JP3826194B2 - Method for forming silicon oxide film by light irradiation to compound containing Si-O-Si bond - Google Patents

Method for forming silicon oxide film by light irradiation to compound containing Si-O-Si bond Download PDF

Info

Publication number
JP3826194B2
JP3826194B2 JP2003064304A JP2003064304A JP3826194B2 JP 3826194 B2 JP3826194 B2 JP 3826194B2 JP 2003064304 A JP2003064304 A JP 2003064304A JP 2003064304 A JP2003064304 A JP 2003064304A JP 3826194 B2 JP3826194 B2 JP 3826194B2
Authority
JP
Japan
Prior art keywords
oxide film
silicon oxide
substrate
light
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003064304A
Other languages
Japanese (ja)
Other versions
JP2004273869A (en
Inventor
昌幸 大越
成美 井上
寛弘 高尾
Original Assignee
防衛庁技術研究本部長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 防衛庁技術研究本部長 filed Critical 防衛庁技術研究本部長
Priority to JP2003064304A priority Critical patent/JP3826194B2/en
Publication of JP2004273869A publication Critical patent/JP2004273869A/en
Application granted granted Critical
Publication of JP3826194B2 publication Critical patent/JP3826194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フォトニクスを目的とした、Si−O−Si結合を含む化合物への光照射による酸化ケイ素膜の形成法に係り、特にSi−O−Si結合を含む化合物(例、ポリシロキサン)を、波長200nm以下の光を含む光源により露光し、同化合物から放出される気体を利用して、酸化ケイ素膜を化学蒸着する膜形成法に関するものであり、従来困難とされてきた熱影響を受けやすい基板(高分子材料や生体材料、低融点材料、熱拡散しやすい材料等)への膜形成も可能となり、その用途は電気、電子のみならずあらゆる分野で有用である。
【0002】
【従来の技術】
酸化ケイ素膜を形成する方法は枚挙にいとまがないが、主に高温の電気炉内にケイ素基板を設置し、酸素ガスや水蒸気等の雰囲気で熱酸化させる方法と、減圧容器内に導入された反応ガスを加熱した基板上で熱分解し膜形成する方法とに大別される。
【0003】
【発明が解決しようとする課題】
従来の方法では、いずれも酸化ケイ素膜形成のために高温を必要とするため、その基体使用に制限があった。つまり、熱影響を受けやすい基板(高分子材料や生体材料、低融点材料、熱拡散しやすい材料等)への膜形成は困難であった。また低温で膜形成を行うと、膜中に欠陥や不純物混入が生じ良質の膜を得ることは困難であった。さらに、任意のパターンに膜形成を行うためには、化学的あるいは物理的エッチングの工程を必要としていた。
【0004】
本発明は、上記の点に鑑み、炭素混入のない良質の酸化ケイ素膜を室温(常温)で形成可能なSi−O−Si結合を含む化合物への光照射による酸化ケイ素膜の形成法を提供することを目的とする。
【0005】
本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本願請求項1の発明に係るSi−O−Si結合を含む化合物への光照射による酸化ケイ素膜の形成法は、減圧した容器内に設置したSi−O−Si結合を含む化合物を、波長200nm以下の光を含む光源によりレーザーアブレーションしきい値以下で露光し、前記化合物から放出される気体を利用して、前記光源の光路中に置かれた基体上に酸化ケイ素膜を化学蒸着することを特徴としている。
【0007】
本願請求項の発明に係る酸化ケイ素膜の形成法は、請求項において、前記酸化ケイ素膜を、常温の前記基体上に形成することを特徴としている。
【0008】
本願請求項の発明に係る酸化ケイ素膜の形成法は、請求項1又は2において、前記光源の光をマスクを透過させて前記基体に照射して、前記酸化ケイ素膜を、前記基体上に所定のパターンに形成することを特徴としている。
本願請求項の発明に係る酸化ケイ素膜の形成法は、請求項1,2又は3において、前記基体が平板状基板であり、前記光源の光軸に対して傾斜乃至平行に設置されていることを特徴としている。
【0009】
【発明の実施の形態】
以下、本発明に係るSi−O−Si結合を含む化合物への光照射による酸化ケイ素膜の形成法の実施の形態を図面に従って説明する。
【0010】
図1は本発明に係るSi−O−Si結合を含む化合物への光照射による酸化ケイ素膜の形成法の実施の形態を示す。この図において、1は減圧した容器としての真空容器であり、真空ポンプ2で真空排気されるようになっている。真空容器1にはMgFの光透過窓3が形成されている。真空容器1内にはSi−O−Si結合を含む化合物として有機ポリシロキサン10(例えば板状をなしている)が配置されるとともにケイ素基板20(酸化ケイ素膜を堆積させるための基体)が配置されている。前記MgFの光透過窓3の外側には光源30(波長200nm以下の光を含むもの)が設けられており、そのレーザー光が光透過窓3を通して有機ポリシロキサン10に照射されるとともにケイ素基板20にも照射される配置とする。なお、ケイ素基板20上に所定パターンの酸化ケイ素膜を形成する場合には金属マスク21を基板20の前側に配置する。
【0011】
有機ポリシロキサン10に照射する光として、波長200nm以下の光を含む必要があるのは、200nmを超える波長ではSiOを形成するための気体を発生させることができないからであり、光源30はポリシロキサンを構成している側鎖を光開裂により完全に除去できる200nm以下の波長の光を含む必要がある。例えば、真空紫外若しくはそれ以下の波長のレーザー光を発生可能なレーザ装置が好適に使用できる。
【0012】
図1の構成において、光源30としてFレーザー装置を用い、実質的に真空に減圧した真空容器1内に有機ポリシロキサン10を設置し、その表面に真空紫外Fレーザー光(波長157nm)をアブレーションしきい値(約140mJ/cm)以下で照射した。その際、Fレーザー光の光路一部に、金属マスク21(30μmメッシュ)を密着させたケイ素基板20をレーザー光に対して垂直に置いた。そのときの基板20上でのレーザーエネルギー密度は約9mJ/cm、パルス繰り返し周波数20Hz及び照射時間15分であった。これにより、有機ポリシロキサン10の露光部分から気体(ガス状のケイ素化合物と酸素)が放出され、この気体を利用して前記レーザー光の光路中に置かれたケイ素基板20上に酸化ケイ素膜を化学蒸着した。つまり、前記気体のケイ素基板20付近での光分解により酸化ケイ素を膜堆積させた。この化学蒸着に際して前記ケイ素基板20の加熱や冷却は不要であり、室温(常温)で実施できる。
【0013】
図2に、ケイ素基板上に形成された酸化ケイ素膜の原子間力顕微鏡写真を示す。ケイ素基板に密着させて設けた金属マスク(30μmメッシュ)を透過した光照射部分(30×30μm)のみ酸化ケイ素膜が形成されており、かつその表面は極めて平滑であることがわかる。
【0014】
また、図1ではレーザー光の光軸に対してケイ素基板20を垂直に配置したが、ケイ素基板を、レーザー光の光路中に、かつ光軸に対して傾斜乃至平行に設置した場合にも、同様の酸化ケイ素膜形成を確認した。ケイ素基板上への酸化ケイ素膜の成膜面積を広くしたい場合には有利である。
【0015】
さらに、ケイ素基板をゲルマニウム基板に代えても同様の酸化ケイ素膜形成が行えることがわかった。このことは任意の材質の基板上に酸化ケイ素膜の形成が可能であることを示している。
【0016】
図3は、フーリエ変換赤外分光法(FT−IR)による形成膜の分析結果であり、フーリエ変換赤外吸収スペクトル図である。図3中、曲線(a)はケイ素基板上に堆積した膜、曲線(b)はゲルマニウム基板上に堆積した膜である。いずれの場合も、1060〜1070cm−1にSi−O−Si結合を示す吸収ピークが判定された。このピーク位置は、熱酸化ケイ素膜(SiO)の場合と一致する。したがって、形成された膜は化学量論組成をもつSiOであることがわかった。
【0017】
前記形成膜をX線光電子分光法(XPS)により分析したところ、Si 2pのXPSスペクトルは103.2〜103.3eVにピークを持つことがわかった。この場合も、熱酸化ケイ素膜(SiO)のスペクトルと一致した。
【0018】
図4は、XPSによる形成膜の深さ方向の分析結果を示すX線光電子分光スペクトル図である。基板はケイ素基板を用いている。図4の横軸はアルゴンガスによるスパッタ時間(スパッタにより形成膜を削った時間;つまり深さ)、縦軸は原子濃度である。形成膜中の酸素とケイ素の原子濃度は、深さ方向に一様で、その比率は約2:1となっていた。したがって、形成膜の化学組成は深さ方向にもSiOであることが判明した。またC 1sのXPSスペクトルから、形成膜中への炭素混入は認められなかった。
【0019】
前記形成膜中への炭素混入の有無をさらに確認するために、ラマン分光分析を行った。その結果、炭素の存在を示す1350cm−1及び1580cm−1の2つのブロードなピークは全くみられなかった。したがって、形成膜は炭素フリーのSiOであることが判明した。
【0020】
この実施の形態によれば、次の通りの効果を得ることができる。
【0021】
(1) 実質的に真空に減圧した真空容器1内に設置した有機ポリシロキサン10を、波長200nm以下の光を含む光源30により露光し、有機ポリシロキサン10から放出される気体を利用することにより、光源30の光路中に置かれた基板上に良質の酸化ケイ素膜を化学蒸着することができる。
【0022】
(2) 前記酸化ケイ素膜を化学蒸着する際に、基板の加熱や冷却は不要であり、室温(常温)の基板上に成膜できる。従って、従来困難とされてきた熱影響を受けやすい基板(高分子材料や生体材料、低融点材料、熱拡散しやすい材料等)への膜形成も可能となる。
【0023】
(3) 光源30からの光を透過させる所定パターンを形成したマスクを基板に密着させて設けることで、所望のパターンの酸化ケイ素膜を基板上に形成できる。従って、SiO光導波路を基にした光集積回路を製作するための良質の酸化ケイ素膜を形成できる。
【0024】
なお、本発明の実施の形態においては、図1に酸化ケイ素膜を堆積させる基板20として平板状のものを図示したが、平板状基板に限定されず、湾曲面等を有する基体上にも酸化ケイ素膜を堆積させることが可能である。
【0025】
また、光源30からの光を反射させて基体側に照射させてもよい。
【0026】
以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。
【0027】
【発明の効果】
以上説明したように、本発明に係るSi−O−Si結合を含む化合物への光照射による酸化ケイ素膜の形成法によれば、熱の制限を受けることなく任意の基体上に所望のパターンで良質の酸化ケイ素膜が形成できる。この酸化ケイ素膜を利用して、光導波路やフォトニック結晶などが形成可能であるため、現在の集積回路から将来の光集積回路へ移行するための必要不可欠な技術となる。本発明はこれらフォトニクス分野に多大に利用可能である。
【図面の簡単な説明】
【図1】本発明に係るSi−O−Si結合を含む化合物への光照射による酸化ケイ素膜の形成法の実施の形態を示す模式的な構成図である。
【図2】本発明の実施の形態において、真空紫外Fレーザー光を有機ポリシロキサンとケイ素基板とに同時照射することにより、30μm角にパターン形成された酸化ケイ素膜の原子間力顕微鏡写真を示す写真図である。
【図3】本発明の実施の形態に係る形成膜について、基板をケイ素及びゲルマニウムとしたときの、波数と透過率との関係を示すフーリエ変換赤外吸収スペクトル図である。
【図4】本発明の実施の形態に係る形成膜について、スパッタリング時間と形成膜中の原子濃度との関係を示すX線光電子分光スペクトル図である。
【符号の説明】
1 真空容器
2 真空ポンプ
3 光透過窓
10 有機ポリシロキサン
20 ケイ素基板
21 マスク
30 光源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a silicon oxide film by photoirradiation of a compound containing a Si—O—Si bond for the purpose of photonics, and particularly a compound containing a Si—O—Si bond (eg, polysiloxane). The present invention relates to a film forming method in which a silicon oxide film is chemically vapor-deposited by using a gas emitted from a light source including light having a wavelength of 200 nm or less and released from the same compound, and is affected by heat effects that have been considered difficult in the past. Films can be formed on easy substrates (polymer materials, biomaterials, low-melting-point materials, heat-diffusing materials, etc.), and their uses are useful not only for electricity and electronics but also in all fields.
[0002]
[Prior art]
There are many methods for forming a silicon oxide film, but a silicon substrate is mainly installed in a high-temperature electric furnace and thermally oxidized in an atmosphere of oxygen gas, water vapor, etc. The method is roughly divided into a method of thermally decomposing a reaction gas on a heated substrate to form a film.
[0003]
[Problems to be solved by the invention]
All the conventional methods require a high temperature for forming a silicon oxide film, and therefore, the use of the substrate is limited. That is, it has been difficult to form a film on a substrate (polymer material, biomaterial, low melting point material, material that easily diffuses heat, etc.) that is easily affected by heat. When a film is formed at a low temperature, defects and impurities are mixed in the film, and it is difficult to obtain a high quality film. Furthermore, in order to form a film in an arbitrary pattern, a chemical or physical etching process is required.
[0004]
In view of the above points, the present invention provides a method for forming a silicon oxide film by light irradiation to a compound containing a Si—O—Si bond that can form a high-quality silicon oxide film free from carbon contamination at room temperature (room temperature). The purpose is to do.
[0005]
Other objects and novel features of the present invention will be clarified in embodiments described later.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a method for forming a silicon oxide film by irradiating a compound containing a Si—O—Si bond according to the invention of claim 1 of the present invention is a Si—O—Si placed in a decompressed container. A compound containing a bond is exposed to a laser ablation threshold value or less by a light source containing light having a wavelength of 200 nm or less, and is oxidized on a substrate placed in the light path of the light source using a gas released from the compound. It is characterized by chemical vapor deposition of a silicon film .
[0007]
The method for forming a silicon oxide film according to the invention of claim 2 is characterized in that, in claim 1 , the silicon oxide film is formed on the substrate at room temperature.
[0008]
The method for forming the silicon oxide film according to the invention of claim 3 is Oite to claim 1 or 2, by irradiating the substrate with light of the light source is transmitted through a mask, the silicon oxide film, the substrate A predetermined pattern is formed on the top.
The method for forming the silicon oxide film according to the invention of claim 4 is Oite to claim 1, 2 or 3, wherein the substrate is a flat substrate, inclined or disposed parallel to the optical axis of the light source It is characterized by having.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a method for forming a silicon oxide film by irradiating a compound containing a Si—O—Si bond according to the present invention will be described below with reference to the drawings.
[0010]
FIG. 1 shows an embodiment of a method for forming a silicon oxide film by irradiating a compound containing a Si—O—Si bond according to the present invention with light. In this figure, reference numeral 1 denotes a vacuum container as a decompressed container, which is evacuated by a vacuum pump 2. A light transmission window 3 of MgF 2 is formed in the vacuum container 1. In the vacuum vessel 1, an organic polysiloxane 10 (for example, plate-shaped) is disposed as a compound containing a Si—O—Si bond, and a silicon substrate 20 (substrate for depositing a silicon oxide film) is disposed. Has been. A light source 30 (including light having a wavelength of 200 nm or less) is provided outside the light transmission window 3 of MgF 2 , and the laser light is irradiated to the organic polysiloxane 10 through the light transmission window 3 and a silicon substrate. 20 is also arranged to be irradiated. When a silicon oxide film having a predetermined pattern is formed on the silicon substrate 20, the metal mask 21 is disposed on the front side of the substrate 20.
[0011]
The reason why it is necessary to include light having a wavelength of 200 nm or less as the light irradiated to the organic polysiloxane 10 is that a gas for forming SiO 2 cannot be generated at a wavelength exceeding 200 nm. It is necessary to include light having a wavelength of 200 nm or less that can completely remove the side chain constituting the siloxane by photocleavage. For example, a laser apparatus capable of generating laser light having a wavelength of vacuum ultraviolet or shorter can be preferably used.
[0012]
In the configuration of FIG. 1, an F 2 laser device is used as the light source 30, an organic polysiloxane 10 is placed in a vacuum container 1 that is substantially decompressed to a vacuum, and vacuum ultraviolet F 2 laser light (wavelength 157 nm) is applied to the surface. Irradiation was performed at an ablation threshold value (about 140 mJ / cm 2 ) or less. At that time, the silicon substrate 20 having a metal mask 21 (30 μm mesh) in close contact with a part of the optical path of the F 2 laser light was placed perpendicular to the laser light. The laser energy density on the substrate 20 at that time was about 9 mJ / cm 2 , the pulse repetition frequency was 20 Hz, and the irradiation time was 15 minutes. As a result, gas (gaseous silicon compound and oxygen) is released from the exposed portion of the organic polysiloxane 10, and a silicon oxide film is formed on the silicon substrate 20 placed in the optical path of the laser beam using this gas. Chemical vapor deposition. That is, a silicon oxide film was deposited by photolysis in the vicinity of the gaseous silicon substrate 20. The chemical vapor deposition does not require heating or cooling of the silicon substrate 20 and can be performed at room temperature (normal temperature).
[0013]
FIG. 2 shows an atomic force micrograph of the silicon oxide film formed on the silicon substrate. It can be seen that the silicon oxide film is formed only on the light-irradiated portion (30 × 30 μm 2 ) transmitted through the metal mask (30 μm mesh) provided in close contact with the silicon substrate, and the surface thereof is extremely smooth.
[0014]
Further, in FIG. 1, the silicon substrate 20 is disposed perpendicular to the optical axis of the laser beam, but when the silicon substrate is disposed in the optical path of the laser beam and inclined or parallel to the optical axis, A similar silicon oxide film formation was confirmed. This is advantageous when it is desired to increase the area where the silicon oxide film is formed on the silicon substrate.
[0015]
Furthermore, it was found that the same silicon oxide film can be formed even if the silicon substrate is replaced with a germanium substrate. This indicates that a silicon oxide film can be formed on a substrate made of any material.
[0016]
FIG. 3 is an analysis result of the formed film by Fourier transform infrared spectroscopy (FT-IR), and is a Fourier transform infrared absorption spectrum diagram. In FIG. 3, curve (a) is a film deposited on a silicon substrate, and curve (b) is a film deposited on a germanium substrate. In any case, an absorption peak showing a Si—O—Si bond at 1060 to 1070 cm −1 was determined. This peak position coincides with the case of the thermal silicon oxide film (SiO 2 ). Therefore, it was found that the formed film was SiO 2 having a stoichiometric composition.
[0017]
When the formed film was analyzed by X-ray photoelectron spectroscopy (XPS), it was found that the XPS spectrum of Si 2p had a peak at 103.2 to 103.3 eV. Also in this case, it was in agreement with the spectrum of the thermally oxidized silicon film (SiO 2 ).
[0018]
FIG. 4 is an X-ray photoelectron spectroscopic spectrum diagram showing the analysis result in the depth direction of the formed film by XPS. The substrate is a silicon substrate. The horizontal axis in FIG. 4 is the sputtering time by argon gas (the time when the formed film is cut by sputtering; that is, the depth), and the vertical axis is the atomic concentration. The atomic concentration of oxygen and silicon in the formed film was uniform in the depth direction, and the ratio was about 2: 1. Therefore, it was found that the chemical composition of the formed film was SiO 2 in the depth direction. Further, from the XPS spectrum of C 1s, no carbon was found in the formed film.
[0019]
In order to further confirm the presence or absence of carbon in the formed film, Raman spectroscopic analysis was performed. As a result, two broad peaks of 1350 cm -1 and 1580 cm -1 indicating the presence of carbon was observed. Therefore, it was found that the formed film was carbon-free SiO 2 .
[0020]
According to this embodiment, the following effects can be obtained.
[0021]
(1) By exposing the organic polysiloxane 10 installed in the vacuum vessel 1 substantially depressurized to a vacuum with a light source 30 including light having a wavelength of 200 nm or less, and utilizing a gas released from the organic polysiloxane 10 A good quality silicon oxide film can be chemically deposited on the substrate placed in the optical path of the light source 30.
[0022]
(2) When the silicon oxide film is chemically deposited, it is not necessary to heat or cool the substrate, and it can be formed on a substrate at room temperature. Therefore, it is possible to form a film on a substrate (polymer material, biomaterial, low melting point material, material that easily diffuses heat, etc.) that has been conventionally difficult to be affected by heat.
[0023]
(3) A silicon oxide film having a desired pattern can be formed on the substrate by providing a mask formed with a predetermined pattern that transmits light from the light source 30 in close contact with the substrate. Therefore, a high-quality silicon oxide film for manufacturing an optical integrated circuit based on the SiO 2 optical waveguide can be formed.
[0024]
In the embodiment of the present invention, a flat plate is shown as the substrate 20 on which the silicon oxide film is deposited in FIG. 1, but the substrate 20 is not limited to the flat substrate, and is oxidized on a substrate having a curved surface or the like. It is possible to deposit a silicon film.
[0025]
Further, the light from the light source 30 may be reflected and irradiated to the substrate side.
[0026]
Although the embodiments of the present invention have been described above, it will be obvious to those skilled in the art that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the claims.
[0027]
【The invention's effect】
As described above, according to the method of forming a silicon oxide film by light irradiation to a compound containing a Si—O—Si bond according to the present invention, a desired pattern can be formed on an arbitrary substrate without being limited by heat. A high-quality silicon oxide film can be formed. Since this silicon oxide film can be used to form an optical waveguide, a photonic crystal, or the like, it becomes an indispensable technique for shifting from the current integrated circuit to the future optical integrated circuit. The present invention can be used greatly in these photonics fields.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of a method for forming a silicon oxide film by irradiating light to a compound containing a Si—O—Si bond according to the present invention.
FIG. 2 is an atomic force micrograph of a silicon oxide film patterned in a 30 μm square by simultaneously irradiating an organic polysiloxane and a silicon substrate with vacuum ultraviolet F 2 laser light in an embodiment of the present invention. FIG.
FIG. 3 is a Fourier transform infrared absorption spectrum diagram showing the relationship between wave number and transmittance when the substrate is made of silicon and germanium in the formed film according to the embodiment of the present invention.
FIG. 4 is an X-ray photoelectron spectroscopic spectrum diagram showing the relationship between the sputtering time and the atomic concentration in the formed film for the formed film according to the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Vacuum pump 3 Light transmission window 10 Organic polysiloxane 20 Silicon substrate 21 Mask 30 Light source

