and a detection unit (for example, in the embodiment) comprising the detection element and the compensation element The cylindrical portion 26) is set when the center of gravity position is set to a position shifted from the detection element side to the compensation element side, and the arrangement direction of the detection element and the compensation element intersects the horizontal direction. The element is disposed at a position above the compensation element in the vertical direction so as to be rotatable so as to automatically rotate with respect to the gas sensor main body (for example, the case 21 in the embodiment), The detection element; Array direction of the serial compensation element is characterized in that it is automatically changed to the gas sensor main body.
[0006]
According to the gas sensor having the above configuration, the arrangement direction of the detection element and the compensation element can be changed regardless of the mounting state of the gas sensor main body. For this reason, for example, the atmospheric gas around the detection element heated by the heat generation of the detection element moves to the periphery of the compensation element and raises the temperature of the compensation element. Even if the difference in electrical resistance value between the detection element and the compensation element changes according to the angle formed by the vertical direction of the moving direction and the direction in which the detection element and the compensation element are arranged, the gas of the gas to be detected It can suppress that the detection result with respect to a density | concentration fluctuates and a detection accuracy falls.
The arrangement direction of the detection element and the compensation element is, for example, a direction in which a straight line connecting the center positions of the elements extends.
Furthermore, according to the gas sensor having the above configuration, when the arrangement direction of the detection element and the compensation element intersects the horizontal direction, the position of the center of gravity of the detection unit is set to a position shifted from the detection element side to the compensation element side. As a result, the detection unit automatically rotates so that the detection element is arranged at a position above the compensation element in the vertical direction.
As a result, the detection element is arranged at a position higher in the vertical direction than the compensation element, so that the detection element generates heat as compared with the case where the detection element is arranged at a position lower in the vertical direction than the compensation element. It is possible to suppress the atmospheric gas around the heated detection element from moving to the periphery of the compensation element and increasing the temperature of the compensation element. The temperature difference between the detection element and the compensation element at the time of detection of the gas to be detected, that is, the difference in electrical resistance value, is suppressed from becoming small regardless of the gas concentration of the gas to be detected. It can suppress that the sensitivity with respect to falls.
[0007]
Furthermore, in the gas sensor according to the second aspect of the present invention, the detection portion includes a cylindrical tube portion, the gas sensor body includes a tube portion insertion hole, and the tube portion includes the tube portion insertion hole. Is formed so as to have an outer diameter smaller than the inner diameter of the gas sensor, and is rotatable with respect to the gas sensor main body. The center of gravity of the detection unit is shifted from the detection element side to the compensation element side in the cylindrical part. It is characterized by the provision of a weight for setting a specific position .
[0008]
Furthermore, in the gas sensor according to the third aspect of the present invention, the detection unit includes a cylindrical tubular part, the gas sensor main body includes a cylindrical part insertion hole, and the cylindrical part includes the cylindrical part insertion hole. Is formed so as to have an outer diameter smaller than the inner diameter of the gas sensor, and is rotatable with respect to the gas sensor main body. On the inner peripheral surface of the cylindrical portion insertion hole, a notch portion is formed toward the outer peripheral side. The cylindrical portion is formed with a protruding portion that protrudes from the outer peripheral surface toward the outer peripheral side and can be inserted into the cutout portion, and the protruding portion is detachably inserted into the cutout portion. The section is characterized in that it can be rotated around the axis up to about ± 180 °.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a gas sensor according to an embodiment of the present invention will be described with reference to the accompanying drawings.
The gas sensor 1 according to the present embodiment is, for example, a hydrogen sensor that detects hydrogen. For example, as shown in FIG. 1, a control device 2, a storage device 3, an alarm device 4, and a fuel that is used as a vehicle power source. In a fuel cell system 10 including a battery 5 and pipes 6, 7, 8, 9 connected to the fuel cell 5, hydrogen is discharged from the outlet side pipe 9 provided in the outlet side pipe 9 on the oxygen electrode side. It is for confirming that it is not.
The control device 2 is connected to the gas sensor 1 attached to the outlet side pipe 9 on the oxygen electrode side. For example, the detection signal output from the gas sensor 1 is compared with a predetermined determination threshold value stored in the storage device 3. According to the result, it is determined whether or not an abnormal state of the fuel cell 5 has occurred. When it is determined that the fuel cell 5 is in an abnormal state, the alarm device 4 outputs an alarm or the like. Here, the storage device 3 stores a map or the like of a predetermined determination threshold for the detection value of the gas sensor 1 according to the operating state of the fuel cell 5, for example, the inter-electrode differential pressure, the operating pressure, or the like.
[0010]
The fuel cell 5 is mounted on a vehicle as a power source of, for example, an electric vehicle, and further includes a pair of electrolyte electrode structures in which a solid polymer electrolyte membrane made of, for example, a cation exchange membrane is sandwiched between a fuel electrode and an oxygen electrode. A large number of fuel battery cells (not shown) sandwiched between the separators are stacked.
Hydrogen is ionized on the catalyst electrode of the fuel electrode by a fuel gas such as hydrogen supplied from the inlet side pipe 6 to the fuel electrode, and moves to the oxygen electrode through a solid polymer electrolyte membrane that is appropriately humidified. Electrons generated in the meantime are taken out to an external circuit and used as direct current electric energy. For example, since an oxidant gas such as oxygen or air is supplied to the oxygen electrode through the inlet-side pipe 7, water is generated by reaction of hydrogen ions, electrons, and oxygen at the oxygen electrode. . Then, so-called off-gas that has been reacted is discharged out of the system from the outlet side pipes 8 and 9 on both the fuel electrode side and the oxygen electrode side.
