JP2004331731A - Photo-bonding method, and method for making microchip - Google Patents

Photo-bonding method, and method for making microchip Download PDF

Info

Publication number
JP2004331731A
JP2004331731A JP2003126359A JP2003126359A JP2004331731A JP 2004331731 A JP2004331731 A JP 2004331731A JP 2003126359 A JP2003126359 A JP 2003126359A JP 2003126359 A JP2003126359 A JP 2003126359A JP 2004331731 A JP2004331731 A JP 2004331731A
Authority
JP
Japan
Prior art keywords
silicone rubber
glass substrate
microchip
oxide layer
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003126359A
Other languages
Japanese (ja)
Other versions
JP3985043B2 (en
Inventor
Hiroyuki Sugimura
博之 杉村
Osamu Takai
治 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Original Assignee
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC filed Critical Nagoya University NUC
Priority to JP2003126359A priority Critical patent/JP3985043B2/en
Publication of JP2004331731A publication Critical patent/JP2004331731A/en
Application granted granted Critical
Publication of JP3985043B2 publication Critical patent/JP3985043B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1435Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1406Ultraviolet [UV] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/746Joining plastics material to non-plastics material to inorganic materials not provided for in groups B29C66/742 - B29C66/744
    • B29C66/7465Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/058Microfluidics not provided for in B81B2201/051 - B81B2201/054
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0323Grooves
    • B81B2203/0338Channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/038Bonding techniques not provided for in B81C2203/031 - B81C2203/037

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new technique by which a fine part such as a microchip can simply and highly accurately be made. <P>SOLUTION: This photo-bonding method is characterized by comprising a process for bonding a glass substrate 11 to a silicone rubber 12 and a process for irradiating the silicone rubber 12 with ultraviolet right having a wavelength of ≤200 nm from the side of glass substrate 11 under vacuum to cause the photo-oxidation reaction in the silicone rubber 12 with the ultraviolet light under vacuum, thus forming the oxidized layer 12A in the silicone rubber 1 on the side of the glass substrate 11. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ化学/生化学分析チップ作製のための要素技術として使用することができる、光接着方法及びそれを用いたマイクロチップの作製方法に関する。
【0002】
【従来の技術】
マイクロ化学や生化学の分野においては、微細なマイクロチップを作製することが望まれ、そのための技術の確立が急務となっている。従来、上述したようなマイクロチップは、シリコーンゴムとガラス基板とを接着剤を用いて接着することによって作製していた。しかしながら、シリコーンゴムはその表面が疎水性であるために、接着剤との濡れ性が悪く、十分な接着強度を得ることができないでいた。
【0003】
このため、シリコーンゴム表面の接着剤との濡れ性を向上させるべく、その表面に対して活性化処理を施すことが試みられていたが、このような活性化処理によってもシリコーンゴム表面の接着剤に対する接着強度を十分に向上させることはできないでいた。
【0004】
一方、上述したシリコーンゴムに代えてエポキシ系接着剤を使用することも試みられていたが、加熱処理を必須とし、また微細な部品を接着する際には、微小な接着面への塗布が困難であり、熟練した技術及び補助器具を必要とするという問題があった。
【0005】
【発明が解決しようとする課題】
本発明は、マイクロチップなどの微細な部品を簡易かつ高精度に作製することができる新規な技術を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成すべく、本発明は、
ガラス基板とシリコーンゴムとを接着する工程と、
前記ガラス基板側から真空紫外光を照射して、前記シリコーンゴムの、少なくとも前記ガラス基板と接触する側に光酸化反応を生ぜしめて酸化層を形成し、前記酸化層を介して前記ガラス基板と前記シリコーンゴムとを固着する工程と、
を具えることを特徴とする、光接着方法に関する。
【0007】
本発明者は、上記目的を達成すべく鋭意検討を実施した。その結果、シリコーンゴムに対して波長200nm以下の真空紫外光を所定の強度で照射することにより、前記シリコーンゴムが光酸化反応によって酸化し、その結果形成された酸化層が強力な接着層として機能し、前記シリコーンゴムとガラス基板とを強固に接着することを見出した。
【0008】
本発明の方法によれば、シリコーンゴム自体の化学的な変質を利用しているので、シリコーンゴムの表面の活性及び不活性などに起因した濡れ性や、エポキシ系接着剤などの使用する際の部品の大小及び技術的な熟練を必要とすることなく、微細な部品を接着することができる。したがって、マイクロ化学や生化学の分野においては、微細なマイクロチップの作製などの好適に用いることができる。
【0009】
本発明の詳細、その他の特徴及び利点については、以下の発明の実施の形態において詳述する。
【0010】
【発明の実施の形態】
図1及び図2は、本発明の光接着方法を説明するための工程図である。最初に、図1に示すように、ガラス基板11とシリコーンゴム12とを密着させ、ガラス基板11側から波長200nm以下の真空紫外光を照射する。すると、シリコーンゴム12中には前記真空紫外光によって光酸化反応が生じ、図2に示すように、シリコーンゴム12の、ガラス基板11側において酸化層12Aが形成される。この酸化層12Aは強力な接着層として機能し、これによってガラス基板11とシリコーンゴム12とが強力に固着するようになる。
【0011】
なお、前記真空紫外光を照射するための光源としては、エキシマランプ、F2エキシマレーザ、低圧水銀ランプ及びシンクロトロン放射光を例示することができる。
【0012】
また、前記真空紫外光の強度についても、上述したような光酸化反応を生ぜしめて酸化層を形成し、ガラス基板11とシリコーンゴム12との接着を行うことができれば特に限定されるものではないが、好ましくは1mW/cm以上に設定する。真空紫外光の強度が1mW/cmより小さいと、ガラス基板による真空紫外光の吸収のために実際の照射強度が減少し、十分な光酸化反応を生ぜしめることができずに、光接着を行うことができない場合がある。
【0013】
さらに、酸化層12Aの厚さtについても特に限定されるものではないが、好ましくは0.2nm〜10nmに設定し、さらには好ましくは1nm〜5nmに設定することが好ましい。酸化層12Aの厚さtが0.2nmより小さい場合は、十分な接着強度を得ることができない場合がある。また、酸化層12Aの厚さtが10nmより大きい場合は、真空紫外光の照射時間が長くなるにも拘わらず、接着強度の更なる向上が望めないので非効率的となる。
【0014】
なお、図1及び図2においては、酸化層12Aはシリコーンゴム12の、ガラス基板11側において所定の厚さに形成しているが、シリコーンゴム12自体を比較的薄く形成した場合は、シリコーンゴム12の全体に対して光酸化反応を生ぜしめ、シリコーンゴム12全体を酸化させることもできる。
【0015】
図3〜図5は、上述した光接着方法を用いたマイクロ流路を有するマイクロチップの作製方法を説明するための工程図である。
【0016】
最初に、図3に示すように、シリコーンゴム12の表面部分に対して機械加工やその他公知の加工処理を施して、所定のマイクロ流路13を形成する。次いで、図4に示すように、シリコーンゴム12とガラス基板11とを密着させ、ガラス基板11側から真空紫外光を照射する。これによって、シリコーンゴム12の、ガラス基板11側の部分に対して光酸化反応を生ぜしめ、酸化層を形成して、ガラス基板11とシリコーンゴム12とを固着し、図5に示すようなマイクロ流路13を有するマイクロチップ15を形成する。
【0017】
図5に示すようなマイクロチップ15は、化学分析や医療用の生化学分析などの分析装置及び医療用診断装置の要素として好適に用いることができる。
【0018】
【実施例】
厚さ200μmの石英ガラス基板を準備するとともに、厚さ1000μmのシリコーンゴムを準備し、これらを図1に示すように密着させた。次いで、エキシマランプより波長172nmの真空紫外光を照射強度10mW/cm、照射時間10分で、前記石英ガラス基板側よりシリコーンゴムに照射し、光酸化反応を生ぜしめ、前記石英ガラス基板と前記シリコーンゴムとを固着させた。
【0019】
前記石英ガラス基板と前記シリコーンゴムとを剥離しようとしたところ、前記シリコーンゴムが破壊する程度の外力を加えた場合においても、両者の剥離は生じなかった。なお、このときに生じた酸化層の厚さは2nmであった。
【0020】
以上、具体例を挙げながら発明の実施の形態に基づいて本発明を詳細に説明してきたが、本発明は上記内容に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。
【0021】
【発明の効果】
以上説明したように、本発明によれば、マイクロチップなどの微細な部品を簡易かつ高精度に作製することができる新規な技術としての光接着方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の光接着方法を説明するための工程図である。
【図2】同じく、本発明の光接着方法を説明するための工程図である。
【図3】本発明の光接着方法を用いた、マイクロ流路を有するマイクロチップの作製方法を説明するための工程図である。
【図4】同じく、本発明の光接着方法を用いた、マイクロ流路を有するマイクロチップの作製方法を説明するための工程図である。
【図5】同じく、本発明の光接着方法を用いた、マイクロ流路を有するマイクロチップの作製方法を説明するための工程図である。
【符号の説明】
11 ガラス基板
12 シリコーンゴム
12A 酸化層
13 マイクロ流路
15 マイクロチップ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a photoadhesion method that can be used as a component technology for producing a microchemical / biochemical analysis chip, and a method for producing a microchip using the same.
[0002]
[Prior art]
In the field of microchemistry and biochemistry, it is desired to produce a fine microchip, and there is an urgent need to establish a technology for that purpose. Conventionally, a microchip as described above has been manufactured by bonding silicone rubber and a glass substrate using an adhesive. However, since the surface of the silicone rubber is hydrophobic, the wettability with the adhesive is poor, and it has been impossible to obtain a sufficient adhesive strength.
[0003]
Therefore, in order to improve the wettability of the silicone rubber surface with the adhesive, it has been attempted to perform an activation treatment on the surface of the silicone rubber. However, it was not possible to sufficiently improve the adhesive strength with respect to.
[0004]
On the other hand, the use of an epoxy-based adhesive instead of the silicone rubber described above has been attempted. However, heat treatment is indispensable, and it is difficult to apply to a minute bonding surface when bonding a fine component. However, there is a problem that a skilled technique and auxiliary equipment are required.
[0005]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel technique capable of easily and precisely producing a fine component such as a microchip.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides:
Bonding a glass substrate and silicone rubber;
By irradiating vacuum ultraviolet light from the glass substrate side, a photo-oxidation reaction occurs at least on the side of the silicone rubber that contacts the glass substrate to form an oxide layer, and the glass substrate and the glass substrate are interposed via the oxide layer. Fixing the silicone rubber and
The present invention relates to a light bonding method characterized by comprising:
[0007]
The present inventor has conducted intensive studies to achieve the above object. As a result, by irradiating the silicone rubber with vacuum ultraviolet light having a wavelength of 200 nm or less at a predetermined intensity, the silicone rubber is oxidized by a photo-oxidation reaction, and the resulting oxidized layer functions as a strong adhesive layer. It has been found that the silicone rubber and the glass substrate are firmly bonded to each other.
[0008]
According to the method of the present invention, since the chemical deterioration of the silicone rubber itself is used, the wettability due to the activity and inactivity of the surface of the silicone rubber, and the use of an epoxy-based adhesive or the like when the epoxy rubber is used. Fine components can be bonded without requiring large and small components and technical skills. Therefore, in the field of microchemistry and biochemistry, it can be suitably used for producing fine microchips.
[0009]
Details of the present invention, other features and advantages will be described in detail in the following embodiments of the present invention.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
1 and 2 are process diagrams for explaining the optical bonding method of the present invention. First, as shown in FIG. 1, a glass substrate 11 and a silicone rubber 12 are brought into close contact with each other, and vacuum ultraviolet light having a wavelength of 200 nm or less is irradiated from the glass substrate 11 side. Then, a photo-oxidation reaction occurs in the silicone rubber 12 by the vacuum ultraviolet light, and as shown in FIG. 2, an oxide layer 12A is formed on the silicone rubber 12 on the glass substrate 11 side. The oxide layer 12A functions as a strong adhesive layer, whereby the glass substrate 11 and the silicone rubber 12 are strongly fixed.
[0011]
In addition, examples of the light source for irradiating the vacuum ultraviolet light include an excimer lamp, an F2 excimer laser, a low-pressure mercury lamp, and synchrotron radiation.
[0012]
Also, the intensity of the vacuum ultraviolet light is not particularly limited as long as the photo-oxidation reaction as described above is caused to form an oxide layer and the glass substrate 11 and the silicone rubber 12 can be bonded to each other. , Preferably 1 mW / cm 2 or more. If the intensity of the vacuum ultraviolet light is less than 1 mW / cm 2 , the actual irradiation intensity decreases due to the absorption of the vacuum ultraviolet light by the glass substrate, and a sufficient photo-oxidation reaction cannot be caused. You may not be able to do it.
