JP4929469B2 - Light emitting element manufacturing method using compound containing Si-O-Si bond - Google Patents

Light emitting element manufacturing method using compound containing Si-O-Si bond Download PDF

Info

Publication number
JP4929469B2
JP4929469B2 JP2009068212A JP2009068212A JP4929469B2 JP 4929469 B2 JP4929469 B2 JP 4929469B2 JP 2009068212 A JP2009068212 A JP 2009068212A JP 2009068212 A JP2009068212 A JP 2009068212A JP 4929469 B2 JP4929469 B2 JP 4929469B2
Authority
JP
Japan
Prior art keywords
light
wavelength
bond
emission
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009068212A
Other languages
Japanese (ja)
Other versions
JP2010222397A (en
Inventor
昌幸 大越
成美 井上
美奈子 伊代野
Original Assignee
防衛省技術研究本部長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 防衛省技術研究本部長 filed Critical 防衛省技術研究本部長
Priority to JP2009068212A priority Critical patent/JP4929469B2/en
Publication of JP2010222397A publication Critical patent/JP2010222397A/en
Application granted granted Critical
Publication of JP4929469B2 publication Critical patent/JP4929469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、発光素子作製法に係り、とくにSi−O−Si結合を含む化合物に所定の光を照射して、所望の色彩を放つ発光改質層を形成するためのSi−O−Si結合を含む化合物を用いた発光素子作製法に関する。   The present invention relates to a method for manufacturing a light emitting device, and in particular, a Si—O—Si bond for forming a light emitting modified layer that emits a desired color by irradiating a compound containing a Si—O—Si bond with predetermined light. The present invention relates to a method for manufacturing a light-emitting element using a compound containing.

オプトエレクトロニクス、フォトニクスあるいはバイオ/メディカル分野において、発光素子は必要不可欠である。現在発光素子は、ケイ素やシリカガラスなどリジッドな基体上に形成されることが多い。このことが、デバイスの軽量性、耐衝撃性、耐候性、フレキシブル性などの点において使用を制限していた。また、素子の発光波長も材料によって制限され、一種類の材料から所望の色彩を得ることは困難であった。   In the field of optoelectronics, photonics or bio / medical, light emitting devices are indispensable. Currently, light emitting devices are often formed on rigid substrates such as silicon and silica glass. This has limited the use of the device in terms of lightness, impact resistance, weather resistance, flexibility, and the like. Further, the emission wavelength of the element is also limited by the material, and it has been difficult to obtain a desired color from one kind of material.

Si−O−Si結合を含む化合物表面乃至は内部に、所望の色彩を放つ発光改質層を位置選択的あるいは空間選択的に形成することにより、リジッドな基体に限定されないSi−O−Si結合を含む化合物を基礎とした新規発光素子の作製法の確立を課題とする。   Si-O-Si bonds that are not limited to rigid substrates are formed by selectively or spatially forming a light emitting modified layer that emits a desired color on the surface or inside of a compound containing Si-O-Si bonds. It is an object to establish a method for manufacturing a novel light-emitting element based on a compound containing benzene.

そこで、本発明は、上記の点に鑑み、Si−O−Si結合を含む化合物表面乃至は内部に、所望の色彩を放つ発光改質層を形成可能としたSi−O−Si結合を含む化合物を用いた発光素子作製法を提供することを目的とする。   Therefore, in view of the above points, the present invention provides a compound containing a Si—O—Si bond that can form a light emitting modified layer emitting a desired color on the surface or inside of the compound containing a Si—O—Si bond. It is an object to provide a method for manufacturing a light-emitting element using the material.

本発明のその他の目的や新規の特徴は後述の実施の形態において明らかにする。   Other objects and novel features of the present invention will be clarified in embodiments described later.

上記目的を達成するために、本発明の第1の態様に係るSi−O−Si結合を含む化合物を用いた発光素子作製法は、Si−O−Si結合を含む化合物表面乃至は内部に、波長190nm以上266nm未満の第1の光を照射し、その後、露光された前記化合物に真空中において波長190nm以上266nm未満の第2の光を照射して還元反応を増強し、所望の色彩を放つ発光改質層を形成することを特徴としている。 In order to achieve the above object, a method for manufacturing a light-emitting element using a compound including a Si—O—Si bond according to the first aspect of the present invention includes the surface of a compound including a Si—O—Si bond or the inside thereof. Irradiation with a first light having a wavelength of 190 nm or more and less than 266 nm, and then irradiation of the exposed compound with a second light having a wavelength of 190 nm or more and less than 266 nm in a vacuum enhances the reduction reaction and emits a desired color. It is characterized by forming a light emitting modified layer.

本発明の第の態様に係るSi−O−Si結合を含む化合物を用いた発光素子作製法は、Si−O−Si結合を含む化合物表面乃至は内部に、波長190nm以上266nm未満の第1の光を照射し、その後、露光された前記化合物に、酸素を含む混合気中において第1の光よりも短い波長で波長190nm以下の第2の光を照射して酸化反応を増強し、所望の色彩を放つ発光改質層を形成することを特徴としている。 The light emitting element manufacturing method using the compound containing Si—O—Si bond according to the second aspect of the present invention is the first having a wavelength of 190 nm or more and less than 266 nm on the surface or inside of the compound containing Si—O—Si bond. After that, the exposed compound is irradiated with a second light having a wavelength shorter than that of the first light and a wavelength of 190 nm or less in a gas mixture containing oxygen to enhance the oxidation reaction. It is characterized by forming a light-emitting modified layer that emits the above-mentioned color.

本発明の第の態様に係るSi−O−Si結合を含む化合物を用いた発光素子作製法は、Si−O−Si結合を含む化合物表面乃至は内部に、波長190nm以上266nm未満の光を照射し、露光された前記化合物に、その後、酸素を含む混合気中において熱処理を加えて酸化反応を増強することにより、所望の色彩を放つ発光改質層を形成することを特徴としている。 In the method for manufacturing a light-emitting element using a compound including a Si—O—Si bond according to the third aspect of the present invention, light having a wavelength of 190 nm or more and less than 266 nm is applied to the surface or inside of the compound including a Si—O—Si bond. The irradiated and exposed compound is then subjected to a heat treatment in a gas mixture containing oxygen to enhance the oxidation reaction, thereby forming a light emitting modified layer that emits a desired color.

なお、以上の構成要素の任意の組合せもまた、本発明の態様として有効である。   It should be noted that any combination of the above components is also effective as an aspect of the present invention.

本発明によれば、Si−O−Si結合を含む化合物表面乃至は内部に、所望の色彩を放つ発光改質層を形成することにより、リジッドな基体に限定されないSi−O−Si結合を含む化合物を基礎とした新規発光素子の作製法を確立でき、オプトエレクトロニクス、フォトニクスあるいはバイオ/メディカル分野での素子作製の基盤技術として利用可能であるなど多機能マイクロ/ナノサイズの素子作製のための必要不可欠な技術となる。また本発明は、これら分野にとどまらず、今後マイクロ・ナノマシーニング技術を利用して発展する素子作製の分野に多大に利用可能である。   According to the present invention, a Si—O—Si bond that is not limited to a rigid substrate is formed by forming a light emitting modified layer that emits a desired color on the surface or inside of a compound that contains a Si—O—Si bond. Necessary for the fabrication of multifunctional micro / nano-sized devices such as compound light-emitting device fabrication methods that can be established and used as basic technology for device fabrication in optoelectronics, photonics or bio / medical fields It becomes an indispensable technology. The present invention is not limited to these fields, and can be used greatly in the field of device fabrication that will be developed using micro / nanomachining technology.

本発明に係るSi−O−Si結合を含む化合物を用いた発光素子作製法の実施の形態であって、(A)は実施の形態1、(B)は実施の形態2を示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram illustrating a light-emitting element manufacturing method using a compound including a Si—O—Si bond according to the present invention, in which (A) is Embodiment 1 and (B) is a configuration diagram illustrating Embodiment 2. FIG. is there. 本発明の実施例において、種々の改質条件における改質層の発光スペクトルの変化を示すグラフである。In the Example of this invention, it is a graph which shows the change of the emission spectrum of the modification layer in various modification conditions. 種々の改質条件(図2下表)における改質試料表面の発光色の変化を示す写真図である。It is a photograph figure which shows the change of the luminescent color of the modification | reformation sample surface in various modification conditions (the lower table of FIG. 2). 種々の改質条件(図2下表)における各種導光板を試作した写真図である。It is the photograph figure which prototyped various light-guide plates in various modification conditions (the lower table of FIG. 2).

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材、処理等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, process, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

図1で本発明に係るSi−O−Si結合を含む化合物の発光素子作製法の実施の形態を説明する。図1(A)は、Si−O−Si結合を含む化合物としての固体有機ポリシロキサン表面に発光改質層を形成する場合の実施の形態1で用いる実験概略構成であり、固体有機ポリシロキサン(シリコーン)1表面にはマスク3が配置され、波長190nm以上266nm未満のレーザー光2がマスク3を通して固体有機ポリシロキサン1表面に照射される。   FIG. 1 illustrates an embodiment of a method for manufacturing a light-emitting element of a compound including a Si—O—Si bond according to the present invention. FIG. 1A is a schematic configuration of an experiment used in Embodiment 1 in the case where a light-emitting modified layer is formed on the surface of a solid organic polysiloxane as a compound containing a Si—O—Si bond. Silicone 1 has a mask 3 disposed on the surface, and laser light 2 having a wavelength of 190 nm or more and less than 266 nm is irradiated to the surface of the solid organic polysiloxane 1 through the mask 3.

前記マスク3の開口部を通して光照射を受けた固体有機ポリシロキサン1の表面には発光改質層が形成される。この発光改質層は、酸化ケイ素であるが、化学量論組成ではない(二酸化ケイ素ではない)ものである。   A light emitting modified layer is formed on the surface of the solid organic polysiloxane 1 irradiated with light through the opening of the mask 3. The light emitting modified layer is made of silicon oxide but not in stoichiometric composition (not silicon dioxide).

照射するレーザー光波長が190nm未満になると化学量論組成の二酸化ケイ素が主に改質層として形成されるようになり、発光性が無くなるので、照射するレーザー光は190nm以上である必要がある。また、266nm以上のレーザー光照射では炭素が析出するようになり、発光改質層は得られない。   When the wavelength of the laser beam to be irradiated is less than 190 nm, silicon dioxide having a stoichiometric composition is mainly formed as a modified layer and the light emitting property is lost. Therefore, the laser beam to be irradiated needs to be 190 nm or more. In addition, irradiation with a laser beam of 266 nm or more causes carbon to be deposited, and a light emitting modified layer cannot be obtained.

波長190nm以上266nm未満のレーザー光2を照射する際に誘起される酸化・還元反応の増強・抑制のバランスを制御することにより、所望の色彩を放つ発光改質層を得ることができる。例えば、レーザー光照射時に固体有機ポリシロキサン1が設置される雰囲気を、真空中、大気中、又は大気に含まれる酸素よりも高い濃度の酸素ガス雰囲気と変えることにより、得られる発光改質層の色彩を変化させることができ、酸素濃度が高くなると発光ピーク波長が長波長側にシフトする傾向が見られる。   By controlling the balance between enhancement and suppression of the oxidation / reduction reaction induced when the laser beam 2 having a wavelength of 190 nm or more and less than 266 nm is irradiated, a light emitting modified layer emitting a desired color can be obtained. For example, by changing the atmosphere in which the solid organic polysiloxane 1 is installed at the time of laser light irradiation to vacuum, air, or an oxygen gas atmosphere having a higher concentration than oxygen contained in the air, The color can be changed, and when the oxygen concentration increases, the emission peak wavelength tends to shift to the longer wavelength side.

また、レーザー光照射前に固体有機ポリシロキサン1が置かれている雰囲気によっても発光改質層の色彩が変化する。例えば、レーザー光照射前に固体有機ポリシロキサン1が真空中に置かれている時間が長くなる程発光ピーク波長は短波長側にシフトする傾向が見られる。   Further, the color of the light emitting modified layer also changes depending on the atmosphere in which the solid organic polysiloxane 1 is placed before laser light irradiation. For example, the emission peak wavelength tends to shift to the shorter wavelength side as the time during which the solid organic polysiloxane 1 is placed in the vacuum before the laser light irradiation becomes longer.

波長190nm以上266nm未満のレーザー光2を大気(又は酸素を含む混合気)中で固体有機ポリシロキサン1に照射して発光改質層を形成した場合、その発光改質層を形成した試料に対して、真空中において波長190nm以上266nm未満のレーザー光(同一波長又は異なる波長であってもよい)を照射することによって発光改質層の色彩を変化させることができる。つまり発光ピーク波長を短波長側にシフトすることができる。後工程での真空中のレーザー光照射は還元反応の増強に相当する。   When the solid organic polysiloxane 1 is irradiated with laser light 2 having a wavelength of 190 nm or more and less than 266 nm to the solid organic polysiloxane 1 in the atmosphere (or a mixture containing oxygen), a light emitting modified layer is formed. In addition, the color of the light emitting modified layer can be changed by irradiating laser light having a wavelength of 190 nm or more and less than 266 nm (may be the same wavelength or different wavelengths) in a vacuum. That is, the emission peak wavelength can be shifted to the short wavelength side. Laser irradiation in vacuum in the post-process corresponds to enhancement of the reduction reaction.

また、波長190nm以上266nm未満のレーザー光2を大気(又は酸素を含む混合気)中で固体有機ポリシロキサン1に照射して発光改質層を形成した場合、その発光改質層を形成した試料に対して、大気(又は酸素を含む混合気)中において波長190nm以下のレーザー光(最初に照射したレーザー光よりも短波長)を照射することによって発光改質層の色彩を変化させることができる。つまり、発光ピーク波長を長波長側にシフトすることができる。後工程での大気(又は酸素を含む混合気)中のレーザー光照射は酸化反応の増強に相当する。   In addition, when the light-emitting modified layer is formed by irradiating the solid organic polysiloxane 1 with laser light 2 having a wavelength of 190 nm or more and less than 266 nm in the atmosphere (or a mixture containing oxygen), a sample in which the light-emitting modified layer is formed On the other hand, the color of the light emitting modified layer can be changed by irradiating a laser beam having a wavelength of 190 nm or less (shorter wavelength than the laser beam initially irradiated) in the atmosphere (or a mixture containing oxygen). . That is, the emission peak wavelength can be shifted to the long wavelength side. Laser irradiation in the air (or a mixture containing oxygen) in the subsequent process corresponds to enhancement of the oxidation reaction.

また、波長190nm以上266nm未満のレーザー光2を1気圧の酸素ガス(又は酸素を含む混合気)中で固体有機ポリシロキサン1に照射して発光改質層を形成した場合、その発光改質層を形成した試料に対して、同じ雰囲気中で熱処理をすることで、発光改質層の色彩を変化させることができる。つまり、発光ピーク波長を長波長側にシフトすることができる。後工程の酸素含有雰囲気での熱処理は酸化反応の増強に相当する。   Further, when a light emitting modified layer is formed by irradiating the solid organic polysiloxane 1 with laser light 2 having a wavelength of 190 nm or more and less than 266 nm in oxygen gas (or a mixture containing oxygen) at 1 atm, the light emitting modified layer is formed. The color of the light emitting modified layer can be changed by heat-treating the sample in which the film is formed in the same atmosphere. That is, the emission peak wavelength can be shifted to the long wavelength side. The heat treatment in the oxygen-containing atmosphere in the post process corresponds to enhancement of the oxidation reaction.

この実施の形態1によれば、次の通りの効果を得ることができる。   According to the first embodiment, the following effects can be obtained.

(1) 固体有機ポリシロキサン1にマスク3を通してレーザー光2を照射することで、位置選択的に発光改質層を形成することができる。すなわち、所望の開口部形状のマスク3を用いることにより、開口部位置で規定された所望の位置に、開口部形状及び大きさで規定された所望の形状及び大きさの発光改質層を、固体有機ポリシロキサン1表面に形成することができる。 (1) By irradiating the solid organic polysiloxane 1 with the laser beam 2 through the mask 3, the light emission modified layer can be formed in a position-selective manner. That is, by using the mask 3 having a desired opening shape, the light emitting modified layer having a desired shape and size defined by the opening shape and size is formed at a desired position defined by the opening position. It can be formed on the surface of the solid organic polysiloxane 1.

(2) 波長190nm以上266nm未満のレーザー光2を照射する際に誘起される酸化・還元反応の増強・抑制のバランスを制御することにより、所望の色彩を放つ発光改質層を得ることができる。 (2) By controlling the balance between enhancement and suppression of oxidation / reduction reactions induced when irradiating laser light 2 having a wavelength of 190 nm or more and less than 266 nm, a light emitting modified layer that emits a desired color can be obtained. .

(3) 発光改質層を設ける固体有機ポリシロキサン1としてフレキシブルなシリコーンゴム等の材料を採用することで、発光性材料が形成されたフレキシブル発光デバイスを作製できる。 (3) By adopting a material such as flexible silicone rubber as the solid organic polysiloxane 1 on which the light emitting modified layer is provided, a flexible light emitting device in which a light emitting material is formed can be produced.

図1(B)は、Si−O−Si結合を含む化合物としての固体有機ポリシロキサン表面に発光改質層を形成する場合の実施の形態2で用いる実験概略構成であり、固体有機ポリシロキサン(シリコーン)1内部に波長190nm以上266nm未満のレーザー光2が光学素子としてのレンズ4を介して集光照射される。   FIG. 1B is a schematic configuration of an experiment used in Embodiment 2 in the case where a light emitting modified layer is formed on the surface of a solid organic polysiloxane as a compound containing a Si—O—Si bond. (Silicon) 1 is irradiated with a laser beam 2 having a wavelength of 190 nm or more and less than 266 nm through a lens 4 as an optical element.

この場合、固体有機ポリシロキサン1は精密に三次元的に微動可能であり、結果的にレーザー光2が精密に三次元的に走査される。   In this case, the solid organic polysiloxane 1 can be finely moved in a three-dimensional manner, and as a result, the laser beam 2 is scanned in a three-dimensional manner.

この実施の形態2においても、実施の形態1に列挙したのと同様の方法で、発光改質層の色彩を変化させることができる。   Also in the second embodiment, the color of the light emitting modified layer can be changed by the same method as listed in the first embodiment.

この実施の形態2によれば、固体有機ポリシロキサン1の内部にレーザー光2の焦点位置を合わせることで、位置選択的並びに空間選択的(三次元的)に発光性改質部を形成することができる。その他の作用効果は、実施の形態1と同様である。   According to the second embodiment, the light emitting modified portion is formed in a position-selective manner and a space-selective manner (three-dimensionally) by adjusting the focal position of the laser light 2 inside the solid organic polysiloxane 1. Can do. Other functions and effects are the same as those of the first embodiment.

なお、図1(B)において、レーザー光2の焦点位置をシリコーン1の表面に合わせることにより、シリコーン1表面の所望の位置に、所望の形状及び大きさの発光改質層を形成することもできる。   In FIG. 1B, a light emission modified layer having a desired shape and size may be formed at a desired position on the surface of the silicone 1 by adjusting the focal position of the laser beam 2 to the surface of the silicone 1. it can.

また、図1(A),(B)において波長190nm以上266nm未満のレーザー光を固体有機ポリシロキサン1に照射したが、レーザー光に限定されるものではない。波長190nm以上266nm未満のレーザー光の発生光源としては、ArFエキシマレーザーやKrFエキシマレーザーを使用することが可能である。   In FIGS. 1A and 1B, the solid organic polysiloxane 1 is irradiated with laser light having a wavelength of 190 nm or more and less than 266 nm, but is not limited to laser light. An ArF excimer laser or a KrF excimer laser can be used as a light source for generating laser light having a wavelength of 190 nm or more and less than 266 nm.

[実施例]
以下、本発明に係るSi−O−Si結合を含む化合物を用いた発光素子作製法を実施例で詳述する。
[Example]
Hereinafter, the light emitting element manufacturing method using the compound containing the Si-O-Si bond concerning this invention is explained in full detail in an Example.

真空チャンバー内にSi−O−Si結合を含む化合物としてのシリコーンゴムを設置し、真空引き時間を0〜72時間まで変化させ、シリコーンゴム中に含有している酸素ガス分子の量に定性的に変化を与えて4種類の試料を作製した。このときレーザー光として波長193nmのArFエキシマレーザー光を用いた。ArFエキシマレーザー光の照射条件は、フルエンス(エネルギー密度)40mJ/cm、照射時間20分、繰り返し周波数10Hzとした。 Silicone rubber as a compound containing a Si—O—Si bond is placed in a vacuum chamber, the evacuation time is changed from 0 to 72 hours, and the amount of oxygen gas molecules contained in the silicone rubber is qualitatively determined. Four types of samples were prepared with changes. At this time, ArF excimer laser light having a wavelength of 193 nm was used as the laser light. The irradiation conditions of ArF excimer laser light were a fluence (energy density) of 40 mJ / cm 2 , an irradiation time of 20 minutes, and a repetition frequency of 10 Hz.

