JP3452733B2 - Manufacturing method of diffractive optical element - Google Patents

Manufacturing method of diffractive optical element

Info

Publication number
JP3452733B2
JP3452733B2 JP21339196A JP21339196A JP3452733B2 JP 3452733 B2 JP3452733 B2 JP 3452733B2 JP 21339196 A JP21339196 A JP 21339196A JP 21339196 A JP21339196 A JP 21339196A JP 3452733 B2 JP3452733 B2 JP 3452733B2
Authority
JP
Japan
Prior art keywords
thin film
laser light
laser
glass substrate
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21339196A
Other languages
Japanese (ja)
Other versions
JPH1059743A (en
Inventor
正 小山
啓司 常友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP21339196A priority Critical patent/JP3452733B2/en
Priority to US09/284,269 priority patent/US6291797B1/en
Priority to PCT/JP1997/002806 priority patent/WO1998006676A1/en
Priority to EP97934765A priority patent/EP0959051A4/en
Publication of JPH1059743A publication Critical patent/JPH1059743A/en
Priority to US09/898,239 priority patent/US6645603B2/en
Priority to US10/622,517 priority patent/US6924457B2/en
Application granted granted Critical
Publication of JP3452733B2 publication Critical patent/JP3452733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Laser Beam Processing (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は回折型の光学素子の
製造方法に関する。
TECHNICAL FIELD The present invention relates to a diffractive optical element.
It relates to a manufacturing method .

【0002】[0002]

【従来の技術】ガラスは平坦性、加工精度、耐候性、耐
熱性などの特性に優れているので、光通信等に用いる回
折格子或いはディスプレイ装置に組み込むマイクロレン
ズとして、ガラス基板の表面に微細加工を施したものが
知られている。
2. Description of the Related Art Since glass has excellent properties such as flatness, processing accuracy, weather resistance, and heat resistance, it can be used as a microlens incorporated in a diffraction grating or a display device used for optical communication, etc. It is known to have been subjected to.

【0003】ガラス基材に微細加工を施すには、従来に
あっては、フッ酸等のエッチャントを用いたウェットエ
ッチング(化学エッチング)、或いはリアクティブイオ
ンエッチング等のドライエッチング(物理エッチング)
によるのが一般的である。
In order to perform fine processing on a glass substrate, conventionally, wet etching (chemical etching) using an etchant such as hydrofluoric acid or dry etching (physical etching) such as reactive ion etching is used.
It is generally due to.

【0004】しかしながら、ウェットエッチングにあっ
ては、エッチャントの管理と処理の問題があり、ドライ
エッチングにあっては真空容器等の設備が必要になり装
置自体が大掛かりとなり、更に複雑なフォトリソグラフ
ィー技術によってパターンマスク等を形成しなければな
らず効率的でない。
However, in wet etching, there are problems of etchant management and processing, and in dry etching, equipment such as a vacuum container is required and the apparatus itself becomes large, and more complicated photolithography technology is used. A pattern mask or the like must be formed, which is not efficient.

【0005】また、市販の比較的安価に手に入れられる
回折格子等の波長分離素子は、工業的には、アルミニウ
ム等の金属をダイヤモンドの刃で刻む(ルーリング)こ
とにより原盤を得、これを元にしてエポキシ樹脂等へ転
写する方法が採られている。
In addition, commercially available wavelength separation elements such as diffraction gratings, which are relatively inexpensive, are industrially used to obtain a master by carving a metal such as aluminum with a diamond blade (ruling) to obtain a master. Originally, a method of transferring to an epoxy resin or the like is adopted.

【0006】上記の工業的な回折格子の作製法では、大
がかりなルーリング設備などが必要となるとともに、大
量生産するには有機物へ転写せざるを得ない。しかしな
がら、有機物への転写は成形性はよいが、湿度、温度に
対する耐性に限界がある。
The above-mentioned industrial method for producing a diffraction grating requires a large-scale ruling facility and the like, and it is inevitable to transfer it to an organic substance for mass production. However, although transfer to an organic material has good moldability, it has a limit in resistance to humidity and temperature.

【0007】一方、レーザ光は強力なエネルギーを有
し、照射された材料の表面温度を上げ、照射された部分
をアブレーション(爆蝕)或いは蒸発せしめて種々の加
工を施すことが従来から行われている。特にレーザ光は
極めて小さなスポットに絞ることができるので、微細加
工に適している。
On the other hand, laser light has strong energy, and it has been conventionally performed to raise the surface temperature of an irradiated material and to ablate (evaporate) or evaporate the irradiated portion to perform various processes. ing. In particular, since the laser light can be focused on an extremely small spot, it is suitable for fine processing.

【0008】そこで、複数のレーザ光を干渉させること
で、周期的な光強度分布を有するレーザ光とし、これを
金属板等の被加工物表面に照射して微細加工を行う先行
技術として、特開昭50−42499号公報、特開平4
−253583号公報、特公平7−4675号公報、特
公平7−47232号公報、特公平7−51400号公
報、特公平7−102470号公報、特公平8−979
4号公報、特公平8−25045号公報に開示されるも
のが知られている。
Therefore, as a prior art in which a plurality of laser beams are made to interfere with each other to form a laser beam having a periodic light intensity distribution, and the surface of a workpiece such as a metal plate is irradiated with the laser beam to perform fine processing, Japanese Unexamined Patent Publication No. 50-42499, Japanese Unexamined Patent Publication No.
No. 253583, Japanese Patent Publication No. 7-4675, Japanese Patent Publication No. 7-47232, Japanese Patent Publication No. 7-51400, Japanese Patent Publication No. 7-102470, Japanese Patent Publication No. 8-979.
Those disclosed in Japanese Patent Publication No. 4 and Japanese Patent Publication No. 8-25045 are known.

【0009】このうち特に、特公平8−25045号公
報にあっては、金属板等の被加工物上に、空気及び被加
工物よりも屈折率の高い導波路(薄膜)を形成し、この
導波路にレーザ光を照射し、導波路中を伝搬する光と照
射光との干渉作用で導波路に微細な凹凸を形成し、被加
工物表面に虹色発色機能を持たせるようにしたものであ
る。
Particularly, in Japanese Patent Publication No. 8-25045, a waveguide (thin film) having a refractive index higher than that of air and the workpiece is formed on the workpiece such as a metal plate. Laser light is radiated to the waveguide, and the interference between the light propagating in the waveguide and the radiated light forms minute irregularities on the waveguide, giving the surface of the workpiece a rainbow-colored coloring function. Is.

【0010】また、村原正隆、他 応用物理 第52巻
第1号(1983)P.84には、有機高分子である
PMMA(ポリメチル・メタアクリレート)をガラス基
板に塗布し、その薄膜をエキシマレーザの干渉光を用い
て、アブレーションにより直接有機薄膜の微細凹凸を作
製したことが報告されている。
Masataka Murahara, et al. Applied Physics Vol. 52 No. 1 (1983) p.84, PMMA (polymethyl methacrylate), which is an organic polymer, is coated on a glass substrate, and the thin film is applied to the excimer. It has been reported that fine unevenness of an organic thin film was directly produced by ablation using laser interference light.