Claims (4)

減圧した容器内に設置したSi−O−Si結合を含む化合物を、波長200nm以下の光を含む光源によりレーザーアブレーションしきい値以下で露光し、前記化合物から放出される気体を利用して、前記光源の光路中に置かれた基体上に酸化ケイ素膜を化学蒸着することを特徴とする酸化ケイ素膜の形成法。A compound containing Si—O—Si bond placed in a decompressed container is exposed at a laser ablation threshold value or less by a light source containing light having a wavelength of 200 nm or less, and utilizing the gas released from the compound, A method of forming a silicon oxide film, comprising: chemically depositing a silicon oxide film on a substrate placed in an optical path of a light source. 前記酸化ケイ素膜を、常温の前記基体上に形成する請求項1記載の酸化ケイ素膜の形成法。The method for forming a silicon oxide film according to claim 1 , wherein the silicon oxide film is formed on the substrate at room temperature. 前記光源の光をマスクを透過させて前記基体に照射して、前記酸化ケイ素膜を、前記基体上に所定のパターンに形成する請求項1又は2記載の酸化ケイ素膜の形成法。The method of forming a silicon oxide film according to claim 1 or 2 , wherein the silicon oxide film is formed in a predetermined pattern on the substrate by irradiating the substrate with light from the light source through the mask. 前記基体が平板状基板であり、前記光源の光軸に対して傾斜乃至平行に設置されている請求項1,2又は3記載の酸化ケイ素膜の形成法。The method for forming a silicon oxide film according to claim 1, 2 or 3 , wherein the substrate is a flat substrate, and is installed in an inclined or parallel direction with respect to the optical axis of the light source.
JP2003064304A 2003-03-11 2003-03-11 Method for forming silicon oxide film by light irradiation to compound containing Si-O-Si bond Expired - Lifetime JP3826194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003064304A JP3826194B2 (en) 2003-03-11 2003-03-11 Method for forming silicon oxide film by light irradiation to compound containing Si-O-Si bond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003064304A JP3826194B2 (en) 2003-03-11 2003-03-11 Method for forming silicon oxide film by light irradiation to compound containing Si-O-Si bond