真空引き時間0時間、すなわち大気中で改質した試料は、435nmをピークとするブロードな発光スペクトルを示した。一方、真空引き時間3、30及び72時間の試料は、いずれも400nmをピークとする発光スペクトルが得られた。また、発光波長400nmにおける、真空引き時間と発光強度の関係をプロットすると、真空引き時間0〜72時間までの範囲において、長時間脱ガスした試料ほど、発光強度が強くなることがわかった。また真空引き時間3〜72時間の改質試料の発光スペクトルのピーク強度を規格化すると、真空引き時間が長くなると460nm付近にショルダーを有するスペクトルとなっていることがわかった。従って、改質雰囲気を真空にすることで、波長400nmをピークとする青色発光に変化し、そのスペクトルは真空引き時間3時間のときに最もシャープになり、その強度は72時間のときに最も強くなることがわかった。   The sample that had been evacuated for 0 hour, that is, modified in the air, showed a broad emission spectrum having a peak at 435 nm. On the other hand, emission spectra having a peak at 400 nm were obtained for the samples with evacuation times of 3, 30 and 72 hours. Further, when the relationship between the evacuation time and the emission intensity at an emission wavelength of 400 nm was plotted, it was found that the emission intensity became stronger as the sample was degassed for a longer time in the range of the evacuation time from 0 to 72 hours. In addition, when the peak intensity of the emission spectrum of the modified sample with a evacuation time of 3 to 72 hours was normalized, it was found that when the evacuation time was increased, the spectrum had a shoulder near 460 nm. Therefore, when the modified atmosphere is evacuated, it changes to blue light emission having a peak at a wavelength of 400 nm, and the spectrum becomes sharpest when the evacuation time is 3 hours, and the intensity is strongest at 72 hours. I found out that

大気中で改質した試料を、さらに真空中に設置しArFエキシマレーザー光を再度照射することで、発光スペクトルが変化することを見出した。まず、シリコーンゴム表面にフルエンス40mJ/cm、照射時尚20分、繰り返し周波数10HzでArFエキシマレーザー光を照射した。この改質試料を真空チャンバー内に設置し、72時間真空引きしてシリコーンゴム内外の酸素ガス分子を除去した後、ArFエキシマレーザー光の照射時間を10〜60分まで変化させた。真空中でのArFエキシマレーザー光照射も、フルエンス40mJ/cm、繰り返し周波数10Hz一定の条件で照射した。真空中でのArFエキシマレーザー光照射前の試料と比べ、真空中でArFエキシマレーザー光を照射した試料は、500〜700nm付近の発光強度が弱くなった。一方、400〜450nm付近の強度は強くなった。また、レーザー光照射時間に対する発光スペクトルの変化は、照射時間0から10分の間での変化は著しいが、それ以降はほぼ飽和することがわかった。従って、大気中で改質した試料を、さらに真空中でArFエキシマレーザー光を再度照射することによって、改質層は405nmをピークとする青色発光を示し、そのスペクトル強度はレーザー光照射時間10分で飽和することがわかった。 It has been found that the emission spectrum changes when the sample modified in the atmosphere is further placed in a vacuum and irradiated again with ArF excimer laser light. First, the surface of the silicone rubber was irradiated with ArF excimer laser light at a fluence of 40 mJ / cm 2 , 20 minutes at the time of irradiation, and a repetition frequency of 10 Hz. This modified sample was placed in a vacuum chamber and evacuated for 72 hours to remove oxygen gas molecules inside and outside the silicone rubber, and then the irradiation time of ArF excimer laser light was changed from 10 to 60 minutes. ArF excimer laser light irradiation in vacuum was also performed under conditions of a fluence of 40 mJ / cm 2 and a repetition frequency of 10 Hz. Compared with the sample before irradiation with ArF excimer laser light in vacuum, the sample irradiated with ArF excimer laser light in vacuum had a weak emission intensity in the vicinity of 500 to 700 nm. On the other hand, the intensity around 400 to 450 nm became strong. Further, it was found that the change in the emission spectrum with respect to the irradiation time of the laser beam was remarkable during the irradiation time from 0 to 10 minutes, but was almost saturated after that. Therefore, by irradiating the sample modified in the atmosphere with ArF excimer laser light again in vacuum, the modified layer shows blue light emission having a peak at 405 nm, and its spectral intensity is 10 minutes of laser light irradiation time. It was found to be saturated.

改質試料にN/O(窒素ガスと酸素ガスの混合気)中でFレーザー光を照射することでも、発光スペクトルの変化を見出した。シリコーンゴムに、ArFエキシマレーザー光を照射し(フルエンス40mJ/cm、照射時間20分、繰り返し周波数10Hz)、その後Fレーザー光(波長157nm)を照射時間10〜120分まで変化させ照射した。そのときのFレーザー光の照射条件は、フルエンス10mJ/cm、繰り返し周波数10Hz一定とした。Fレーザー光を照射すると、10分のときのみ、500〜650nm付近の発光強度が強くなった。一方照射時間20分及び40分では、強度は徐々に減少し、60分以降ほとんど強度変化は認められなかった。この強度変化の際、ピーク波長は、Fレーザー光照射時間が長くなるに伴って、長波長側にシフトしていることが判明した。 The change in the emission spectrum was also found by irradiating the modified sample with F 2 laser light in N 2 / O 2 (mixture of nitrogen gas and oxygen gas). Silicone rubber was irradiated with ArF excimer laser light (fluence 40 mJ / cm 2 , irradiation time 20 minutes, repetition frequency 10 Hz), and then F 2 laser light (wavelength 157 nm) was changed from irradiation time 10 to 120 minutes. The irradiation conditions of the F 2 laser light at that time were set to a fluence of 10 mJ / cm 2 and a repetition frequency of 10 Hz constant. When irradiated with F 2 laser light, the emission intensity in the vicinity of 500 to 650 nm became stronger only at 10 minutes. On the other hand, at the irradiation time of 20 minutes and 40 minutes, the intensity gradually decreased, and almost no change in intensity was observed after 60 minutes. At the time of this intensity change, it was found that the peak wavelength shifted to the longer wavelength side as the F 2 laser light irradiation time became longer.

改質雰囲気を1気圧の酸素ガスとし、ArFエキシマレーザー光の照射を行った。その際、照射時間を20〜60分まで変化させた。フルエンス及びパルス繰り返し周波数は、それぞれ40mJ/cm、10Hz一定とした。レーザー光照射時間30分のとき、発光強度は最も強くなった。また、酸素ガス中で改質した試料の発光ピーク位置は、大気中で改質した試料よりも長波長側に変化した。このことから、改質試料の発光スペクトルを長波長側まで広げるためには、改質雰囲気を高濃度の酸素ガスとすることが有効であることが判明した。 The reforming atmosphere was oxygen gas at 1 atm, and irradiation with ArF excimer laser light was performed. At that time, the irradiation time was changed from 20 to 60 minutes. The fluence and pulse repetition frequency were fixed at 40 mJ / cm 2 and 10 Hz, respectively. When the laser beam irradiation time was 30 minutes, the emission intensity became the strongest. In addition, the emission peak position of the sample modified in oxygen gas changed to a longer wavelength side than the sample modified in the air. From this, it has been found that it is effective to use a high-concentration oxygen gas in the modified atmosphere in order to broaden the emission spectrum of the modified sample to the long wavelength side.

前記酸素ガス中でArFエキシマレーザー改質(フルエンス40mJ/cm、照射時間30分、パルス繰り返し周波数10Hz)した試料を熱処理したときの効果を調べた。熱処理温度300℃としたとき、発光ピーク波長は483nmと長波長側にシフトし、黄色の色彩を有する発光スペクトルが得られた。 The effect of heat-treating a sample that was modified with ArF excimer laser (fluence 40 mJ / cm 2 , irradiation time 30 minutes, pulse repetition frequency 10 Hz) in the oxygen gas was examined. When the heat treatment temperature was 300 ° C., the emission peak wavelength shifted to the long wavelength side at 483 nm, and an emission spectrum having a yellow color was obtained.

これまで、改質層の処理条件や改質層の形成条件を変化させることで、青色から黄色まで多彩な可視光を放つ発光改質層を形成できることを見出した。現在まで実験的に見出した中で主要な条件を図2中の下表にまとめた。#1〜#6の条件で改質した試料の発光スペクトルを図2上のグラフに示した。また、これら改質試料(1cm×1cm)を波長325nmのHe−Cdレーザー光で励起したときの発光の様子を図3に示す。図3(a)では、レーザー光の強度分布による改質部分の若干の不均一性のため、発光強度及び発光波長に斑がある。そのため、図3(b)に改質表面の中央部分(レーザー光照射領域の中心部分)を3mm×3mmで切り出した写真を加えた。図2下表の通り#1は真空中にて、#3は大気中にて、#5は酸素ガス中にて改質した試料である。#2、#4は、大気中にて改質した#3の試料に、ArFエキシマレーザー又はFレーザーを用いてそれぞれ還元、酸化処理した試料である。#6は、酸素中で改質した#5の試料にさらに熱処理を施した試料である。 Up to now, it has been found that a light emitting modified layer emitting various visible lights from blue to yellow can be formed by changing the processing conditions of the modified layer and the forming conditions of the modified layer. The main conditions found experimentally to date are summarized in the table below in FIG. The emission spectrum of the sample modified under the conditions of # 1 to # 6 is shown in the upper graph of FIG. FIG. 3 shows the state of light emission when these modified samples (1 cm × 1 cm) are excited with a He—Cd laser beam having a wavelength of 325 nm. In FIG. 3A, the emission intensity and emission wavelength are uneven due to some nonuniformity of the modified portion due to the intensity distribution of the laser beam. Therefore, the photograph which cut out the center part (center part of a laser beam irradiation area | region) of the modified surface by 3 mm x 3 mm was added to FIG.3 (b). As shown in the lower table of FIG. 2, # 1 is a sample modified in vacuum, # 3 in the atmosphere, and # 5 in oxygen gas. # 2, # 4, the sample # 3 was modified in the air, respectively reduced using ArF excimer laser or F 2 laser, a sample oxidation. # 6 is a sample obtained by further heat-treating the sample of # 5 modified in oxygen.

#1の発光スペクトルの特徴は、400nmにピーク波長を持つ最もシャープな青色発光を示すことである。   A feature of the emission spectrum of # 1 is that it shows the sharpest blue emission having a peak wavelength at 400 nm.

#2の発光スペクトルの特徴は、405nmにピーク波長を持ち、同じ青色発光を示す#1よりもブロードな波長範囲での発光があるため、青白い発光を示すことである。   The characteristic of the emission spectrum of # 2 is that it has a peak wavelength at 405 nm and emits light in a broader wavelength range than # 1, which shows the same blue light emission, and therefore shows pale light emission.

#3の発光スペクトルの特徴は、435nmにピーク波長を持ち、青色の少ない白色発光を示すことである。また、大気中にてArFエキシマレーザー光を照射することで得られるため、最も簡単な手法である。   The feature of the # 3 emission spectrum is that it has a peak wavelength at 435 nm and emits white light with little blue. Moreover, since it is obtained by irradiating ArF excimer laser light in the atmosphere, it is the simplest method.

#4の発光スペクトルの特徴は、440nmにピーク波長を持ち、#3と同様に青色の少ない白色発光を示す。#3の試料の発光スペクトルの短波長側の発光中心のみを減少させ、発光中心を長波長側にシフトさせる手法をとった。   The characteristic of the emission spectrum of # 4 has a peak wavelength at 440 nm and shows white emission with little blue as in # 3. Only the emission center on the short wavelength side of the emission spectrum of the sample # 3 was decreased, and the emission center was shifted to the long wavelength side.

#5の発光スペクトルの特徴は、460nmにピーク波長を持ち、より鮮やかな白色発光を示すことである。   The feature of the emission spectrum of # 5 is that it has a peak wavelength at 460 nm and shows brighter white light emission.

#6の発光スペクトルの特徴は、483nmにピーク波長を持ち、黄色を帯びた白色発光を示すことである。   The feature of # 6 emission spectrum is that it has a peak wavelength at 483 nm and emits yellowish white light.

#1〜#6のように、試料の形成条件を変化させることで、400nmをピークとする青色発光から、483nmをピークとする黄白色発光まで、スペクトルの異なる発光層を形成できた。   By changing the sample formation conditions as in # 1 to # 6, light emitting layers having different spectra from blue light emission having a peak at 400 nm to yellowish white light emission having a peak at 483 nm could be formed.

厚さ0.2mmのシート状シリコーンゴムに、文字をかたどった銅マスク(文字の範囲10mm×20mm)を設置し、図2中の下表の#1(真空中)、#3(大気中)、#5(酸素中)の条件で改質を行った。この試料に波長325nmのHe−Cdレーザー光を照射したときの発光の様子を図4に示す。文字をかたどったレーザー露光部分が発光していることがわかる。また、改質雰囲気の違いによって発光スペクトルが異なり、#1では青色発光、#3では青白色発光、#5ではより鮮やかな白色発光を示した。   A copper mask shaped like a character (character range 10 mm x 20 mm) is placed on a sheet-like silicone rubber with a thickness of 0.2 mm, and # 1 (in vacuum) and # 3 (in air) in the lower table of FIG. And # 5 (in oxygen). FIG. 4 shows the state of light emission when this sample is irradiated with a He—Cd laser beam having a wavelength of 325 nm. It can be seen that the laser exposure part shaped like a letter emits light. Also, the emission spectra differed depending on the modified atmosphere, with blue emission at # 1, blue white emission at # 3, and brighter white emission at # 5.

以上本発明の実施の形態及び実施例について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。   Although the embodiments and examples of the present invention have been described above, it is obvious to those skilled in the art that the present invention is not limited thereto and various modifications and changes can be made within the scope of the claims. I will.

1 固定有機ポリシロキサン
2 レーザー光
3 マスク
4 レンズ
1 Fixed organic polysiloxane 2 Laser light 3 Mask 4 Lens

Claims (3)

Si−O−Si結合を含む化合物表面乃至は内部に、波長190nm以上266nm未満の第1の光を照射し、その後、露光された前記化合物に真空中において波長190nm以上266nm未満の第2の光を照射して還元反応を増強し、所望の色彩を放つ発光改質層を形成することを特徴とするSi−O−Si結合を含む化合物を用いた発光素子作製法。 The surface or inside of the compound containing a Si—O—Si bond is irradiated with a first light having a wavelength of 190 nm or more and less than 266 nm, and then the exposed compound is exposed to a second light having a wavelength of 190 nm or more and less than 266 nm in a vacuum. A method for producing a light-emitting element using a compound containing a Si—O—Si bond, which forms a light-emitting modified layer that emits a desired color by irradiating the compound with a reduction reaction . Si−O−Si結合を含む化合物表面乃至は内部に、波長190nm以上266nm未満の第1の光を照射し、その後、露光された前記化合物に、酸素を含む混合気中において第1の光よりも短い波長で波長190nm以下の第2の光を照射して酸化反応を増強し、所望の色彩を放つ発光改質層を形成することを特徴とするSi−O−Si結合を含む化合物を用いた発光素子作製法。 The surface or the inside of the compound containing a Si—O—Si bond is irradiated with a first light having a wavelength of 190 nm or more and less than 266 nm, and then the exposed compound is exposed to the first light in a gas mixture containing oxygen. A compound containing a Si—O—Si bond, characterized in that a second light having a wavelength of 190 nm or less is irradiated at a short wavelength to enhance the oxidation reaction and form a light emitting modified layer that emits a desired color. A light emitting element manufacturing method. Si−O−Si結合を含む化合物表面乃至は内部に、波長190nm以上266nm未満の光を照射し、露光された前記化合物に、その後、酸素を含む混合気中において熱処理を加えて酸化反応を増強することにより、所望の色彩を放つ発光改質層を形成することを特徴とするSi−O−Si結合を含む化合物を用いた発光素子作製法。 Irradiating light having a wavelength of 190 nm or more and less than 266 nm to the surface or inside of a compound containing a Si—O—Si bond, and then subjecting the exposed compound to heat treatment in a gas mixture containing oxygen to enhance the oxidation reaction A method for manufacturing a light-emitting element using a compound including a Si—O—Si bond, wherein a light-emitting modified layer that emits a desired color is formed.
JP2009068212A 2009-03-19 2009-03-19 Light emitting element manufacturing method using compound containing Si-O-Si bond Active JP4929469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009068212A JP4929469B2 (en) 2009-03-19 2009-03-19 Light emitting element manufacturing method using compound containing Si-O-Si bond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009068212A JP4929469B2 (en) 2009-03-19 2009-03-19 Light emitting element manufacturing method using compound containing Si-O-Si bond

Publications (2)

Publication Number Publication Date
JP2010222397A JP2010222397A (en) 2010-10-07
JP4929469B2 true JP4929469B2 (en) 2012-05-09

Family

ID=43039937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009068212A Active JP4929469B2 (en) 2009-03-19 2009-03-19 Light emitting element manufacturing method using compound containing Si-O-Si bond

Country Status (1)

Country Link
JP (1) JP4929469B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155182A (en) * 2016-03-04 2017-09-07 信越化学工業株式会社 Photo-hardening method of silicone rubber surface, and silicone rubber molded body

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3629544B2 (en) * 2002-09-30 2005-03-16 防衛庁技術研究本部長 Surface modification method for solid compounds containing Si-O-Si bonds using laser light
JP4296281B2 (en) * 2006-11-07 2009-07-15 防衛省技術研究本部長 Method for modifying compound containing Si-O-Si bond and device fabrication method
JP4691664B2 (en) * 2007-07-23 2011-06-01 防衛省技術研究本部長 Internal reforming method and device for compound containing Si-O-Si bond
JP4923260B2 (en) * 2007-09-20 2012-04-25 防衛省技術研究本部長 Method for producing smart fiber using compound containing Si-O-Si bond and smart fiber wear
JP4956755B2 (en) * 2008-03-24 2012-06-20 防衛省技術研究本部長 Method for producing smart fiber based on compound containing Si-O-Si bond and smart fiber wear
JP4834845B2 (en) * 2008-09-05 2011-12-14 防衛省技術研究本部長 Photochemical bonding method and device using compound containing Si-O-Si bond

Also Published As

Publication number Publication date
JP2010222397A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
TWI284940B (en) Free radical nitriding process for sub-nanometer insulation layer
JP2005252244A5 (en)
JP2008306166A5 (en)
WO2012014710A1 (en) Laser processing method
GB2288062A (en) Forming luminescent silicon material and devices
JP2008265344A (en) Color marking method using laser
Gallis et al. Silicon oxycarbide thin films and nanostructures: Synthesis, properties and applications
JP4929469B2 (en) Light emitting element manufacturing method using compound containing Si-O-Si bond
JP4296281B2 (en) Method for modifying compound containing Si-O-Si bond and device fabrication method
JP3629544B2 (en) Surface modification method for solid compounds containing Si-O-Si bonds using laser light
JP4977859B2 (en) Light emitting film forming method and light emitting element using laser ablation
WO2013021197A1 (en) Surface plasmon resonance in thin films
JP2006140230A (en) Device and method for irradiating laser beam
JP3820443B2 (en) Method and apparatus for forming SiO2 film using laser ablation
Okoshi et al. White-light emission from silicone rubber modified by 193 nm ArF excimer laser
JP2002252202A (en) Method for forming minute structure on surface of semiconductor substrate and semiconductor substrate having minute structure made by this method and device using it
JP2002033465A (en) Method for forming semiconductor thin film
JP3950967B2 (en) Method for modifying solid compound film containing Si-O-Si bond to silicon oxide using vacuum ultraviolet light and pattern forming method
JP2004331731A (en) Photo-bonding method, and method for making microchip
JP4691664B2 (en) Internal reforming method and device for compound containing Si-O-Si bond
JP2009072694A (en) High-density oxidation method and device for material
KR20230167945A (en) Manufacturing method of graphene quantum dot pattern using photolithography and ion beam irradiation technology
JP6952142B2 (en) Manufacturing method of white luminescent material
JP3826194B2 (en) Method for forming silicon oxide film by light irradiation to compound containing Si-O-Si bond
JP2005064034A (en) Method for manufacturing tft, and method for manufacturing display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350