【0011】[0011]

【発明が解決しようとする課題】上記先行技術のいずれ
も、基材表面に薄膜を形成し、この薄膜にレーザ光エネ
ルギーを吸収せしめてアブレーション等を生じさせ、薄
膜に微細加工を施すものであるが、レーザ光エネルギー
についての考慮がなされていない。
In any of the above-mentioned prior arts, a thin film is formed on the surface of a base material, laser light energy is absorbed in the thin film to cause ablation, and the thin film is subjected to fine processing. However, no consideration is given to laser light energy.

【0012】即ち、アブレーション等を生じさせるには
一定以上の強度のレーザ光を照射しなければならないの
は、従来から知られているが、基材表面に薄膜を形成し
た場合、薄膜を通して基材まで到達するレーザ光のエネ
ルギーが基材にアブレーション等を生じさせるエネルギ
ー(閾値)よりも大きいと、薄膜に微細な凹凸を形成す
るだけでなく、基材自体も加工してしまう。このように
薄膜と物性が異なる基材も同時に微細加工されると、回
折格子等の精度が要求される部材としては使用できなく
なる。また、薄膜が有機高分子の場合には、耐候性、耐
熱性に劣る不利もある。
That is, it is conventionally known that a laser beam having a certain intensity or more must be irradiated to cause ablation or the like. However, when a thin film is formed on the surface of a substrate, the substrate is passed through the thin film. If the energy of the laser beam reaching to the point is larger than the energy (threshold value) that causes ablation or the like in the substrate, not only fine irregularities are formed in the thin film, but also the substrate itself is processed. Thus, if a thin film and a base material having different physical properties are also microfabricated at the same time, they cannot be used as a member such as a diffraction grating that requires precision. Further, when the thin film is an organic polymer, there is a disadvantage that the weather resistance and heat resistance are poor.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
本発明は、ガラス基材の表面上にガラス基材よりもレー
ザ吸収性に優れた薄膜を形成し、この薄膜に対し強度分
布を有するレーザ光を照射し、前記薄膜にレーザ光のエ
ネルギーを吸収させることで溶融・蒸発若しくはアブレ
ーションを起こさせて前記薄膜をレーザ光の強度に応じ
て除去するようにした回折型の光学素子の製造方法であ
って、前記レーザ光はフェイズマスクを用いるかレーザ
光を干渉せしめることによって周期的な光強度分布を有
するレーザ光とされ、前記薄膜は無機材料を主体とし、
また薄膜の厚さまたはレーザ光の吸収係数を、薄膜を透
過してガラス基材表面に到達するレーザ光の強度がガラ
ス基材に溶融・蒸発若しくはアブレーションを起こさせ
る閾値以下になる値に設定した。
In order to solve the above-mentioned problems, the present invention provides a laser on a surface of a glass substrate rather than a glass substrate.
The thin film with excellent absorbency is formed, and
The thin film is irradiated with laser light and the thin film is irradiated with laser light.
By absorbing energy, melting, evaporation, or abrasion
The thin film according to the intensity of the laser light.
A method of manufacturing a diffractive optical element that is removed by
If the laser light uses a phase mask,
A periodic light intensity distribution can be obtained by making light interfere.
Laser light, the thin film is mainly composed of an inorganic material,
In addition, the thickness of the thin film or the absorption coefficient of the laser beam can be measured through the thin film.
The intensity of the laser light that reaches the glass substrate surface
Melt, evaporate or ablate the substrate
It is set to a value that is less than or equal to the threshold value.

【0014】薄膜としては、金属酸化物、金属窒化物、
金属炭化物、半導体、SiO2を主体とするガラス、フッ
化物ガラスまたはカルコゲナイドガラスの単層あるいは
これらの組み合わせで多層に積層されたもの等が適当で
ある。また薄膜の形成方法としては、ゾルゲル法、スパ
ッタリング法、真空蒸着法、液相析出法などの様々な方
法が適用できる。
The thin film includes metal oxides, metal nitrides,
A single layer of a metal carbide, a semiconductor, a glass mainly containing SiO2, a fluoride glass or a chalcogenide glass, or a multi-layered combination thereof is suitable. As a method for forming a thin film, various methods such as a sol-gel method, a sputtering method, a vacuum vapor deposition method, and a liquid phase deposition method can be applied.

【0015】薄膜内をレーザ光が通過するときのエネル
ギー損失分については、薄膜の厚さ及び吸収係数にて制
御することができるが、所定の厚さを確保することが条
件となる場合には、レーザ光の吸収係数を主として制御
する。そして、吸収係数の制御方法としては、酸素欠損
などの量論比のずれを意図的に導入する方法、欠陥を導
入する方法、波長に対する吸収の高いイオンをドープす
る方法、超微粒子を混合する方法、顔料または有機色素
を混合する方法等が挙げられる。
The amount of energy loss when the laser beam passes through the thin film can be controlled by the thickness and absorption coefficient of the thin film, but when it is necessary to secure a predetermined thickness, , Mainly controls the absorption coefficient of laser light. Then, as a method of controlling the absorption coefficient, a method of intentionally introducing a shift in the stoichiometric ratio such as oxygen vacancies, a method of introducing defects, a method of doping ions having high absorption with respect to wavelength, a method of mixing ultrafine particles , A method of mixing a pigment or an organic dye, and the like.

【0016】また、前記レーザ光として周期的若しくは
規則的な光強度分布を有するレーザ光を用いることで、
光結合器、偏光器、分波器、波長フィルタ、反射器或い
はモード変換器等に組み込まれる回折格子やホログラム
等の回折型の光学素子を製造することができる。尚、ガ
ラス基材表面に形成する薄膜に対しレーザ光で凹凸を形
成するにあたり、薄膜の凹部の底面にガラス基材が露出
するまでアブレーション等を施すようにすれば、薄膜の
厚さがそのまま回折型の光学素子の凹凸部の厚さにな
る。
Further, by using a laser beam having a periodic or regular light intensity distribution as the laser beam,
It is possible to manufacture a diffractive optical element such as a diffraction grating or a hologram incorporated in an optical coupler, a polarizer, a demultiplexer, a wavelength filter, a reflector, a mode converter, or the like. In forming unevenness with a laser beam on the thin film formed on the surface of the glass substrate, if the ablation is performed until the glass substrate is exposed on the bottom surface of the recess of the thin film, the thickness of the thin film will be diffracted as it is. It becomes the thickness of the uneven portion of the optical element of the mold.

【0017】周期的な光強度分布を有するレーザ光は、
フェイズマスク或いは複数本のレーザ光を干渉せしめる
ことによって得ることができ、ガラス基材表面に形成さ
れる周期的な凹凸の断面形状は、レーザ光のパルスエネ
ルギーにて制御することができる。また、規則的な光強
度分布を有するレーザ光は、網目状マスク等を用いるこ
とで得ることができる。
The laser light having a periodic light intensity distribution is
It can be obtained by causing a phase mask or a plurality of laser beams to interfere with each other, and the cross-sectional shape of the periodic unevenness formed on the surface of the glass substrate can be controlled by the pulse energy of the laser beam. Further, laser light having a regular light intensity distribution can be obtained by using a mesh mask or the like.

【0018】[0018]

【発明の実施の形態】以下に本発明の実施例と比較例を
添付図面に基づいて説明する。尚、実施例と比較例につ
いて主要な項目について比較した(表)を以下に示す。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments and comparative examples of the present invention will be described below with reference to the accompanying drawings. The following is a table (Table) comparing the main items of the examples and comparative examples.

【0019】[0019]

【表】 【table】

【0020】(実施例1) ソーダライムガラス上に、Agコロイドが分散したSiO
薄膜を形成した。形成方法は、スパッタ法で、SiO
ターゲットと銀金属のチップをターゲット上に置き、
同時にスパッタした。スパッタ条件を以下のように設定
し成膜した。また、ターゲットは下置きで、5インチ×
20インチの石英ターゲットを用い、その上に銀の円盤
状のチップ(直径約4mm)を32個、分散させて置い
た。 スパッタ条件 ガス流量:酸素3sccm,アルゴン97sccm スパッタ時圧力:2.8×10−3Torr 入射電力:3.0Kw 基板:ソーダライムガラス 得られた薄膜は、茶色に着色しているが、表面は平滑で
付着力も強く、クリアな膜が得られた。5分間の成膜時
間で膜厚は315nmであった。また、膜中の銀の濃度
をXPS(X線電子分光法)で測定したところ、0.9
4原子%であった。薄膜の吸収スペクトルを測定する
と、390nm付近に吸収ピークが存在し、これは銀の
超微粒子(コロイド)のプラズモン吸収と考えられ、ガ
ラス中に銀の超微粒子が成膜時に生成したものと考えら
れる。
Example 1 A SiO colloid containing Ag colloid dispersed on soda lime glass.
Two thin films were formed. The forming method is sputtering, and
2 Place the target and the silver metal chip on the target,
Sputtered at the same time. The sputtering conditions were set as follows to form a film. In addition, the target is placed underneath, 5 inches ×
Using a 20-inch quartz target, 32 silver disk-shaped chips (about 4 mm in diameter) were dispersed and placed on the target. Sputtering conditions Gas flow rate: Oxygen 3 sccm, Argon 97 sccm Sputtering pressure: 2.8 × 10 −3 Torr Incident power: 3.0 Kw Substrate: Soda lime glass The obtained thin film is colored brown, but the surface is smooth. The adhesion was strong and a clear film was obtained. The film thickness was 315 nm after a film forming time of 5 minutes. Further, when the concentration of silver in the film was measured by XPS (X-ray electron spectroscopy), it was 0.9
It was 4 atom%. When the absorption spectrum of the thin film was measured, there was an absorption peak near 390 nm, which is considered to be plasmon absorption of ultrafine silver particles (colloid), and it is considered that ultrafine silver particles were formed in the glass during film formation. .

【0021】このガラス上の薄膜を、図1に示す光学系
でアブレーションを行い、微細加工を行った。図1に示
す光学系は、1本のシングルモードのレーザビームを2
つに分け、その光を再びガラス薄膜上で焦点を結ばせる
ようにし、その干渉により強度が周期的に変化するパタ
ーンを形成して照射した。使用したレーザはNd:YA
Gレーザでパルス幅が10ns、繰り返し周波数が10
Hz、使用波長は第3高調波の355nm、照射エネル
ギーは2本のビームに分ける前は、約110mJ/Pu
lseのエネルギーであった。ビームは50%のビーム
スプリッターでわけ、石英のレンズを通過させた後、サ
ンプル表面上で2つのビームを重ね合わせ、干渉縞を生
じさせ、周期的な光強度分布の状態を形成させた。レー
ザビームの間の角度は約10°であった。試料上のビー
ム径は2mmであり、エネルギー密度は4.14J/c
・Pulseになる。このエネルギーは薄膜がアブ
レーションするエネルギーをあらかじめ測定し、そのエ
ネルギーよりも高めに設定したものである。
The thin film on the glass was ablated by the optical system shown in FIG. 1 and finely processed. The optical system shown in FIG. 1 uses two single mode laser beams.
Then, the light was focused again on the glass thin film, and a pattern in which the intensity changed periodically due to the interference was formed and irradiated. The laser used is Nd: YA
G laser has a pulse width of 10 ns and a repetition frequency of 10
Hz, the wavelength used is 355 nm of the third harmonic, and the irradiation energy is about 110 mJ / Pu before splitting into two beams.
It was energy of 1se. The beam was split by a 50% beam splitter, and after passing through a quartz lens, the two beams were superposed on each other to form interference fringes and a periodic light intensity distribution was formed. The angle between the laser beams was about 10 °. The beam diameter on the sample is 2 mm and the energy density is 4.14 J / c.
m 2・ Pulse. This energy is obtained by measuring the ablation energy of the thin film in advance and setting it higher than the energy.

【0022】加工を行った膜を、光学顕微鏡、電子顕微
鏡で観察した。図2(a)は1000倍の光学顕微鏡写
真、(b)は同写真に基づいて作成した図、図3(a)
は3500倍の走査型顕微鏡写真、(b)は同写真に基
づいて作成した図である。これらの図から、膜に約1μ
mの周期的な凹凸が形成されているのを確認できる。
The processed film was observed with an optical microscope and an electron microscope. 2 (a) is a 1000 × optical microscope photograph, FIG. 2 (b) is a drawing prepared based on the photograph, and FIG. 3 (a).
Is a scanning micrograph at 3500 times, and (b) is a diagram created based on the same photograph. From these figures, about 1μ
It can be confirmed that m periodical irregularities are formed.

【0023】この実施例での355nmにおける薄膜の
吸収係数は、46,212cm−1であった。またソー
ダライムガラス基板の吸収係数は0.3081cm−1
であった。また、薄膜の吸収係数と厚さから計算した基
板に到達するエネルギーは0.95J/cm・Pul
seであった。
The absorption coefficient of the thin film at 355 nm in this example was 46,212 cm -1 . The absorption coefficient of the soda-lime glass substrate is 0.3081 cm -1.
Met. The energy that reaches the substrate calculated from the absorption coefficient and thickness of the thin film is 0.95 J / cm 2 · Pul.
It was se.