Publications (2)

Publication Number Publication Date
JP2004273869A JP2004273869A (en) 2004-09-30
JP3826194B2 true JP3826194B2 (en) 2006-09-27

Family

ID=33125624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003064304A Expired - Lifetime JP3826194B2 (en) 2003-03-11 2003-03-11 Method for forming silicon oxide film by light irradiation to compound containing Si-O-Si bond

Country Status (1)

Country Link
JP (1) JP3826194B2 (en)

Also Published As

Publication number Publication date
JP2004273869A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP2561979B2 (en) Rapid thermal process for obtaining silica coatings
EP0184352A1 (en) Method of surface treatment
Singhal et al. Electronic excitation induced tuning of surface plasmon resonance of Ag nanoparticles in fullerene C70 matrix
US20160053370A1 (en) Scalable processing of nanocomposites using photon-based methods
US4748045A (en) Method and apparatus for photodeposition of films on surfaces
US4668528A (en) Method and apparatus for photodeposition of films on surfaces
JP2004123816A (en) SURFACE MODIFYING METHOD OF SOLID COMPOUND HAVING Si-O-Si BOND BY USING LASER BEAM
JP3826194B2 (en) Method for forming silicon oxide film by light irradiation to compound containing Si-O-Si bond
JP3452733B2 (en) Manufacturing method of diffractive optical element
Bäuerle Laser-induced chemical vapor deposition
JP3820443B2 (en) Method and apparatus for forming SiO2 film using laser ablation
JPH05261267A (en) Production of superfine semiconductor particle
JP3947791B2 (en) Formation of fluorine-doped silicon oxide film by light irradiation
US4753716A (en) Selective conversion of polymer coatings to ceramics
JP3950967B2 (en) Method for modifying solid compound film containing Si-O-Si bond to silicon oxide using vacuum ultraviolet light and pattern forming method
JP2003306319A (en) Method for manufacturing nanoparticle of metal oxide
JPS60241219A (en) Method for forming thin film by utilizing laser
JP3673829B2 (en) Optical film refractive index control method and optical element formation method using laser ablation
JPH07254556A (en) Pattern forming method and equipment therefor
JP4929469B2 (en) Light emitting element manufacturing method using compound containing Si-O-Si bond
Eden Photochemical processing of semiconductors: New applications for visible and ultraviolet lasers
Xiao et al. Laser-Induced Chemical Vapor Deposition of Ge-Se Thin Films
Lyalin et al. Deposition of diamond-like films upon laser irradiation of the interface of a transparent substrate with liquid aromatic hydrocarbons
JP3950774B2 (en) Method for producing conductive film
JPS633413A (en) Semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060531

R150 Certificate of patent or registration of utility model

Ref document number: 3826194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term