[0013]
Further, the thickness t of the oxide layer 12A is not particularly limited, but is preferably set to 0.2 nm to 10 nm, and more preferably set to 1 nm to 5 nm. When the thickness t of the oxide layer 12A is smaller than 0.2 nm, a sufficient adhesive strength may not be obtained. Further, when the thickness t of the oxide layer 12A is larger than 10 nm, further improvement in the adhesive strength cannot be expected in spite of a longer irradiation time of the vacuum ultraviolet light, which is inefficient.
[0014]
In FIGS. 1 and 2, the oxide layer 12A is formed to have a predetermined thickness on the side of the glass substrate 11 of the silicone rubber 12, but when the silicone rubber 12 itself is formed relatively thin, the silicone rubber 12 A photo-oxidation reaction can be caused on the entire silicone rubber 12 to oxidize the entire silicone rubber 12.
[0015]
3 to 5 are process diagrams for explaining a method for manufacturing a microchip having a microchannel using the above-described optical bonding method.
[0016]
First, as shown in FIG. 3, the surface portion of the silicone rubber 12 is subjected to mechanical processing or other known processing to form a predetermined microchannel 13. Next, as shown in FIG. 4, the silicone rubber 12 and the glass substrate 11 are brought into close contact with each other, and vacuum ultraviolet light is irradiated from the glass substrate 11 side. As a result, a photo-oxidation reaction is caused on a portion of the silicone rubber 12 on the glass substrate 11 side, an oxide layer is formed, and the glass substrate 11 and the silicone rubber 12 are fixed to each other. A microchip 15 having a channel 13 is formed.
[0017]
The microchip 15 as shown in FIG. 5 can be suitably used as an element of an analyzer for medical analysis, medical biochemical analysis, and the like, and a medical diagnostic device.
[0018]
【Example】
A quartz glass substrate having a thickness of 200 μm was prepared, and a silicone rubber having a thickness of 1000 μm was prepared, and these were brought into close contact as shown in FIG. Then, a vacuum ultraviolet light having a wavelength of 172 nm was irradiated from the excimer lamp onto the silicone rubber from the quartz glass substrate side at an irradiation intensity of 10 mW / cm 2 and an irradiation time of 10 minutes to cause a photo-oxidation reaction. The silicone rubber was fixed.
[0019]
When the quartz glass substrate and the silicone rubber were to be separated from each other, even when an external force was applied to such an extent that the silicone rubber was broken, the two were not separated. Note that the thickness of the oxide layer generated at this time was 2 nm.
[0020]
As described above, the present invention has been described in detail based on the embodiments of the present invention with specific examples. However, the present invention is not limited to the above description, and any modifications or changes may be made without departing from the scope of the present invention. Changes are possible.
[0021]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an optical bonding method as a novel technique capable of easily and precisely manufacturing a fine component such as a microchip.
[Brief description of the drawings]
FIG. 1 is a process chart for explaining a photo bonding method of the present invention.
FIG. 2 is a process chart for explaining the optical bonding method of the present invention.
FIG. 3 is a process diagram for explaining a method for manufacturing a microchip having a microchannel using the optical bonding method of the present invention.
FIG. 4 is a process chart for explaining a method for manufacturing a microchip having a microchannel using the optical bonding method of the present invention.
FIG. 5 is a process chart for explaining a method for manufacturing a microchip having a microchannel using the optical bonding method of the present invention.
[Explanation of symbols]
11 Glass substrate 12 Silicone rubber 12A Oxide layer 13 Micro channel 15 Micro chip

Claims (8)

ガラス基板とシリコーンゴムとを密着する工程と、
前記ガラス基板側から真空紫外光を照射して、前記シリコーンゴムの、少なくとも前記ガラス基板と接触する側に光酸化反応を生ぜしめて酸化層を形成し、前記酸化層を介して前記ガラス基板と前記シリコーンゴムとを固着する工程と、
を具えることを特徴とする、光接着方法。
A step of adhering the glass substrate and the silicone rubber,
By irradiating vacuum ultraviolet light from the glass substrate side, a photo-oxidation reaction occurs at least on the side of the silicone rubber that contacts the glass substrate to form an oxide layer, and the glass substrate and the glass substrate are interposed via the oxide layer. Fixing the silicone rubber and
A light bonding method, comprising:
前記酸化層の厚さが0.2nm〜10nmであることを特徴とする、請求項1に記載の光接着方法。The method of claim 1, wherein the thickness of the oxide layer is 0.2 nm to 10 nm. 前記真空紫外光の強度が1mW/cm以上であることを特徴とする、請求項1又は2に記載の光接着方法。The optical bonding method according to claim 1, wherein the intensity of the vacuum ultraviolet light is 1 mW / cm 2 or more. シリコーンゴムの表面部分にマイクロ流路を形成する工程と、
前記シリコーンゴムとガラス基板とを密着する工程と、
前記ガラス基板側から真空紫外光を照射して、前記シリコーンゴムの、少なくとも前記ガラス基板と接触する側に光酸化反応を生ぜしめて酸化層を形成し、前記酸化層を介して前記ガラス基板と前記シリコーンゴムとを固着し、前記マイクロ流路を有するマイクロチップを形成する工程と、
を具えることを特徴とする、マイクロチップの作製方法。
Forming a microchannel on the surface of the silicone rubber;
A step of bringing the silicone rubber into close contact with the glass substrate,
By irradiating vacuum ultraviolet light from the glass substrate side, a photo-oxidation reaction occurs at least on the side of the silicone rubber that contacts the glass substrate to form an oxide layer, and the glass substrate and the glass substrate are interposed via the oxide layer. Fixing a silicone rubber and forming a microchip having the microchannel,
A method for producing a microchip, comprising:
前記酸化層の厚さが0.2nm〜10nmであることを特徴とする、請求項4に記載のマイクロチップの作製方法。The method for manufacturing a microchip according to claim 4, wherein the thickness of the oxide layer is 0.2 nm to 10 nm. 前記真空紫外光の強度が1mW/cm以上であることを特徴とする、請求項4又は5に記載のマイクロチップの作製方法。The method for manufacturing a microchip according to claim 4, wherein the intensity of the vacuum ultraviolet light is 1 mW / cm 2 or more. 請求項4〜6のいずれか一に記載の方法により作製されたことを特徴とする、化学分析用マイクロチップ。A microchip for chemical analysis, produced by the method according to claim 4. 請求項4〜6のいずれか一に記載の方法により作製されたことを特徴とする、医療用マイクロチップ。A medical microchip produced by the method according to any one of claims 4 to 6.
JP2003126359A 2003-05-01 2003-05-01 Photoadhesion method and microchip manufacturing method Expired - Lifetime JP3985043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003126359A JP3985043B2 (en) 2003-05-01 2003-05-01 Photoadhesion method and microchip manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003126359A JP3985043B2 (en) 2003-05-01 2003-05-01 Photoadhesion method and microchip manufacturing method

Publications (2)

Publication Number Publication Date
JP2004331731A true JP2004331731A (en) 2004-11-25
JP3985043B2 JP3985043B2 (en) 2007-10-03

Family

ID=33503320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003126359A Expired - Lifetime JP3985043B2 (en) 2003-05-01 2003-05-01 Photoadhesion method and microchip manufacturing method

Country Status (1)

Country Link
JP (1) JP3985043B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091200A3 (en) * 2009-02-04 2010-12-02 Micron Technology, Inc. Semiconductor material manufacture
WO2011089892A1 (en) * 2010-01-19 2011-07-28 国立大学法人東京工業大学 Method for bonding hardened silicone resin, method for joining substrate having fine structure, and method for manufacturing micro fluid device using the method for joining.
JP2011148104A (en) * 2010-01-19 2011-08-04 Tokyo Institute Of Technology Method for joining substrate having fine structure, and method for manufacturing micro fluid device using the method for joining
JP2017032806A (en) * 2015-08-03 2017-02-09 国立大学法人東京工業大学 Method for manufacturing antireflection fine protrusion
CN108699273A (en) * 2016-03-04 2018-10-23 信越化学工业株式会社 The light hardening method of silastic surface and silicon rubber formed body
WO2020195361A1 (en) * 2019-03-25 2020-10-01 国立研究開発法人量子科学技術研究開発機構 Joined body, joining method therefor, microfluidic device, and production method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091200A3 (en) * 2009-02-04 2010-12-02 Micron Technology, Inc. Semiconductor material manufacture
US7927975B2 (en) 2009-02-04 2011-04-19 Micron Technology, Inc. Semiconductor material manufacture
US8389385B2 (en) 2009-02-04 2013-03-05 Micron Technology, Inc. Semiconductor material manufacture
WO2011089892A1 (en) * 2010-01-19 2011-07-28 国立大学法人東京工業大学 Method for bonding hardened silicone resin, method for joining substrate having fine structure, and method for manufacturing micro fluid device using the method for joining.
JP2011148104A (en) * 2010-01-19 2011-08-04 Tokyo Institute Of Technology Method for joining substrate having fine structure, and method for manufacturing micro fluid device using the method for joining
US8956494B2 (en) 2010-01-19 2015-02-17 Tokyo Institute Of Technology Method of adhering hard silicone resin, method of adhering substrate having fine structure, and preparation method of micro fluidic device utilizing adhesion method
JP2017032806A (en) * 2015-08-03 2017-02-09 国立大学法人東京工業大学 Method for manufacturing antireflection fine protrusion
CN108699273A (en) * 2016-03-04 2018-10-23 信越化学工业株式会社 The light hardening method of silastic surface and silicon rubber formed body
WO2020195361A1 (en) * 2019-03-25 2020-10-01 国立研究開発法人量子科学技術研究開発機構 Joined body, joining method therefor, microfluidic device, and production method therefor

Also Published As

Publication number Publication date
JP3985043B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP3714338B2 (en) Joining method
JP5576040B2 (en) Resin article peeling method and microchip peeling method
JP4760315B2 (en) Joining method
US10610971B2 (en) Method for producing recesses in a substrate
JP5342460B2 (en) Laser bonding method, substrates bonded by the method, and use of such substrates
US20150309405A1 (en) Method of making an extreme ultraviolet pellicle
EP3401052A1 (en) Room temperature glass-to-glass, glass-to-plastic and glass-to-ceramic/semiconductor bonding
TW201233480A (en) Laser processing method
WO2011089892A1 (en) Method for bonding hardened silicone resin, method for joining substrate having fine structure, and method for manufacturing micro fluid device using the method for joining.
JPWO2008087800A1 (en) Microchip manufacturing method and microchip
JP2004331731A (en) Photo-bonding method, and method for making microchip
JP2005066687A (en) Fine ablation machining method for transparent material
US20130248102A1 (en) Method of manufacturing microchip
WO2016060080A1 (en) Workpiece bonding method
WO2004105201A3 (en) Semiconductor nanocrystal-based optical devices and method of preparing such devices
JP4352133B2 (en) Adhesion method for adjacent optical components
JP4296281B2 (en) Method for modifying compound containing Si-O-Si bond and device fabrication method
JP2004140266A (en) Manufacturing method for thin film layer wafer and thin film layer
JP4834845B2 (en) Photochemical bonding method and device using compound containing Si-O-Si bond
JP6112140B2 (en) Work bonding method and light irradiation device
JP2023015410A (en) Glass plate having through-hole pattern formed therein, manufacturing method therefor, and micro-channel chip
JP4929469B2 (en) Light emitting element manufacturing method using compound containing Si-O-Si bond
JP2010222403A (en) Method for forming emission film using laser ablation and light emitting device
JP5364891B2 (en) Photochemical bonding method and device using compound containing Si-O-Si bond
JP4392517B2 (en) Micro blood collection device and microfluidic device using the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

R150 Certificate of patent or registration of utility model

Ref document number: 3985043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term