【0024】一方、ガラスのアブレーション閾値を実験
的にもとめた。照射エネルギーを上げながら、アブレー
ションした時点でのエネルギーを記録した。パワー密度
を計算するためには、アブレーション痕の面積が必要で
あるが、照射痕周辺の割れが激しく正確に求めることは
できなかった。おおよその面積から求めると、少なくと
も本実験のレーザでは8〜10J/cm・Pulse
であった。したがって、基板に到達するエネルギーは基
板のアブレーション閾値以下であり、優先的な薄膜のア
ブレーションが起こり、このような微細な加工性を可能
にしたものと考えられる。
On the other hand, the ablation threshold of glass was experimentally obtained. The energy at the time of ablation was recorded while increasing the irradiation energy. In order to calculate the power density, the area of the ablation mark is necessary, but cracks around the irradiation mark were severe and it was not possible to accurately determine it. Approximately 8 to 10 J / cm 2 · Pulse for the laser of this experiment
Met. Therefore, the energy reaching the substrate is below the ablation threshold of the substrate, and preferential ablation of the thin film occurs, which is considered to enable such fine workability.

【0025】(比較例1) 実施例1と同様の工程で、SiO薄膜をソーダライム
ガラス基板上に形成した。この場合、ターゲット上には
銀は置かず、SiOのみの薄膜が形成できるようにし
た。得られた薄膜を、実施例1と同様の光学系を用いて
レーザ加工した。その結果、薄膜の選択的加工はでき
ず、基板とともにアブレーションが起こった。このとき
のエネルギーは9J/cm・Pulseであった。ま
た、吸収係数を測定すると、基板の吸収係数は実施例1
と同じであるが、SiO膜は0.001cm−1以下
であり、基板よりも吸収係数が低かった。また、基板に
到達するエネルギーも、ほぼ基板のアブレーション閾値
に近く、有効な加工ができなかったものと考えられる。
Comparative Example 1 A SiO 2 thin film was formed on a soda lime glass substrate by the same process as in Example 1. In this case, silver was not placed on the target so that a thin film of only SiO 2 could be formed. The obtained thin film was laser-processed using the same optical system as in Example 1. As a result, the thin film could not be selectively processed and ablation occurred with the substrate. The energy at this time was 9 J / cm 2 · Pulse. Further, when the absorption coefficient was measured, the absorption coefficient of the substrate was found to be that of Example 1.
However, the absorption coefficient of the SiO 2 film was 0.001 cm −1 or less, which was lower than that of the substrate. Further, it is considered that the energy reaching the substrate was almost close to the ablation threshold value of the substrate, and effective processing could not be performed.

【0026】(実施例2,3,4,5) 実施例1と同様に、ソーダライムガラス上に、Agコロ
イドが分散したSiO薄膜を形成した。スパッタ条件
は、銀のターゲット個数、スパッタ電力を調整し、銀の
混合濃度を変化させた。この実施例の要点を、前記
(表)にまとめた。銀の濃度が下がるにしたがって、膜
の吸収係数が低下した。この薄膜付きガラスを、実施例
1と同様な方法で干渉光を用いたアブレーションを行っ
た。その結果、実施例1と同様に、膜面に周期的構造が
でき、回折格子としての機能を発揮した。これらの薄膜
は、(表)からわかるように、すべて吸収係数が基板よ
り高く、なおかつ基板に到達するレーザエネルギーは基
板のアブレーション閾値よりも低くなっている。
(Examples 2, 3, 4, 5) As in Example 1, a SiO 2 thin film in which Ag colloid was dispersed was formed on soda lime glass. As the sputtering conditions, the number of silver targets and the sputtering power were adjusted to change the silver concentration. The main points of this example are summarized in the above (Table). The absorption coefficient of the film decreased as the silver concentration decreased. This glass with a thin film was ablated using interference light in the same manner as in Example 1. As a result, as in Example 1, a periodic structure was formed on the film surface, and the function as a diffraction grating was exhibited. As can be seen from the table, all of these thin films have a higher absorption coefficient than the substrate, and the laser energy reaching the substrate is lower than the ablation threshold of the substrate.

【0027】(比較例2,3) 実施例4,5と同じ条件でAgの混合したSiO膜を
作製した。これは実施例4,5の成膜時に同時にチャン
バーに入れたもので、膜の特性は完全に同じになるよう
に配慮した。ただし、基板は実施例1〜5に用いたもの
よりも、低いアブレーション閾値(3.5J/cm
Pulse)の材料を用いた(表参照)。この基板は、
ガラスマトリクス中にCdS、CdSeなどの超微粒子が
分散されたもので、シャープカットフィルターとして広
く用いられているものである。作製した薄膜付ガラス基
板を実施例1と同じ条件でアブレーションを行った。そ
の結果、比較例2ではかろうじて回折格子の加工性が見
られたが、比較例3では基板のダメージがあり、良好な
加工性は得られなかった。このガラス基板の355nm
の波長に対する加工閾値は3.5J/cmであり、そ
の吸収係数は377cm−1であった。比較例2での膜
の吸収係数は6490cm−1であり、基板よりも吸収
係数が高い。また薄膜を透過し基板に到達するエネルギ
ーは、3.4J/cmで、かろうじて基板のアブレー
ション閾値以下であった。一方、比較例3での膜の吸収
係数は2235cm−1であり、基板の吸収係数377
cm−1より高いが、基板に到達するエネルギーは3.
9J/cm・Pulseであり、基板のアブレーショ
ン閾値に到達していた。したがって、この点が、比較例
3における加工性を失わせた原因と考えられる。実施例
5と比較例3は同じ薄膜であるが、基板の閾値の違いに
よりこのような差が生じたものと考えられる。
(Comparative Examples 2 and 3) Ag 2 mixed SiO 2 films were prepared under the same conditions as in Examples 4 and 5. This was placed in the chamber at the same time as the film formation in Examples 4 and 5, and it was considered that the characteristics of the film were completely the same. However, the substrate has a lower ablation threshold value (3.5 J / cm 2 · T) than that used in Examples 1 to 5.
Pulse) material was used (see table). This board is
Ultrafine particles such as CdS and CdSe are dispersed in a glass matrix, which is widely used as a sharp cut filter. The produced glass substrate with a thin film was ablated under the same conditions as in Example 1. As a result, in Comparative Example 2, the workability of the diffraction grating was barely seen, but in Comparative Example 3, the substrate was damaged and good workability was not obtained. 355nm of this glass substrate
The processing threshold for the wavelength was 3.5 J / cm 2 , and its absorption coefficient was 377 cm −1 . The absorption coefficient of the film in Comparative Example 2 is 6490 cm -1 , which is higher than that of the substrate. In addition, the energy passing through the thin film and reaching the substrate was 3.4 J / cm 2 , which was barely below the ablation threshold of the substrate. On the other hand, the absorption coefficient of the film in Comparative Example 3 is 2235 cm −1 , and the absorption coefficient of the substrate is 377.
Although higher than cm −1 , the energy to reach the substrate is 3.
It was 9 J / cm 2 · Pulse and reached the ablation threshold of the substrate. Therefore, this point is considered to be the cause of losing the workability in Comparative Example 3. Although Example 5 and Comparative Example 3 have the same thin film, it is considered that such a difference is caused by the difference in the threshold value of the substrate.

【0028】(実施例6) 実施例2で用いた同じ試料に対して、図4に示す装置を
用いて回折格子を製造した。具体的には、上記のガラス
基板の上にAg−SiO膜を成膜した面に、スペーサを
介して回折格子を形成したフェイズマスクを備えた基板
を配置し、レーザ光を照射した。フェイズマスクにレー
ザ光が入射すると、図5(a)に示すように、主として
+1次、0次、−1次を含む複数の回折光が出射し、こ
れらの回折光の干渉によりフェイズマスクの出射側の極
近傍に周期的な光の強度分布が得られる。ここで、本実
施例のフェイズマスクは回折格子周期:1055nm、
回折格子深さ:約250nm、サイズ:10mm×5m
m(QPS Technology Inc.製Canada)を使用した。
そして、この周期的な強度分布が形成された領域に、図
5(b)に示すように、薄膜を成膜したガラス基板をセ
ットした。その結果、図5(c)に示すように、当該周
期的な光強度に応じて薄膜が蒸発或いはアブレーション
し、光強度の周期と同一の周期をもつ回折格子がガラス
基板上に薄膜を加工した形で形成された。ガラスの閾値
と薄膜の閾値の関係は実施例1,2で述べたものと同じ
条件である。
Example 6 For the same sample used in Example 2, a diffraction grating was manufactured using the apparatus shown in FIG. Specifically, a substrate provided with a phase mask in which a diffraction grating was formed via a spacer was arranged on the surface on which the Ag—SiO 2 film was formed on the above glass substrate, and laser light was irradiated. When laser light is incident on the phase mask, as shown in FIG. 5A, a plurality of diffracted lights mainly including + first order, 0th order, and −1st order are emitted, and the phase mask emits due to interference of these diffracted lights. A periodic light intensity distribution is obtained near the side. Here, the phase mask of this embodiment has a diffraction grating period: 1055 nm,
Diffraction grating depth: about 250 nm, size: 10 mm x 5 m
m (Canada from QPS Technology Inc.) was used.
Then, as shown in FIG. 5B, a glass substrate having a thin film formed thereon was set in the region where the periodic intensity distribution was formed. As a result, as shown in FIG. 5C, the thin film is evaporated or ablated according to the periodic light intensity, and the diffraction grating having the same period as the period of the light intensity processed the thin film on the glass substrate. Formed in shape. The relationship between the glass threshold value and the thin film threshold value is the same as that described in the first and second embodiments.

【0029】尚、使用したレーザ光は、実施例1と同様
にNd:YAGレーザの第3高調波である355nmの
光とした。パルス幅は約10nsec、繰り返し周波数
は5Hzであった。またレーザ光の1パルスあたりのエ
ネルギーは、レーザのQスイッチのタイミングを変える
ことで調整が可能であり、110mJ/pulseのエ
ネルギーで、ビーム直径は約5mmであった。加工に適
するように、レーザのエネルギー密度を増大させるた
め、レーザ光を焦点距離250nmのレンズで絞り込ん
でガラス基板上でのビームサイズが約2mmになるよう
にした。
The laser light used was the light of 355 nm which is the third harmonic of the Nd: YAG laser as in the first embodiment. The pulse width was about 10 nsec and the repetition frequency was 5 Hz. The energy per pulse of the laser light can be adjusted by changing the timing of the Q switch of the laser, the energy is 110 mJ / pulse, and the beam diameter is about 5 mm. In order to increase the energy density of the laser so as to be suitable for processing, the laser beam was narrowed down by a lens having a focal length of 250 nm so that the beam size on the glass substrate was about 2 mm.

【0030】上記によって形成された回折格子のところ
で、本実施例にあってはスペーサによってフェイズマス
クとガラス基板との間隔が約50μmとなるようにして
いる。これは、ガラス基板表面からの蒸発物がフェイズ
マスクに付着するのを極力防ぐためであり、この間隔自
体は任意である。例えば+1次光と−1次光とが重なっ
ている範囲内ならば、フェイズマスクとガラス基板を密
着させても回折格子は作製できるし、フェイズマスクと
ガラス基板との間に150μm程度の厚さの石英板を挟
み密着させてレーザ照射を行った場合も、本実施例と同
様に回折格子が作製できた。フェイズマスクは繰り返し
使用されるものであり、その汚れを防ぐことは重要であ
り、したがってスペーサを介在させることは有効な手段
である。
At the diffraction grating formed as described above, in this embodiment, a spacer is provided so that the distance between the phase mask and the glass substrate is about 50 μm. This is to prevent evaporation from the surface of the glass substrate from adhering to the phase mask as much as possible, and this interval itself is arbitrary. For example, if the + 1st-order light and the -1st-order light are overlapped with each other, the diffraction grating can be produced even if the phase mask and the glass substrate are brought into close contact with each other, and the thickness between the phase mask and the glass substrate is about 150 μm. Even when the quartz plate was sandwiched and brought into close contact and laser irradiation was performed, a diffraction grating could be produced in the same manner as in this example. Since the phase mask is used repeatedly, it is important to prevent its contamination, and therefore interposing a spacer is an effective means.

【0031】(実施例7,8) BK7と呼ばれるホウ珪酸系ガラスを基板として、電子
ビーム蒸着法でTiO、GeO薄膜を形成した。これ
ら薄膜を実施例1と同様の方法でレーザ加工を施すと、
同様に周期的構造が形成できた。したがって、これらの
薄膜の加工閾値は4.14J/cmよりも低いことが
わかる。BK7ガラスの355nmにおける加工閾値
は、8から9J/cmであり、TiOの吸収係数
(46060cm−1)と膜厚から換算した透過エネル
ギーは3.2J/cm、GeOの吸収係数は755
5cm-1で透過エネルギーは3.6J/cmとなっ
た。したがって、基板の加工閾値はこれらの値よりはる
かに高く、安定して薄膜のレーザ加工ができたものと考
えられる。また、GeO薄膜はガラス質であるが、Ti
は結晶化しており、アナターゼ構造の結晶型を持っ
ていることがX線回折結果から明らかになった。従っ
て、本発明はガラス性の薄膜に限らず、結晶性の薄膜に
も適用でき、請求項に示した用件を満たすことが必要で
あることがわかった。
(Examples 7 and 8) Using a borosilicate glass called BK7 as a substrate, TiO 2 and GeO 2 thin films were formed by the electron beam evaporation method. When these thin films are subjected to laser processing in the same manner as in Example 1,
Similarly, a periodic structure could be formed. Therefore, it can be seen that the processing threshold of these thin films is lower than 4.14 J / cm 2 . The processing threshold of BK7 glass at 355 nm is 8 to 9 J / cm 2 , the transmission energy calculated from the absorption coefficient (46060 cm −1 ) of TiO 2 and the film thickness is 3.2 J / cm 2 , and the absorption coefficient of GeO 2 is 755
The transmission energy was 3.6 J / cm 2 at 5 cm -1. Therefore, the processing threshold of the substrate is much higher than these values, and it is considered that the thin film laser processing could be stably performed. Although the GeO 2 thin film is glassy,
It was revealed from the X-ray diffraction results that O 2 was crystallized and had a crystal form of anatase structure. Therefore, it was found that the present invention can be applied not only to the glassy thin film but also to the crystalline thin film, and it is necessary to satisfy the requirements shown in the claims.