[0011]
For example, as shown in FIGS. 2 and 3, the gas sensor 1 includes a case 21 having a rectangular shape that is long in the longitudinal direction of the outlet side pipe 9 extending in the vertical direction (vertical direction V in FIGS. 2 and 3), that is, in the vertical direction. I have. The case 21 is made of, for example, polyphenylene sulfide, and includes flange portions 22 at both ends in the longitudinal direction. A collar 23 is attached to the flange portion 22. For example, as shown in FIG. 3, a bolt 24 is inserted into the collar 23, so that the flange portion 22 is provided in the outlet side pipe 9 on the oxygen electrode side. The mounting seat 25 is fastened and fixed.
For example, as shown in FIG. 3, a cylindrical portion 26 is rotatably connected to the case 21 at one end face in the thickness direction of the case 21 (for example, the horizontal direction H shown in FIG. 3). The inside of the shaped portion 26 is formed as a gas detection chamber 27, a flange portion 28 is formed inward on the inner side surface of the gas detection chamber 27, and an inner peripheral portion of the flange portion 28 is formed as an opening as a gas introduction portion 29. Has been.
[0012]
For example, as shown in FIGS. 2 and 3, for example, a circular cylindrical portion communicating with the inside of the case 21 is inserted into one end surface in the thickness direction of the case 21 (for example, the horizontal direction H shown in FIG. 3). A hole 21a is formed, and at an appropriate position on the inner peripheral surface of the cylindrical portion insertion hole 21a, a cutout portion 21b toward the outer peripheral side (for example, two cutout portions 21b facing in the short direction of the case 21). Is formed. The case 21 except for the vicinity of the cylindrical portion insertion hole 21a and the notch portion 21b is filled with resin, and the circuit board 30 disposed in the case 21 is fixed with the filled resin.
For example, the cylindrical cylindrical portion 26 has an outer diameter slightly smaller than the inner diameter of the cylindrical portion insertion hole 21a of the case 21, and protrudes from the outer peripheral surface of the cylindrical portion 26 toward the outer peripheral side. A protrusion 26a (for example, two protrusions 26a, 26a facing each other in the radial direction of the cylindrical portion 26) that can be inserted into the cutout portion 21a of the insertion hole 21a is provided. That is, the cylindrical part 26 is detachable with respect to the case 21, and when the cylindrical part 26 is inserted into the cylindrical part insertion hole 21 a of the case 21, the cutout part of the cylindrical part insertion hole 21 a is formed. In a state where the positions in the circumferential direction of 21b and the protruding portion 26a of the cylindrical portion 26 are set to be equal to each other, and the protruding portion 26a is inserted into the notch portion 21b, the cylindrical portion 26 is The case 21 is pushed in the thickness direction. And the circumferential direction of the notch part 21b and the protrusion part 26a is obtained by rotating the cylindrical part 26 by an appropriate angle around the axis while the protrusion part 26a of the cylindrical part 26 is inserted into the case 21. The case 21 and the cylindrical portion 26 are connected in a state in which the positions of are shifted from each other and the protruding portion 26 a is prevented from coming out of the case 21. In this case, the cylindrical portion 26 can be rotated to around ± 180 ° around the axis while being connected to the case 21.
[0013]
A detection element 31 and a temperature compensation element 32 are arranged inside the cylindrical portion 26. Each of the elements 31 and 32 is connected to the circuit board 30 via a connection line 30a having an appropriate length, for example, The four pins 33 provide a predetermined distance from the base 34 disposed in the gas detection chamber 27 at a certain distance in the thickness direction of the gas sensor 1 (for example, the horizontal direction H shown in FIGS. 2 and 3). The circuit board 30 is connected to the circuit board 30 in a state of being arranged in pairs.
Moreover, in the gas sensor 1 attached to the outlet side pipe 9 on the oxygen electrode side, a sealing material 35 is attached to one end face in the thickness direction of the case 21 (for example, the horizontal direction H shown in FIG. 3). 35 is in close contact with the outer peripheral surface of the outlet side pipe 9 to ensure airtightness.
[0014]
Further, the cylindrical portion 26 has an appropriate position on the temperature compensation element 32 side in the arrangement direction of the elements 31 and 32 in the direction orthogonal to the thickness direction of the case 21 (for example, the horizontal direction H shown in FIG. 3). In addition, a weight 36 is provided for setting the position of the center of gravity of the cylindrical portion 26 to a position shifted from the detection element 31 side to the temperature compensation element 32 side.
Here, the cylindrical cylindrical portion 26 is formed to have an outer diameter slightly smaller than the inner diameter of the cylindrical portion insertion hole 21a of the case 21, and is rotatable with respect to the case 21. When the elements 31 and 32 are arranged so that the arrangement direction thereof intersects the horizontal direction H, the action of the weight 36 causes the detection element 31 to be arranged at a position above the temperature compensation element 32 in the vertical direction V. Thus, the cylindrical portion 26 rotates around the axis.
For example, as shown in FIG. 3, the gas is inserted into the through-hole 9 a of the outlet side pipe 9 in a state where the flow direction P of the off gas in the outlet side pipe 9 is set so as to go from the lower side to the upper side in the vertical direction V. The cylindrical portion 26 rotates so that the weight 36 moves downward in the vertical direction V. Accordingly, the detection element 31 disposed in the cylindrical portion 26 is located at a position above the temperature compensation element 32 in the vertical direction V, for example, a position directly above the temperature compensation element 32 in the vertical direction V in this embodiment. Will be placed.
[0015]
The detection element 31 is a well-known element. For example, as shown in FIG. 4, the surface of the coil 31a of the metal wire containing platinum or the like having a high temperature coefficient with respect to the electric resistance is active against hydrogen as a detection gas. It is formed by being coated with a carrier such as alumina carrying a catalyst 31b made of a noble metal or the like.
The temperature compensation element 32 is inactive with respect to the gas to be detected. For example, the surface of the coil 32a equivalent to the detection element 31 is covered with a carrier such as alumina. And the detection element 31 which became high temperature by the heat_generation | fever of the combustion reaction produced when hydrogen which is to-be-detected gas contacts the catalyst 31b of the detection element 31, and the combustion reaction by a to-be-detected gas does not generate | occur | produce rather than the detection element 31. By utilizing the fact that a difference in electrical resistance value occurs between the temperature compensation element 32 and the low temperature compensation element 32, it is possible to detect the hydrogen concentration by offsetting the change in the electrical resistance value due to the ambient temperature.
[0016]
For example, as shown in FIG. 4, a branch side formed by connecting a detection element 31 (resistance value R4) and a temperature compensation element 32 (resistance value R3) in series, a fixed resistance 41 (resistance value R1), and a fixed resistance 42 (resistance value) In a bridge circuit in which a branch edge having a value R2) connected in series is connected in parallel to a reference voltage generation circuit 44 that applies a predetermined reference voltage based on a voltage supplied from an external power supply 43 The detection circuit 45 for detecting the voltage between the connection points PS and PR is connected between the connection point PS between the detection element 31 and the temperature compensation element 32 and the connection point PR between the fixed resistors 41 and 42. Furthermore, an output circuit 46 is connected to the detection circuit 45.
[0017]
Here, when hydrogen, which is a gas to be detected, does not exist in the inspection target gas introduced into the gas detection chamber 27, the bridge circuit is balanced and is in a state of R1 × R4 = R2 × R3. Output is zero. On the other hand, when hydrogen is present, hydrogen burns in the catalyst 31b of the detection element 31, the temperature of the coil 31a rises, and the resistance value R4 increases. On the other hand, in the temperature compensation element 32, hydrogen does not burn and the resistance value R3 does not change. As a result, the balance of the bridge circuit is broken and an appropriate voltage is applied to the detection circuit 45 that changes in an increasing trend in response to an increasing change in the hydrogen concentration. The detection value of the voltage output from the detection circuit 45 is output to the output circuit 46, and the output circuit 46 outputs the input detection value to the control device 2. In the control device 2, the hydrogen concentration is calculated based on a hydrogen concentration map or the like set in advance according to the change in the detected voltage value.
[0018]
As described above, according to the gas sensor 1 of the present embodiment, the arrangement direction of the detection element 31 and the temperature compensation element 32 can be appropriately changed regardless of the mounting state of the gas sensor body, and the gas to be detected can be changed. At the time of detection, the temperature difference between the detection element 31 and the temperature compensation element 32, that is, the difference in electrical resistance value changes according to the angle between the vertical direction and the arrangement direction of the elements 31 and 32. In addition, it is possible to prevent the detection result from being changed with respect to the gas concentration of the gas to be detected and the detection accuracy from being lowered.
In addition, since the center of gravity of the cylindrical portion 26 that is rotatable with respect to the case 21 is set to a position shifted to the temperature compensation element 32 side from the detection element 31 side, the arrangement of the elements 31 and 32 is arranged. When the direction is inclined with respect to the horizontal direction H, the detection element 31 is automatically arranged at a position above the temperature compensation element 32 in the vertical direction V, and temperature compensation due to heat generation of the detection element 31 is performed. The temperature rise of the element 32 can be suppressed.
[0019]
In the present embodiment described above, the cylindrical portion 26 is formed to be detachable and rotatable with respect to the case 21, but is not limited thereto, and may be simply formed to be rotatable.
[0020]
In the above-described embodiment, the gas sensor 1 is a hydrogen sensor. However, the present invention is not limited to this, and may be a gas sensor that detects other gases, for example, a combustible gas such as carbon monoxide or methane.
In the above-described embodiment, the circuit formed by connecting the elements 31 and 32 is a bridge circuit. However, the circuit is not limited to this, and may be another circuit such as a series circuit. As a state quantity related to the resistance value R4 of the element 31, a detected value of a voltage or current between predetermined contacts may be output to the control device 2.
[0021]
【The invention's effect】
As described above, according to the gas sensor of the first aspect of the present invention, regardless of the concentration of the gas to be detected, the vertical direction according to the moving direction of the atmospheric gas and the arrangement direction of the detection element and the compensation element Even if the difference in the electrical resistance value between the detection element and the compensation element changes depending on the angle between the detection element and the compensation element, the detection result for the gas concentration of the gas to be detected will fluctuate and the detection accuracy will decrease. Can be suppressed.
Furthermore , it can be set so that the detection element is automatically arranged at a position above the compensation element in the vertical direction, and the temperature difference between the detection element and the compensation element at the time of detection of the detected gas is detected. Regardless of the gas concentration of the gas, it is possible to suppress a decrease in the gas sensor output, that is, to reduce the sensitivity to the detected gas, and to detect the element of the detecting element regardless of the gas concentration of the detected gas. It is possible to suppress the temperature from fluctuating and to improve the stability of the output of the gas sensor.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a main part of a fuel cell system including a gas sensor according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the gas sensor shown in FIG.
3 is a schematic cross-sectional view taken along line AA shown in FIG.
4 is a circuit diagram of the gas sensor shown in FIG. 1. FIG.
[Explanation of symbols]
1 Gas Sensor 21 Case (Gas Sensor Body)
26 Cylindrical part (detection part)
31 Detection element 32 Temperature compensation element (compensation element)

Claims (3)

検出素子と補償素子との電気抵抗値の差異に基づき被検出ガスのガス濃度を検出するガスセンサであって、
前記検出素子と前記補償素子とを備えてなる検出部は、重心位置が前記検出素子側よりも前記補償素子側にずれた位置に設定され、前記検出素子と前記補償素子との配列方向が水平方向と交差する場合に前記検出素子が前記補償素子よりも鉛直方向の上方の位置に配置されるようにして、ガスセンサ本体に対して自動的に回転するように回転可能に設けられ、前記検出素子と前記補償素子との配列方向は前記ガスセンサ本体に対して自動的に変更されることを特徴とするガスセンサ。
A gas sensor that detects a gas concentration of a gas to be detected based on a difference in electrical resistance value between a detection element and a compensation element,
In the detection unit including the detection element and the compensation element, the center of gravity is set to a position shifted from the detection element side to the compensation element side, and the arrangement direction of the detection element and the compensation element is horizontal. The detection element is disposed so as to be automatically rotated with respect to the gas sensor body so that the detection element is disposed at a position above the compensation element in the vertical direction when intersecting the direction, and the detection element The gas sensor is characterized in that the arrangement direction of the compensation element is automatically changed with respect to the gas sensor body.
前記検出部は円筒状の筒状部を備え、前記ガスセンサ本体は筒状部挿入穴を備え、前記筒状部は前記筒状部挿入穴の内径よりも小さい外径を有するように形成されて、前記ガスセンサ本体に対して回転可能とされており、前記筒状部に前記検出部の重心位置を検出素子側よりも補償素子側にずれた位置に設定するためのおもりを設けたことを特徴とする請求項1に記載のガスセンサ。 The detection portion includes a cylindrical tube portion, the gas sensor main body includes a tube portion insertion hole, and the tube portion is formed to have an outer diameter smaller than an inner diameter of the tube portion insertion hole. The gas sensor body is rotatable, and the cylindrical portion is provided with a weight for setting the position of the center of gravity of the detection unit to a position shifted from the detection element side to the compensation element side. The gas sensor according to claim 1. 前記検出部は円筒状の筒状部を備え、前記ガスセンサ本体は筒状部挿入穴を備え、前記筒状部は前記筒状部挿入穴の内径よりも小さい外径を有するように形成されて、前記ガスセンサ本体に対して回転可能とされており、The detection unit includes a cylindrical tube portion, the gas sensor main body includes a tube portion insertion hole, and the tube portion is formed to have an outer diameter smaller than an inner diameter of the tube portion insertion hole. , Is rotatable with respect to the gas sensor body,
前記筒状部挿入穴の内周面上には外周側に向かう切欠部が形成され、前記筒状部には外周面上から外周側に向かい突出して前記切欠部に挿入可能な突出部が形成され、A cutout portion is formed on the inner peripheral surface of the cylindrical portion insertion hole. The cutout portion is formed on the cylindrical portion so as to protrude from the outer peripheral surface toward the outer peripheral side. And
前記突出部が前記切欠部に着脱可能に挿入された状態で、前記筒状部は軸線周りに±180°近傍まで回転可能とされることを特徴とする請求項1または請求項2に記載のガスセンサ。The said cylindrical part can be rotated to +/- 180 degree vicinity around an axis line in the state which inserted the said protrusion part in the said notch part so that attachment or detachment was possible. Gas sensor.
JP2002328111A 2002-11-12 2002-11-12 Gas sensor Expired - Fee Related JP3850368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002328111A JP3850368B2 (en) 2002-11-12 2002-11-12 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002328111A JP3850368B2 (en) 2002-11-12 2002-11-12 Gas sensor

Publications (2)

Publication Number Publication Date
JP2004163203A JP2004163203A (en) 2004-06-10
JP3850368B2 true JP3850368B2 (en) 2006-11-29

Family

ID=32806500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002328111A Expired - Fee Related JP3850368B2 (en) 2002-11-12 2002-11-12 Gas sensor

Country Status (1)

Country Link
JP (1) JP3850368B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256243A (en) * 2006-03-27 2007-10-04 Riken Keiki Co Ltd Infrared gas detector

Also Published As

Publication number Publication date
JP2004163203A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
JP4897354B2 (en) Gas detector
JP5230127B2 (en) Fuel cell system and control method of fuel cell system
JP3705994B2 (en) Hydrogen sensor, battery overcharge / overdischarge detection device, and fuel cell hydrogen leak detection device
US7269993B2 (en) Gas detecting apparatus, gas detecting method and fuel cell vehicle
JP4606948B2 (en) Gas sensor
JP4571002B2 (en) Gas sensor
JP3746778B2 (en) Gas sensor control device
JP2006153598A (en) Gas detector and control method of gas detecting element
JP3905800B2 (en) Fuel cell protection device
JP4011429B2 (en) Fuel cell system including gas sensor and fuel cell vehicle including gas sensor
JP3839360B2 (en) Gas sensor calibration method
JP4083652B2 (en) Gas sensor control device
JP4602124B2 (en) Gas detector
JP3836403B2 (en) Gas detection method
JP3850368B2 (en) Gas sensor
JP4308107B2 (en) Gas sensor
JP2010101736A (en) Gas detector
JP3986984B2 (en) Calibration method for catalytic combustion type hydrogen sensor
JP3875163B2 (en) Gas sensor state determination device
JP3875164B2 (en) Gas sensor
JP3801950B2 (en) Gas sensor, gas sensor failure detection apparatus, and gas sensor failure detection method
JP3857218B2 (en) Gas sensor
JP4021827B2 (en) Gas sensor
JP3844723B2 (en) Condensation prevention structure for gas sensor
JP3839392B2 (en) Gas sensor calibration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees