JP3985043B2 - Photoadhesion method and microchip manufacturing method - Google Patents

Photoadhesion method and microchip manufacturing method Download PDF

Info

Publication number
JP3985043B2
JP3985043B2 JP2003126359A JP2003126359A JP3985043B2 JP 3985043 B2 JP3985043 B2 JP 3985043B2 JP 2003126359 A JP2003126359 A JP 2003126359A JP 2003126359 A JP2003126359 A JP 2003126359A JP 3985043 B2 JP3985043 B2 JP 3985043B2
Authority
JP
Japan
Prior art keywords
silicone rubber
glass substrate
microchip
ultraviolet light
vacuum ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003126359A
Other languages
Japanese (ja)
Other versions
JP2004331731A (en
Inventor
博之 杉村
治 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Priority to JP2003126359A priority Critical patent/JP3985043B2/en
Publication of JP2004331731A publication Critical patent/JP2004331731A/en
Application granted granted Critical
Publication of JP3985043B2 publication Critical patent/JP3985043B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1435Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1406Ultraviolet [UV] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/746Joining plastics material to non-plastics material to inorganic materials not provided for in groups B29C66/742 - B29C66/744
    • B29C66/7465Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/058Microfluidics not provided for in B81B2201/051 - B81B2201/054
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0323Grooves
    • B81B2203/0338Channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/038Bonding techniques not provided for in B81C2203/031 - B81C2203/037

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ化学/生化学分析チップ作製のための要素技術として使用することができる、光接着方法及びそれを用いたマイクロチップの作製方法に関する。
【0002】
【従来の技術】
マイクロ化学や生化学の分野においては、微細なマイクロチップを作製することが望まれ、そのための技術の確立が急務となっている。従来、上述したようなマイクロチップは、シリコーンゴムとガラス基板とを接着剤を用いて接着することによって作製していた。しかしながら、シリコーンゴムはその表面が疎水性であるために、接着剤との濡れ性が悪く、十分な接着強度を得ることができないでいた。
【0003】
このため、シリコーンゴム表面の接着剤との濡れ性を向上させるべく、その表面に対して活性化処理を施すことが試みられていたが、このような活性化処理によってもシリコーンゴム表面の接着剤に対する接着強度を十分に向上させることはできないでいた。
【0004】
一方、上述したシリコーンゴムに代えてエポキシ系接着剤を使用することも試みられていたが、加熱処理を必須とし、また微細な部品を接着する際には、微小な接着面への塗布が困難であり、熟練した技術及び補助器具を必要とするという問題があった。
【0005】
【発明が解決しようとする課題】
本発明は、マイクロチップなどの微細な部品を簡易かつ高精度に作製することができる新規な技術を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成すべく、本発明は、
ガラス基板とシリコーンゴムとを接着する工程と、
前記ガラス基板側から真空紫外光を照射して、前記シリコーンゴムの、少なくとも前記ガラス基板と接触する側に光酸化反応を生ぜしめて酸化層を形成し、前記酸化層を介して前記ガラス基板と前記シリコーンゴムとを固着する工程と、
を具えることを特徴とする、光接着方法に関する。
【0007】
本発明者は、上記目的を達成すべく鋭意検討を実施した。その結果、シリコーンゴムに対して波長200nm以下の真空紫外光を所定の強度で照射することにより、前記シリコーンゴムが光酸化反応によって酸化し、その結果形成された酸化層が強力な接着層として機能し、前記シリコーンゴムとガラス基板とを強固に接着することを見出した。
【0008】
本発明の方法によれば、シリコーンゴム自体の化学的な変質を利用しているので、シリコーンゴムの表面の活性及び不活性などに起因した濡れ性や、エポキシ系接着剤などの使用する際の部品の大小及び技術的な熟練を必要とすることなく、微細な部品を接着することができる。したがって、マイクロ化学や生化学の分野においては、微細なマイクロチップの作製などの好適に用いることができる。
【0009】
本発明の詳細、その他の特徴及び利点については、以下の発明の実施の形態において詳述する。
【0010】
【発明の実施の形態】
図1及び図2は、本発明の光接着方法を説明するための工程図である。最初に、図1に示すように、ガラス基板11とシリコーンゴム12とを密着させ、ガラス基板11側から波長200nm以下の真空紫外光を照射する。すると、シリコーンゴム12中には前記真空紫外光によって光酸化反応が生じ、図2に示すように、シリコーンゴム12の、ガラス基板11側において酸化層12Aが形成される。この酸化層12Aは強力な接着層として機能し、これによってガラス基板11とシリコーンゴム12とが強力に固着するようになる。
【0011】
なお、前記真空紫外光を照射するための光源としては、エキシマランプ、F2エキシマレーザ、低圧水銀ランプ及びシンクロトロン放射光を例示することができる。
【0012】
また、前記真空紫外光の強度についても、上述したような光酸化反応を生ぜしめて酸化層を形成し、ガラス基板11とシリコーンゴム12との接着を行うことができれば特に限定されるものではないが、好ましくは1mW/cm以上に設定する。真空紫外光の強度が1mW/cmより小さいと、ガラス基板による真空紫外光の吸収のために実際の照射強度が減少し、十分な光酸化反応を生ぜしめることができずに、光接着を行うことができない場合がある。
【0013】
さらに、酸化層12Aの厚さtについても特に限定されるものではないが、好ましくは0.2nm〜10nmに設定し、さらには好ましくは1nm〜5nmに設定することが好ましい。酸化層12Aの厚さtが0.2nmより小さい場合は、十分な接着強度を得ることができない場合がある。また、酸化層12Aの厚さtが10nmより大きい場合は、真空紫外光の照射時間が長くなるにも拘わらず、接着強度の更なる向上が望めないので非効率的となる。
【0014】
なお、図1及び図2においては、酸化層12Aはシリコーンゴム12の、ガラス基板11側において所定の厚さに形成しているが、シリコーンゴム12自体を比較的薄く形成した場合は、シリコーンゴム12の全体に対して光酸化反応を生ぜしめ、シリコーンゴム12全体を酸化させることもできる。
【0015】
図3〜図5は、上述した光接着方法を用いたマイクロ流路を有するマイクロチップの作製方法を説明するための工程図である。
【0016】
最初に、図3に示すように、シリコーンゴム12の表面部分に対して機械加工やその他公知の加工処理を施して、所定のマイクロ流路13を形成する。次いで、図4に示すように、シリコーンゴム12とガラス基板11とを密着させ、ガラス基板11側から真空紫外光を照射する。これによって、シリコーンゴム12の、ガラス基板11側の部分に対して光酸化反応を生ぜしめ、酸化層を形成して、ガラス基板11とシリコーンゴム12とを固着し、図5に示すようなマイクロ流路13を有するマイクロチップ15を形成する。
【0017】
図5に示すようなマイクロチップ15は、化学分析や医療用の生化学分析などの分析装置及び医療用診断装置の要素として好適に用いることができる。
【0018】
【実施例】
厚さ200μmの石英ガラス基板を準備するとともに、厚さ1000μmのシリコーンゴムを準備し、これらを図1に示すように密着させた。次いで、エキシマランプより波長172nmの真空紫外光を照射強度10mW/cm、照射時間10分で、前記石英ガラス基板側よりシリコーンゴムに照射し、光酸化反応を生ぜしめ、前記石英ガラス基板と前記シリコーンゴムとを固着させた。
【0019】
前記石英ガラス基板と前記シリコーンゴムとを剥離しようとしたところ、前記シリコーンゴムが破壊する程度の外力を加えた場合においても、両者の剥離は生じなかった。なお、このときに生じた酸化層の厚さは2nmであった。
【0020】
以上、具体例を挙げながら発明の実施の形態に基づいて本発明を詳細に説明してきたが、本発明は上記内容に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。
【0021】
【発明の効果】
以上説明したように、本発明によれば、マイクロチップなどの微細な部品を簡易かつ高精度に作製することができる新規な技術としての光接着方法を提供することができる。
【図面の簡単な説明】
【図1】 本発明の光接着方法を説明するための工程図である。
【図2】 同じく、本発明の光接着方法を説明するための工程図である。
【図3】 本発明の光接着方法を用いた、マイクロ流路を有するマイクロチップの作製方法を説明するための工程図である。
【図4】 同じく、本発明の光接着方法を用いた、マイクロ流路を有するマイクロチップの作製方法を説明するための工程図である。
【図5】 同じく、本発明の光接着方法を用いた、マイクロ流路を有するマイクロチップの作製方法を説明するための工程図である。
【符号の説明】
11 ガラス基板
12 シリコーンゴム
12A 酸化層
13 マイクロ流路
15 マイクロチップ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photoadhesion method and a method for producing a microchip using the same, which can be used as an elemental technology for producing a microchemical / biochemical analysis chip.
[0002]
[Prior art]
In the field of microchemistry and biochemistry, it is desired to produce fine microchips, and the establishment of technology for that purpose is urgently required. Conventionally, the above-described microchip has been manufactured by bonding a silicone rubber and a glass substrate using an adhesive. However, since the surface of the silicone rubber is hydrophobic, the wettability with the adhesive is poor and sufficient adhesive strength cannot be obtained.
[0003]
For this reason, in order to improve the wettability with the adhesive on the surface of the silicone rubber, an attempt has been made to apply an activation treatment to the surface. It was not possible to sufficiently improve the adhesive strength against.
[0004]
On the other hand, it has been attempted to use an epoxy-based adhesive instead of the above-mentioned silicone rubber, but heat treatment is essential, and it is difficult to apply to a fine adhesive surface when adhering fine parts. There is a problem that it requires skilled techniques and auxiliary equipment.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel technique capable of easily and precisely producing a fine component such as a microchip.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides:
Bonding the glass substrate and the silicone rubber;
By irradiating vacuum ultraviolet light from the glass substrate side, an oxidation layer is formed by causing a photo-oxidation reaction on at least the side of the silicone rubber that contacts the glass substrate, and the glass substrate and the Fixing the silicone rubber;
It is related with the photoadhesion method characterized by comprising.
[0007]
The present inventor has intensively studied to achieve the above object. As a result, by irradiating the silicone rubber with vacuum ultraviolet light having a wavelength of 200 nm or less with a predetermined intensity, the silicone rubber is oxidized by a photo-oxidation reaction, and the formed oxide layer functions as a strong adhesive layer. And found that the silicone rubber and the glass substrate are firmly bonded.
[0008]
According to the method of the present invention, since chemical alteration of the silicone rubber itself is utilized, wettability due to the activity and inactivity of the surface of the silicone rubber, and when using an epoxy adhesive, etc. Fine parts can be bonded without requiring the size and technical skill of the parts. Therefore, in the field of microchemistry and biochemistry, it can be suitably used for production of fine microchips.
[0009]
Details, other features and advantages of the present invention will be described in detail in the following embodiments of the present invention.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 are process diagrams for explaining the photobonding method of the present invention. First, as shown in FIG. 1, the glass substrate 11 and the silicone rubber 12 are brought into close contact with each other, and vacuum ultraviolet light having a wavelength of 200 nm or less is irradiated from the glass substrate 11 side. Then, a photo-oxidation reaction occurs in the silicone rubber 12 by the vacuum ultraviolet light, and as shown in FIG. 2, an oxide layer 12A is formed on the glass substrate 11 side of the silicone rubber 12. The oxide layer 12A functions as a strong adhesive layer, whereby the glass substrate 11 and the silicone rubber 12 are strongly fixed.
[0011]
In addition, as a light source for irradiating the said vacuum ultraviolet light, an excimer lamp, F2 excimer laser, a low pressure mercury lamp, and synchrotron radiation can be illustrated.
[0012]
Further, the intensity of the vacuum ultraviolet light is not particularly limited as long as the above-described photo-oxidation reaction is generated to form an oxide layer and the glass substrate 11 and the silicone rubber 12 can be bonded. Preferably, it is set to 1 mW / cm 2 or more. If the intensity of the vacuum ultraviolet light is less than 1 mW / cm 2 , the actual irradiation intensity is reduced due to the absorption of the vacuum ultraviolet light by the glass substrate, and sufficient photo-oxidation reaction cannot be caused. It may not be possible.
[0013]
Further, the thickness t of the oxide layer 12A is not particularly limited, but is preferably set to 0.2 nm to 10 nm, and more preferably 1 nm to 5 nm. If the thickness t of the oxide layer 12A is smaller than 0.2 nm, sufficient adhesive strength may not be obtained. On the other hand, when the thickness t of the oxide layer 12A is larger than 10 nm, it is inefficient because a further improvement in adhesive strength cannot be expected despite the longer irradiation time of vacuum ultraviolet light.
[0014]
In FIGS. 1 and 2, the oxide layer 12A is formed with a predetermined thickness on the glass substrate 11 side of the silicone rubber 12. However, when the silicone rubber 12 itself is formed relatively thin, It is also possible to cause a photo-oxidation reaction to the whole 12 and oxidize the whole silicone rubber 12.
[0015]
3 to 5 are process diagrams for explaining a method of manufacturing a microchip having a microchannel using the above-described photoadhesion method.
[0016]
First, as shown in FIG. 3, the surface portion of the silicone rubber 12 is subjected to machining and other known processing to form a predetermined microchannel 13. Next, as shown in FIG. 4, the silicone rubber 12 and the glass substrate 11 are brought into close contact with each other, and vacuum ultraviolet light is irradiated from the glass substrate 11 side. As a result, a photo-oxidation reaction is caused to the portion of the silicone rubber 12 on the glass substrate 11 side, an oxide layer is formed, and the glass substrate 11 and the silicone rubber 12 are fixed to each other, as shown in FIG. A microchip 15 having a flow path 13 is formed.
[0017]
The microchip 15 as shown in FIG. 5 can be suitably used as an element of an analytical apparatus such as chemical analysis or medical biochemical analysis and a medical diagnostic apparatus.
[0018]
【Example】
A quartz glass substrate having a thickness of 200 μm was prepared, and a silicone rubber having a thickness of 1000 μm was prepared, and these were brought into close contact as shown in FIG. Next, silicon rubber is irradiated from the excimer lamp with vacuum ultraviolet light having a wavelength of 172 nm at an irradiation intensity of 10 mW / cm 2 and an irradiation time of 10 minutes from the quartz glass substrate side to cause a photo-oxidation reaction. Silicone rubber was fixed.
[0019]
When an attempt was made to peel off the quartz glass substrate and the silicone rubber, even when an external force was applied to the extent that the silicone rubber was broken, neither peeling occurred. The thickness of the oxide layer generated at this time was 2 nm.
[0020]
As described above, the present invention has been described in detail based on the embodiments of the present invention with specific examples. However, the present invention is not limited to the above contents, and all modifications and changes can be made without departing from the scope of the present invention. It can be changed.
[0021]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a photo-adhesion method as a novel technique that can easily and precisely produce a fine component such as a microchip.
[Brief description of the drawings]
FIG. 1 is a process diagram for explaining a photobonding method of the present invention.
FIG. 2 is also a process diagram for explaining the photobonding method of the present invention.
FIG. 3 is a process diagram for explaining a method of manufacturing a microchip having microchannels using the photoadhesion method of the present invention.
FIG. 4 is also a process diagram for explaining a method of manufacturing a microchip having a microchannel using the photobonding method of the present invention.
FIG. 5 is also a process diagram for explaining a method of manufacturing a microchip having microchannels using the photobonding method of the present invention.
[Explanation of symbols]
11 Glass substrate 12 Silicone rubber 12A Oxidation layer 13 Microchannel 15 Microchip

Claims (8)

ガラス基板とシリコーンゴムとを密着する工程と、
前記ガラス基板側から真空紫外光を照射して、前記シリコーンゴムの、少なくとも前記ガラス基板と接触する側に光酸化反応を生ぜしめて酸化層を形成し、前記酸化層を介して前記ガラス基板と前記シリコーンゴムとを固着する工程と、
を具えることを特徴とする、光接着方法。
A step of closely attaching the glass substrate and the silicone rubber;
By irradiating vacuum ultraviolet light from the glass substrate side, an oxidation layer is formed by causing a photo-oxidation reaction on at least the side of the silicone rubber that contacts the glass substrate, and the glass substrate and the Fixing the silicone rubber;
A method for photoadhesion comprising the steps of:
前記酸化層の厚さが0.2nm〜10nmであることを特徴とする、請求項1に記載の光接着方法。The photobonding method according to claim 1, wherein the oxide layer has a thickness of 0.2 nm to 10 nm. 前記真空紫外光の強度が1mW/cm以上であることを特徴とする、請求項1又は2に記載の光接着方法。The photobonding method according to claim 1 or 2, wherein the intensity of the vacuum ultraviolet light is 1 mW / cm 2 or more. シリコーンゴムの表面部分にマイクロ流路を形成する工程と、
前記シリコーンゴムとガラス基板とを密着する工程と、
前記ガラス基板側から真空紫外光を照射して、前記シリコーンゴムの、少なくとも前記ガラス基板と接触する側に光酸化反応を生ぜしめて酸化層を形成し、前記酸化層を介して前記ガラス基板と前記シリコーンゴムとを固着し、前記マイクロ流路を有するマイクロチップを形成する工程と、
を具えることを特徴とする、マイクロチップの作製方法。
Forming a micro-channel on the surface of the silicone rubber;
Adhering the silicone rubber and the glass substrate;
By irradiating vacuum ultraviolet light from the glass substrate side, an oxidation layer is formed by causing a photo-oxidation reaction on at least the side of the silicone rubber that contacts the glass substrate, and the glass substrate and the A step of fixing a silicone rubber and forming a microchip having the microchannel;
A method for manufacturing a microchip, comprising:
前記酸化層の厚さが0.2nm〜10nmであることを特徴とする、請求項4に記載のマイクロチップの作製方法。The method for manufacturing a microchip according to claim 4, wherein the oxide layer has a thickness of 0.2 nm to 10 nm. 前記真空紫外光の強度が1mW/cm以上であることを特徴とする、請求項4又は5に記載のマイクロチップの作製方法。The method for manufacturing a microchip according to claim 4 or 5, wherein the intensity of the vacuum ultraviolet light is 1 mW / cm 2 or more. 請求項4〜6のいずれか一に記載の方法により作製されたことを特徴とする、化学分析用マイクロチップ。A microchip for chemical analysis, produced by the method according to any one of claims 4 to 6. 請求項4〜6のいずれか一に記載の方法により作製されたことを特徴とする、医療用マイクロチップ。A medical microchip produced by the method according to any one of claims 4 to 6.
JP2003126359A 2003-05-01 2003-05-01 Photoadhesion method and microchip manufacturing method Expired - Lifetime JP3985043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003126359A JP3985043B2 (en) 2003-05-01 2003-05-01 Photoadhesion method and microchip manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003126359A JP3985043B2 (en) 2003-05-01 2003-05-01 Photoadhesion method and microchip manufacturing method

Publications (2)

Publication Number Publication Date
JP2004331731A JP2004331731A (en) 2004-11-25
JP3985043B2 true JP3985043B2 (en) 2007-10-03

Family

ID=33503320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003126359A Expired - Lifetime JP3985043B2 (en) 2003-05-01 2003-05-01 Photoadhesion method and microchip manufacturing method

Country Status (1)

Country Link
JP (1) JP3985043B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7927975B2 (en) 2009-02-04 2011-04-19 Micron Technology, Inc. Semiconductor material manufacture
JP5516954B2 (en) * 2010-01-19 2014-06-11 国立大学法人東京工業大学 Method for bonding substrates having fine structure and method for manufacturing microfluidic device using the bonding method
KR20120120241A (en) 2010-01-19 2012-11-01 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 Method for bonding hardened silicone resin, method for joining substrate having fine structure, and method for manufacturing micro fluid device using the method for joining
JP2017032806A (en) * 2015-08-03 2017-02-09 国立大学法人東京工業大学 Method for manufacturing antireflection fine protrusion
JP2017155182A (en) * 2016-03-04 2017-09-07 信越化学工業株式会社 Photo-hardening method of silicone rubber surface, and silicone rubber molded body
WO2020195361A1 (en) * 2019-03-25 2020-10-01 国立研究開発法人量子科学技術研究開発機構 Joined body, joining method therefor, microfluidic device, and production method therefor

Also Published As

Publication number Publication date
JP2004331731A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
JP3714338B2 (en) Joining method
JP4760315B2 (en) Joining method
US20200189039A1 (en) Method and device for providing through-openings in a substrate and a substrate produced in said manner
JP5576040B2 (en) Resin article peeling method and microchip peeling method
JP7469444B2 (en) Methods for bonding and debonding substrates
JPWO2008087800A1 (en) Microchip manufacturing method and microchip
WO2011089892A1 (en) Method for bonding hardened silicone resin, method for joining substrate having fine structure, and method for manufacturing micro fluid device using the method for joining.
JP3985043B2 (en) Photoadhesion method and microchip manufacturing method
US9573804B2 (en) Method of bonding two substrates and device manufactured thereby
US8784973B2 (en) Resin bonding method by photoirradiation, method for producing resin article, resin article produced by the same method, method for producing microchip, and microchip produced by the same method
US20210399178A1 (en) Electronic device and manufacturing method therefor
WO2016060080A1 (en) Workpiece bonding method
JP5001203B2 (en) Manufacturing method of microchip having non-adhesive part
JP2017126416A (en) Method for manufacturing light guide device
JP4352133B2 (en) Adhesion method for adjacent optical components
JP5516954B2 (en) Method for bonding substrates having fine structure and method for manufacturing microfluidic device using the bonding method
JP6195022B2 (en) How to bond workpieces
WO2021090899A1 (en) Glass plate having through-hole pattern formed therein, manufacturing method therefor, and micro channel tube
DE10340409A1 (en) Support wafer for processing a semiconductor wafer comprises a support substrate permeable in a partial region for light having a predetermined wavelength, and an adhesive region arranged directly on the light-permeable partial region
JP4834845B2 (en) Photochemical bonding method and device using compound containing Si-O-Si bond
JP3353366B2 (en) Die bonding method
JP6112140B2 (en) Work bonding method and light irradiation device
JP4929469B2 (en) Light emitting element manufacturing method using compound containing Si-O-Si bond
JPWO2018150864A1 (en) Manufacturing method of bonded structure and bonded structure
JP5364891B2 (en) Photochemical bonding method and device using compound containing Si-O-Si bond

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

R150 Certificate of patent or registration of utility model

Ref document number: 3985043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term