【0032】(実施例9) ソーダライムガラスの上に、ゾルゲル法により、膜中に
金コロイドが分散したTiO薄膜を形成した。薄膜作
製における主材料は、チタンテトラブトキシド(TT
B)で、これに4倍の当モル量のアセチルアセトン(A
A)を混合した。これは、ゾルゲル反応の主反応であ
る、水の加水分解を穏やかに進ませ、良質な薄膜を形成
するのに役立つ。加水分解反応液として、NaAuCl
を0.16mol/lの濃度で溶解した水溶液を用い
た。TTBを12ml、希釈のためのエタノールを12
ml、AAを4ml、NaAuCl4水溶液を3ml混合
し、30分撹拌、反応させた後、ガラス基板上にデイッ
プ法で塗布した。塗布後、空気中400℃、15分加熱
し、残存有機物を蒸発させ、強固な膜とした。またこの
とき、金の超微粒子が析出し、薄膜はブルーに変色し
た。これは、TiO膜中の金超微粒子のプラズモン吸
収に起因している。塗布と熱処理を3回繰り返し、34
0nmの厚さの薄膜を得た。この薄膜を、実施例1と同
じ光学系と照射エネルギーを用いて回折格子を作製し
た。その結果、同様に周期的構造がガラス基板上に形成
できた。この薄膜の吸収係数は355nmにおける吸収
係数は58000cm−1であり、基板まで到達するエ
ネルギーは0.57J/cmと見積もられ、基板閾値
よりもはるかに低い値であった。この薄膜は非晶質であ
るが、主成分は実施例7で示したTiOと同一であ
る。本実施例では実施例7の膜よりも吸収係数が大きく
なっており、金超微粒子のような超微粒子を材料中に分
散する事により、吸収係数を調整することが可能である
ことを示している。
Example 9 A TiO 2 thin film in which gold colloid was dispersed in the film was formed on a soda lime glass by the sol-gel method. The main material in thin film fabrication is titanium tetrabutoxide (TT).
B), which is a 4-fold equimolar amount of acetylacetone (A
A) was mixed. This gently promotes hydrolysis of water, which is the main reaction of the sol-gel reaction, and helps form a good quality thin film. As a hydrolysis reaction liquid, NaAuCl 4
An aqueous solution in which was dissolved at a concentration of 0.16 mol / l was used. 12 ml of TTB and 12 of ethanol for dilution
ml, 4 ml of AA and 3 ml of NaAuCl4 aqueous solution were mixed, stirred and reacted for 30 minutes, and then coated on a glass substrate by the dip method. After the application, the film was heated in air at 400 ° C. for 15 minutes to evaporate the residual organic matter to form a strong film. At this time, ultrafine particles of gold were deposited and the thin film turned blue. This is due to the plasmon absorption of ultrafine gold particles in the TiO 2 film. Repeat coating and heat treatment 3 times, 34
A thin film with a thickness of 0 nm was obtained. A diffraction grating was produced from this thin film using the same optical system and irradiation energy as in Example 1. As a result, a periodic structure was similarly formed on the glass substrate. The absorption coefficient of this thin film was 58000 cm −1 at 355 nm, and the energy reaching the substrate was estimated to be 0.57 J / cm 2 , which was far lower than the substrate threshold. This thin film is amorphous, but the main component is the same as TiO 2 shown in Example 7. In this example, the absorption coefficient was larger than that of the film of Example 7, and it was shown that the absorption coefficient can be adjusted by dispersing ultrafine particles such as gold ultrafine particles in the material. There is.

【0033】(実施例10) ガラス薄膜を得る方法として、液相中でSiOを析出
させる方法がある。そのような方法として、A.Hishinum
a et al. Applied Surface Science 48/49 (1991) 405
に示されている、LPD法(Liquid Phase Depositio
n:液相成膜法)が知られている。LPD法を用いSiO
2中に有機色素の一つである、ローダミン6G(R6
G)を混合して、ソーダライムガラス基板上に成膜をし
た。薄膜の作製は以下のように行った。まず、珪フッ素
酸(H2SiF6)溶液にSiOガラスを入れ、飽和溶液
とする。このときの珪フッ素酸の濃度は2mol/lに
した。飽和後、この溶液にR6Gを約0.2mol/l
の濃度になるように混合した。そこでガラス基板を液中
にいれ、さらにアルミニウム片をいれた。アルミニウム
片は、SiOで飽和している珪フッ素酸の平衡を、Si
が析出する方向へ動かす働きがあり、ガラス基板上
にSiO薄膜を析出させる。このとき、色素が混合さ
れているため、色素もガラス薄膜中に導入された。得ら
れた薄膜は、赤色で、明らかにローダミン色素が膜中に
導入されたことがわかった。この薄膜を、実施例1と同
じ光学系と照射エネルギーを用いて回折格子を作製し
た。その結果、同様に周期的構造がガラス基板上に形成
できた。しかしながら、付着力が弱いせいか、一部は膜
が残らず、ガラス基板が露出する部分があった。この薄
膜の吸収係数は355nmにおける吸収係数は3850
0cm-1であり、基板まで到達するエネルギーは0.5
7J/cmと見積もられ、基板閾値よりもはるかに低
い値であった。
Example 10 As a method of obtaining a glass thin film, there is a method of precipitating SiO 2 in a liquid phase. As such a method, A.Hishinum
a et al. Applied Surface Science 48/49 (1991) 405
The LPD method (Liquid Phase Depositio
n: liquid phase film forming method) is known. SiO using LPD method
Rhodamine 6G (R6, which is one of the organic dyes in 2
G) was mixed and a film was formed on a soda lime glass substrate. The thin film was manufactured as follows. First, SiO 2 glass is put into a silicofluoric acid (H 2 SiF 6) solution to obtain a saturated solution. At this time, the concentration of silicofluoric acid was set to 2 mol / l. After saturation, this solution contains about 0.2 mol / l R6G
Were mixed so that the concentration became. Then, the glass substrate was put in the liquid, and then an aluminum piece was put. Aluminum pieces are used for the equilibration of silicofluoric acid saturated with SiO 2.
It has a function of moving in the direction in which O 2 is deposited, and deposits a SiO 2 thin film on the glass substrate. At this time, since the dye was mixed, the dye was also introduced into the glass thin film. The obtained thin film was red, which clearly showed that the rhodamine dye was introduced into the film. A diffraction grating was produced from this thin film using the same optical system and irradiation energy as in Example 1. As a result, a periodic structure was similarly formed on the glass substrate. However, probably because the adhesion is weak, the film did not remain in part, and there was a part where the glass substrate was exposed. The absorption coefficient of this thin film is 3850 at 355 nm.
0 cm-1 and the energy to reach the substrate is 0.5
It was estimated to be 7 J / cm 2 , which was much lower than the substrate threshold.

【0034】[0034]

【発明の効果】以上に説明したように本発明によれば、
ガラス基板等の基材に直接レーザ光を照射して加工する
のではなく、基材表面に基材よりもレーザ吸収性に優れ
た薄膜を形成し、この薄膜に対しレーザ光を照射して薄
膜を微細加工するようにしたので、干渉性に乏しいAr
とFを発光源とするエキシマレーザによらなくとも、N
d:YAGレーザ等の安価で使いやすい固体レーザで得
られ、しかもガラスに対する直接の加工には使用できな
いと考えられる1064nm、その高調波の532n
m、355nm、266nmの波長を用いることが可能
となる。
As described above, according to the present invention,
Rather than irradiating a substrate such as a glass substrate directly with laser light for processing, a thin film with better laser absorption than the substrate is formed on the surface of the substrate, and this thin film is irradiated with laser light to form a thin film. Since it is designed to be finely processed,
Even if an excimer laser using F and F as light emission sources is not used,
d: YAG laser or other solid-state laser that is cheap and easy to use, and is thought to be unusable for direct processing on glass, 1064 nm, and its harmonics of 532 n
It is possible to use wavelengths of m, 355 nm and 266 nm.

【0035】また、薄膜は無機材料を主体としたので、
耐環境性に優れた製品が得られ、更に、薄膜の厚さ若し
くはレーザ吸収係数を調整して基板に到達するエネルギ
ーが、基板の加工閾値よりも低くなるようにしたため、
薄膜部分のみを微細加工することができ、高精度の製品
を得ることができる。
Since the thin film is mainly made of an inorganic material,
A product with excellent environment resistance is obtained, and further, the energy reaching the substrate by adjusting the thickness of the thin film or the laser absorption coefficient is set to be lower than the processing threshold of the substrate.
Only the thin film portion can be finely processed, and a highly accurate product can be obtained.

【0036】また、薄膜に形成する凹凸の凹部にガラス
基材表面が露出するまでアブレーション等によって薄膜
部分を除去するようにすれば、回折型の光学素子の凹凸
の厚さを薄膜の厚さでコントロールすることができ、高
精度の光学素子を簡単な方法で得ることができる。
If the thin film portion is removed by ablation or the like until the surface of the glass substrate is exposed in the concave and convex portions formed on the thin film, the thickness of the unevenness of the diffractive optical element can be determined by the thickness of the thin film. It is controllable and high precision optical elements can be obtained in a simple way.

【図面の簡単な説明】[Brief description of drawings]

【図1】レーザ干渉を利用した本発明方法で回折格子を
製造する装置の概略図
FIG. 1 is a schematic view of an apparatus for manufacturing a diffraction grating by the method of the present invention utilizing laser interference.

【図2】(a)は微細加工後の薄膜表面の光学顕微鏡写
真(1000倍)、(b)は同写真に基づいて作成した
FIG. 2 (a) is an optical microscope photograph (× 1000) of the surface of a thin film after microfabrication, and FIG. 2 (b) is a drawing prepared based on the photograph.

【図3】(a)は微細加工後の薄膜表面の走査型顕微鏡
写真(3500倍)、(b)は同写真に基づいて作成し
た図
FIG. 3A is a scanning micrograph (3500 times) of the surface of a thin film after microfabrication, and FIG. 3B is a drawing prepared based on the photo.

【図4】フェイズマスク用いた本発明方法で回折格子を
製造する装置の概略図
FIG. 4 is a schematic view of an apparatus for manufacturing a diffraction grating by the method of the present invention using a phase mask.

【図5】(a)はフェイズマスクの作用を説明した図、
(b)は同フェイズマスクを介してガラス基板にレーザ
光を照射している状態を示す図、(c)はレーザ加工さ
れたガラス基板を示す図
FIG. 5 (a) is a diagram for explaining the operation of the phase mask,
(B) is a diagram showing a state where a glass substrate is irradiated with laser light through the same phase mask, and (c) is a diagram showing a laser-processed glass substrate.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−303916(JP,A) 特開 平8−57678(JP,A) Anna−Karin Holme r,Simultaneous mac hining of parallel grooves in SnO2 t hin films using a Nd:YAG laser and a kinoform,Applied Optics,1996年 5月20日,Vo l.35 No.15,p2614−2618 (58)調査した分野(Int.Cl.7,DB名) C03C 15/00 - 23/00 B23K 26/00 - 26/18 G02B 5/18 G02B 5/30 - 5/32 WPI JOIS─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-303916 (JP, A) JP-A-8-57678 (JP, A) Anna-Karin Holmer, Simultaneous machinning of parallel groove in SnO2 thin. films using a Nd: YAG laser and a kinoform, Applied Optics, May 20, 1996, Vol. 35 No. 15, p2614-2618 (58) Fields investigated (Int.Cl. 7 , DB name) C03C 15/00-23/00 B23K 26/00-26/18 G02B 5/18 G02B 5/30-5/32 WPI JOIS

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガラス基材の表面上にガラス基材よりも
レーザ吸収性に優れた薄膜を形成し、この薄膜に対し強
度分布を有するレーザ光を照射し、前記薄膜にレーザ光
のエネルギーを吸収させることで溶融・蒸発若しくはア
ブレーションを起こさせて前記薄膜をレーザ光の強度に
応じて除去するようにした回折型の光学素子の製造方法
であって、前記レーザ光はフェイズマスクを用いるかレ
ーザ光を干渉せしめることによって周期的な光強度分布
を有するレーザ光とされ、前記薄膜は無機材料を主体と
し、また薄膜の厚さまたはレーザ光の吸収係数を、薄膜
を透過してガラス基材表面に到達するレーザ光の強度が
ガラス基材に溶融・蒸発若しくはアブレーションを起こ
させる閾値以下になる値に設定したことを特徴とする回
折型の光学素子の製造方法。
1. A thin film, which is more excellent in laser absorption than a glass substrate, is formed on the surface of a glass substrate, and the thin film is irradiated with laser light having an intensity distribution to apply energy of the laser light to the thin film. A method of manufacturing a diffractive optical element, wherein the thin film is removed according to the intensity of laser light by causing melting / evaporation or ablation by absorption, and the laser light uses a phase mask or a laser. Laser light having a periodic light intensity distribution is obtained by causing light to interfere, and the thin film is mainly made of an inorganic material, and the thickness of the thin film or the absorption coefficient of laser light is transmitted through the thin film and the glass substrate surface Of a diffractive optical element characterized in that the intensity of the laser light reaching the laser beam is set to a value below a threshold for melting, vaporizing or ablating the glass substrate. Build method.
【請求項2】 請求項1に記載のガラス基材に対する回
折型の光学素子の製造方法において、前記レーザ光の吸
収係数を、酸素欠損などの量論比のずれを意図的に導入
する方法、欠陥を導入する方法、波長に対する吸収の高
いイオンをドープする方法、超微粒子を混合する方法、
顔料を混合する方法、または有機色素を混合する方法の
いずれかを適用することで増加させることを特徴とする
回折型の光学素子の製造方法。
2. The method for manufacturing a diffraction-type optical element for a glass substrate according to claim 1, wherein the absorption coefficient of the laser light is intentionally introduced with a deviation in stoichiometric ratio such as oxygen deficiency. A method of introducing defects, a method of doping ions having high absorption with respect to wavelength, a method of mixing ultrafine particles,
A method for producing a diffractive optical element, which comprises increasing the amount by applying either a method of mixing a pigment or a method of mixing an organic dye.
【請求項3】 請求項1または請求項2に記載の回折型
の光学素子の製造方法において、前記薄膜は、金属酸化
物、金属窒化物、金属炭化物、半導体、SiOを主体
とするガラス、フッ化物ガラスまたはカルコゲナイドガ
ラスの単層あるいはこれらの組み合わせで多層に積層さ
れたことを特徴とする回折型の光学素子の製造方法。
3. The method for manufacturing a diffractive optical element according to claim 1 or 2, wherein the thin film is a metal oxide, a metal nitride, a metal carbide, a semiconductor, or a glass containing SiO 2 as a main component. A method of manufacturing a diffractive optical element, characterized in that a single layer of fluoride glass or chalcogenide glass or a combination thereof is laminated in multiple layers.
JP21339196A 1996-08-13 1996-08-13 Manufacturing method of diffractive optical element Expired - Fee Related JP3452733B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP21339196A JP3452733B2 (en) 1996-08-13 1996-08-13 Manufacturing method of diffractive optical element
US09/284,269 US6291797B1 (en) 1996-08-13 1997-08-11 Laser machining method for glass substrate, diffraction type optical device fabricated by the machining method, and method of manufacturing optical device
PCT/JP1997/002806 WO1998006676A1 (en) 1996-08-13 1997-08-11 LASER MACHINING METHOD FOR GlASS SUBSTRATE, DIFFRACTION TYPE OPTICAL DEVICE FABRICATED BY THE MACHINING METHOD, AND METHOD OF MANUFACTURING OPTICAL DEVICE
EP97934765A EP0959051A4 (en) 1996-08-13 1997-08-11 Laser machining method for glass substrate, diffraction type optical device fabricated by the machining method, and method of manufacturing optical device
US09/898,239 US6645603B2 (en) 1996-08-13 2001-07-03 Laser processing method to a glass substrate and an optical diffraction element obtained thereby, and a method for manufacturing optical elements
US10/622,517 US6924457B2 (en) 1996-08-13 2003-07-18 Laser processing method to a class substrate and an optical diffraction element obtained thereby, and a method for manufacturing optical elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21339196A JP3452733B2 (en) 1996-08-13 1996-08-13 Manufacturing method of diffractive optical element

Publications (2)

Publication Number Publication Date
JPH1059743A JPH1059743A (en) 1998-03-03
JP3452733B2 true JP3452733B2 (en) 2003-09-29

Family

ID=16638434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21339196A Expired - Fee Related JP3452733B2 (en) 1996-08-13 1996-08-13 Manufacturing method of diffractive optical element

Country Status (1)

Country Link
JP (1) JP3452733B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6704335B1 (en) 1998-12-17 2004-03-09 Seiko Epson Corporation Light-emitting device
JP2000277260A (en) 1999-03-23 2000-10-06 Seiko Epson Corp Light emitting device
DE60041532D1 (en) 1999-06-10 2009-03-26 Seiko Epson Corp LIGHT EMITTING DEVICE
JP2001059923A (en) 1999-06-16 2001-03-06 Seiko Epson Corp Optical module, production thereof, semiconductor device and light transmission device
JP2001244066A (en) 2000-03-01 2001-09-07 Seiko Epson Corp Light emitting device
JP2002008868A (en) 2000-06-16 2002-01-11 Seiko Epson Corp Surface light emitting device
JP2002056989A (en) 2000-08-11 2002-02-22 Seiko Epson Corp Light-emission device
US6512249B2 (en) 2001-02-26 2003-01-28 Seiko Epson Corporation Light emitting device, display device, and electronic appliance
KR100978367B1 (en) * 2003-09-09 2010-08-26 엘지디스플레이 주식회사 A Method for Manufacturing of Embossing Pattern
DE102004015142B3 (en) * 2004-03-27 2005-12-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing optical components

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Anna−Karin Holmer,Simultaneous machining of parallel grooves in SnO2 thin films using a Nd:YAG laser and a kinoform,Applied Optics,1996年 5月20日,Vol.35 No.15,p2614−2618

Also Published As

Publication number Publication date
JPH1059743A (en) 1998-03-03

Similar Documents

Publication Publication Date Title
US6291797B1 (en) Laser machining method for glass substrate, diffraction type optical device fabricated by the machining method, and method of manufacturing optical device
EP1016634B1 (en) A laser processing method for a glass substrate, and a microlens array obtained thereby
US5910256A (en) Method for manufacturing a diffraction type optical element
Hülsenberg et al. Microstructuring glasses using lasers
JP3649835B2 (en) Optical waveguide fabrication method
JP5426657B2 (en) Thin layer deposition method
TWI424479B (en) Method for patterning crystalline indium tin oxide by using femtosecond laser
JP3452733B2 (en) Manufacturing method of diffractive optical element
US20110252834A1 (en) Wave plate and its manufacturing method
US5587822A (en) Liquid crystal orientation control layer method and apparatus for manufacturing the same and mask for use in the manufacturing
JP2008203553A (en) Manufacturing method of fine structure
JP3960643B2 (en) Optical element manufacturing method
JP3426154B2 (en) Manufacturing method of optical waveguide with grating
JP3657164B2 (en) Non-metallic particle precipitated glass and method for producing the same
JP3871562B2 (en) Transparent conductive film having optical element function and method for producing the same
EP2000558B1 (en) Method and apparatus for manufacturing purely refractive optical structures
JP3600207B2 (en) Method for selectively etching metal oxide film, metal oxide film selectively etched by the method, optical element, and conductive film
JP3797702B2 (en) Laser processing method for glass substrate, diffraction grating obtained by this method, and microlens array
JP2832337B2 (en) Manufacturing method of diffraction grating
JP3797703B2 (en) Laser processing method for glass substrate
JP2006278274A (en) Compound oxide thin film, its manufacturing method, and optical element
CN117381146B (en) Laser processing method based on chalcogenide material and integrated photon device
JPH0812302B2 (en) Method for producing titanium oxide thin film
JP3838700B2 (en) Laser processing method for glass substrate
JPS6184015A (en) Making of layer having various kinds of light transmitting part

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees