JP3983440B2 - Cooling method of activated carbon layer in solvent recovery - Google Patents

Cooling method of activated carbon layer in solvent recovery Download PDF

Info

Publication number
JP3983440B2
JP3983440B2 JP35213499A JP35213499A JP3983440B2 JP 3983440 B2 JP3983440 B2 JP 3983440B2 JP 35213499 A JP35213499 A JP 35213499A JP 35213499 A JP35213499 A JP 35213499A JP 3983440 B2 JP3983440 B2 JP 3983440B2
Authority
JP
Japan
Prior art keywords
activated carbon
adsorption
carbon layer
cooling
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35213499A
Other languages
Japanese (ja)
Other versions
JP2001129350A (en
Inventor
太起夫 安達
秀次郎 石田
篤徳 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kankyo Engineering Ltd
Original Assignee
Tsukishima Kankyo Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kankyo Engineering Ltd filed Critical Tsukishima Kankyo Engineering Ltd
Priority to JP35213499A priority Critical patent/JP3983440B2/en
Publication of JP2001129350A publication Critical patent/JP2001129350A/en
Application granted granted Critical
Publication of JP3983440B2 publication Critical patent/JP3983440B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、活性炭に吸着した有機溶剤を水蒸気により脱着する溶剤回収方法に係わるものである。有機溶剤を使用する業界において、活性炭吸着を用いて有機溶剤を回収し、排出ガスの浄化に利用することができる。
【0002】
【従来の技術】
各種プラスチック製品、合成繊維、半導体の製造工程や磁気テープ工業等の各種操作に伴って発生する排ガス中に含まれる有機溶剤を回収する活性炭吸着法において、活性炭を充填した2基あるいはそれ以上の吸着槽を並列的に設け、吸着と脱着を交互に繰り返す固定床式溶剤回収装置、あるいは塔頂より活性炭を連続的に降下させて塔底より送り込まれる原ガスによりこの活性炭を流動させつつ溶剤の吸着を行わせ、塔下段で得られる吸着済の活性炭を別途設けられた脱着器において脱着を行わせる流動層式溶剤回収装置が公知である。これらの装置の吸着工程は大気圧下で行われ、脱着工程は水蒸気を使用して大気圧または減圧下で行われることが多い。
【0003】
これらの従来方法のうち、大気圧脱着を行う2固定床式吸着装置を図4により説明する。図4において有機溶剤を含む原ガス1は、ブロワー2により吸着槽3−1または3−2のいずれか一方に送り込まれ、原ガス中の溶剤が固定床を形成する活性炭層4−1または4−2に吸着され、浄化された排ガスは大氣に放出される。例えば吸着槽3−1において吸着操作が行われているとすると、他方の吸着槽3−2は吸着を終了し、切替弁によって吸着から脱着に切替えられ、水蒸気Sが吹き込まれて吸着されていた溶剤は脱着されて水蒸気と共にガス状で排出される。この混合蒸気(脱着蒸気)は凝縮冷却器5に導かれ冷却によって全量凝縮される。この凝縮液の水と回収溶剤が相互に不溶の場合は、デカンター9において比重差により溶剤相と水相に分離し、水は排出し溶剤は回収する。また、両者が相互に一部または全部が溶け合う場合には、適宜蒸留塔(図示せず)へ送られ、水と溶剤の分離が行われる。
【0004】
この方式では、脱着工程から吸着工程に切替えられた直後には吸着槽内は水蒸気で満たされており、また、槽内温度は脱着蒸気温度(一般に100℃程度)にあり、吹き込まれる原ガス(一般に20乃至40℃前後)によって空筒部の水蒸気が排出されると共に、脱着操作時に吸着した水分の蒸発および原ガスへの顕熱移動により活性炭層が原ガス温度または原ガス中の吸着成分との熱的な平衡温度まで冷却される。
このため、特公昭53−22541号公報や特公昭56−29574号公報では、脱着工程から吸着工程に切り替えられた際に、脱着工程終了時の吸着槽内に残存している溶剤が系外へ排出されて、瞬間的に溶剤濃度が上がり大きな値を示す、いわゆる吹き抜けの事態を回避するために、前記の残存溶剤を含む気体を原ガスと混入させて処理する還流回路を設けて対処している。
【0005】
前述のように活性炭を充填し活性炭層を設けた吸着槽は、吸着温度と脱着温度の間で加熱冷却が繰り返されるわけであるが、その熱移動は原ガスの顕熱、溶剤の吸・脱着熱、水蒸気の吸・脱着熱により行われ、この中で熱的に支配的な因子としては水蒸気の吸・脱着熱である。
また、物質の吸着特性としては、温度が高いほど吸着性が悪くなることが知られている。
従来の活性炭を用いる溶剤回収で、冷却工程を設けないケースでは、水蒸気による脱着工程から吸着工程に切替えられた初期には、活性炭層の温度が高く、水蒸気の蒸発による活性炭層の冷却が活発に行われる。このことにより吸着開始時には吸着剤の吸着能力が十分発揮されず、原ガス中の溶剤が吸着槽を通過し排気ガス中に検出されたり、排気口において多量の水蒸気白煙が発生する原因となっている。このような活性炭吸着装置からの白煙防止および吸着再開初期の溶剤の吹き抜けを防止するために、特公昭63−24734号公報では、脱着工程終了後の吸着槽内にキャリアーガスを導入して、吸着槽内の蒸気を凝縮冷却器を通して排気するように構成した溶剤回収装置が提案されている。
【0006】
さらには、吸着開始初期には活性炭層の冷却および水分の脱着(蒸発)が原ガスの入り口側から起こるため、活性炭層内の水分吸着量に分布差が生じ、塩化メチレン、トルエン等その吸着性能が共存する水分に大きく影響を受けるような成分の場合には、過大な能力低下が発現するおそれがあった。
【0007】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決するためになされたもので、その目的とするところは、脱着工程から吸着工程に移る際に発生する水蒸気白煙を低減すると共に、吸着工程初期の溶剤の吹き抜けを防止しようとするところにある。さらには、簡便な操作により、活性炭層内の冷却を均一化して、吸着能を効果的に回復・発現させるように意図したものである。
【0008】
【課題を解決するための手段】
本発明は、活性炭を充填してある活性炭層を設けた吸着槽を用いて、原ガス中の有機溶剤を吸着させる吸着工程と前記吸着槽に大気圧下に水蒸気を導入し活性炭に吸着された有機溶剤を脱着する脱着工程を交互に繰り返す溶剤回収方法において、脱着工程終了後の吸着槽内を直ちに減圧状態にして活性炭層を冷却した後に、原ガスを導入して吸着工程を再開させることを特徴とする溶剤回収における活性炭層の冷却方法である。上記の活性炭層の冷却方法では、吸着槽内の圧力を0.2atm以下とすることが望ましい。
【0009】
【発明の実施の形態】
本発明者らは、前記の目的を達成するため、脱着工程から吸着工程に移行する際の吸着槽内の物質移動および熱挙動について研究した結果、水蒸気脱着を利用した溶剤回収設備での熱の授受の大半は、水蒸気あるいは水分の吸・脱着熱であり、吸着工程初期の溶剤の吹き抜けは、活性炭層がいまだ十分に冷却されず吸着水分量が多い状態で溶剤を含んだガスが供給されること、吸着工程初期に発生する多量の水蒸気白煙は、吸着槽内の空筒部の水蒸気もさることながら脱着操作時に吸着した水分が活性炭から吸着熱を奪いながら脱着し活性炭層の温度を冷却する結果として排ガス中の水蒸気分圧が上昇し、排出口付近で外気により冷却され白煙となることを見出した。
【0010】
単にこのことのみを解決するのであるならば、前述した特公昭63−24734号公報のごとくキャリアーガスとして空気あるいは窒素等の非凝縮性ガスを吸着槽に供給し、いわゆる空冷あるいは冷却工程を設け、排出する水蒸気および非凝縮ガスを含んだ排気ガスを冷却すれば実現可能である。
しかしながら、この場合には、排気ガスに非凝縮性ガスを含有しているため、冷却により発生する水蒸気ミストが細かく分離が不充分であること、活性炭層に溶剤が残留していた場合にはその一部が脱着し排出ガスに同伴してくるので、冷却のみでは十分な除去が困難な場合があること、活性炭層の冷却がガスの通過で行われるため十分な処理時間を設けないと層内の吸着水分に分布差ができ吸着が共存水分の影響を受けやすい物質の処理には好ましくないこと、活性炭層から奪う熱の一部が供給ガス温度の上昇に使用され、活性炭層が保有している熱の全てを吸着水分の脱着に利用できないこと等の問題があった。
【0011】
このため、前記の問題を克服するための方法を検討し、本発明を完成した。
すなわち、本発明は水蒸気脱着を終了した吸着槽内を真空発生機等を用いて直ちに減圧にし、空間部の水蒸気を吸引すると共に活性炭層に吸着していた水分を層内からほぼ均一に脱着し、かつ水分の吸着熱を脱着水分ガスに奪うことにより活性炭層を均一に冷却し、好ましい活性炭層温度にすると共に、排気口における水蒸気白煙を効果的に防止するようにしたものである。
また、吸着槽内を減圧にするための真空発生機等の能力を軽減するため、この減圧冷却の後に、空気あるいは窒素などの非凝縮性ガスを用いる冷却工程を併用してもよい。
【0012】
吸着槽内の減圧の程度は目的の冷却温度によるが、水の活性炭への吸着熱がほぼ2440kJ/kgと水の蒸発潜熱とほぼ同様であり、また、吸着平衡は相対湿度に依存しているので活性炭層の温度は水の蒸気圧で与えられる温度のごく近傍で平衡する。従って目的操作温度に応じて減圧すればよいが、加熱程度にもよるが常圧蒸気脱着の場合、蒸気温度は100℃ないしその若干上の温度であるからそれよりかなり低くなるように設定し、60℃以下とすることが望ましいので、吸着槽内の圧力を0.2atm以下とすることが望ましい。
また、冷却すべき活性炭層の温度の下限は、本質的には存在しないと考えられるが、設備的、経済的には、通常の原ガス温度である20〜40℃程度と考えればよいから、下限の圧力としては0.02atm程度である。
【0013】
さらに、吸着槽内を減圧にするため真空発生機等の能力を低減するため、この減圧工程の後に、空気あるいは窒素等のガスを通過させ冷却することも有効である。例えば、吸着槽内を0.197atmに減圧し、活性炭層温度を約60℃として、大半の蒸気を排出して冷却し、その後空気を導入し活性炭層の温度を30〜40℃まで冷却してから吸着工程に切替える。これにより必要な真空度は0.197atmであり、減圧操作のみで活性炭層温度を30〜40℃にするための減圧程度が0.042〜0.073atmであることに比べ、前記のように減圧操作とその後の空気あるいは窒素等のガスの通過を併用することで減圧度すなわち真空圧力を緩和することができる。
ただし、この場合には、活性炭層を冷却するために供給するガスが、非凝縮ガスであるので、その後の凝縮系の能力を十分にすることが望ましい。
【0014】
次に本発明の実施態様を図面によって説明する。
図1は、本発明の内容を示す流れ図である。図1において、吸着槽3−1は脱着工程を終了した直後にあり、吸着槽3−2は吸着工程にあるとする。尚、この吸着設備では脱着工程と減圧工程の所要時間の和が吸着工程の所要時間に等しくなるように設定されている。
このとき吸着槽3−1は水蒸気で充満しており、常圧脱着の場合、ほぼ大気圧下にある。
このような状態にある吸着槽3−1内のガスを、真空ポンプ6により凝縮冷却器5のベントパイプを通して吸引し、吸着槽3−1内の圧力を所定圧力まで減圧する。吸着槽内を減圧にすることで、吸着槽内に充満していた水蒸気の大半と、脱着操作中に活性炭に吸着した水分が所定圧力に相当する吸着量まで脱着し、また、脱着による吸着熱の放出により活性炭の温度が水蒸気分圧に平衡する温度まで低下する。
使用する真空ポンプは、吸引するガスがほとんど凝縮性ガスであるので凝縮冷却器後流に設置することで小容量能力のものでよい。吸着槽内温度の低下は吸着槽内圧力の低下に追従し、目的が活性炭層の冷却であるので所定温度まで達すればよく、保持時間を長くする必要はない。減圧工程の時間としては、真空ポンプの能力にもよるが、5〜20分程度で十分である。減圧による吸着水の脱着を利用して活性炭層の温度を下げるため、活性炭層の温度は均一に低下することになる。
この後、吸着槽3−1は原ガスが導入されて吸着工程に移り、同時に吸着槽3−2は水蒸気吹き込みによる脱着工程に移行する。吸着槽3−1が減圧工程により十分冷却された後に吸着工程に移るので、吸着ガス中の溶剤が吸着されずに排気ガス中に放出されるようなことは生じない。
【0015】
【実施例】
直径40mmのカラムに活性炭を500mmの高さに充填した実験装置を用いて、水蒸気脱着を想定した100℃の常圧水蒸気を十分通過させ所定温度になった後、従来法である空気流通(30℃)による冷却を行った場合と、本発明の減圧(0.042atm)による冷却を行った場合の活性炭層の温度変化を測定し、結果を図2に示した。尚、このときの温度測定は、活性炭層下底表面から50mm(層下段)、活性炭層下底表面から250mm(層中段)、活性炭層下底表面から450mm(層上段)に設置した熱電対により行った。
比較例の従来法による結果を示す図2bに見られるように、空冷の場合、空気の入口側となる層下段(◆マーク)では、急速に温度が低下するが、空気の出口側となる層上段(▲マーク)では低下が穏やかであり、全体を入口温度程度までに冷却するには長時間を要することが判る。一方、本発明の減圧冷却による場合(図2a)は、全体が数分以内に均一に温度が低下した。さらに、これらの活性炭層の温度変化からは、本発明では急速かつ均一に温度が下がるが、従来の空冷の場合には、活性炭層内での残留水分が部位により相違することが認められ、吸着操作に変えた際に悪影響を及ぼすおそれがある。
【0016】
次に図1に基づく吸着設備により、塩化メチレン、エタノール溶剤含有ガスから溶剤の回収を行った。各工程の時間は、吸着工程90分、水蒸気による脱着工程75分、減圧冷却工程15分である。減圧冷却工程では原ガス温度35℃に相当する0.056atmまで減圧した。この繰返し操作における吸着操作時の排気ガス中の有機物総濃度を炭化水素計(THC計)を用いて測定し、従来の方法である減圧冷却工程を使用しない方法と比較して図3に示した。従来法の場合には、吸着工程への切替え直後に排気ガス中に吸着成分溶剤が200〜500ppm程度検出されたが、本発明の場合には検知下限以下となった。また、従来吸着工程初期の排気口で発生していた多量の白煙も見られなかった。
【0017】
【発明の効果】
本発明によれば、吸着工程への切替え初期における溶剤の吹き抜けがなくなり、このときの排気口における多量の水蒸気白煙の発生を防止できる。
単に吸着槽の冷却のみが目的であるならば減圧を用いずに、常温で空気等を通過させる方法でも可能であるが、供給ガスがキャリアーとしての効果を持ち、冷却初期のまだ活性炭層の温度が高いときに炭層の残留溶剤を脱着輸送する可能性があり、また、このガスは非凝縮ガスを含んでいるため十分な冷却を行わない限り水蒸気による白煙の防止は困難である。さらにもしも溶剤成分を含有していた場合には、溶剤は必ずガス分圧を持つので完全な除去回収は困難である。本発明の減圧冷却方式によれば発生するガス(蒸気)は凝縮性であるので容易にこれらを除くことができる。
さらに、回収の目的とする溶剤が、塩化メチレンのようにその吸着特性が共存水分に大きく影響を受ける場合には、活性炭層の残留水分のコントロールが吸着性能維持に重要であり、本発明の減圧冷却によれば脱着操作時に吸着した水分の均一な脱着が可能となる。
また、減圧に用いる真空発生機負荷の低減のために減圧操作と共に空冷等の操作を併用することは可能であり、この場合には減圧操作後に空冷操作を行う方が好ましく、吸着槽内の大半の水蒸気を減圧により抜き出し、その後常温の空気等の非凝縮性ガスによりさらに適切な温度まで冷却する。効果としては、減圧冷却単独により目的温度まで冷却する場合より若干劣るが、設備費、運転経費等勘案して選択できる。
【図面の簡単な説明】
【図1】本発明による減圧冷却操作方式の溶剤回収フロー図
【図2】a 本発明の減圧冷却による活性炭層内の温度変化を測定した結果の一例
b 比較例の空冷による活性炭層内の温度変化を測定した結果の一例
【図3】本発明法および従来法による吸着操作時の排ガス中の炭化水素濃度
【図4】従来法による溶剤回収設備フロー図である
【符号の説明】
1 原ガス
2 ガスブロワー
3−1,3−2 吸着層
4−1,4−2 活性炭層
5 凝縮冷却器
6 真空ポンプ
7 中継層
8 送液ポンプ
9 デカンター
S 水蒸気(スチーム)
W 冷却水
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solvent recovery method in which an organic solvent adsorbed on activated carbon is desorbed with water vapor. In the industry using an organic solvent, the organic solvent can be recovered using activated carbon adsorption and used for purification of exhaust gas.
[0002]
[Prior art]
Two or more adsorptions filled with activated carbon in the activated carbon adsorption method that recovers organic solvent contained in exhaust gas generated by various operations in various plastic products, synthetic fibers, semiconductor manufacturing processes, magnetic tape industries, etc. Adsorbing the solvent while fluidizing this activated carbon by the fixed bed type solvent recovery device that installs tanks in parallel and repeats adsorption and desorption alternately, or the raw gas sent from the tower bottom by continuously lowering the activated carbon from the tower top A fluidized bed type solvent recovery apparatus is known in which desorption is performed in a desorber separately provided with adsorbed activated carbon obtained in the lower column of the tower. The adsorption process of these apparatuses is performed under atmospheric pressure, and the desorption process is often performed under atmospheric pressure or reduced pressure using water vapor.
[0003]
Among these conventional methods, a two- tank fixed-bed type adsorption apparatus that performs atmospheric pressure desorption will be described with reference to FIG. In FIG. 4, the raw gas 1 containing an organic solvent is fed into either the adsorption tank 3-1 or 3-2 by the blower 2, and the activated carbon layer 4-1 or 4 in which the solvent in the raw gas forms a fixed bed. The exhaust gas adsorbed and purified by -2 is released to Daegu. For example, if the adsorption operation is being performed in the adsorption tank 3-1, the other adsorption tank 3-2 has finished adsorbing, switched from adsorption to desorption by the switching valve, and steam S was blown in and adsorbed. The solvent is desorbed and discharged in gaseous form along with water vapor. This mixed vapor (desorbed vapor) is led to the condensation cooler 5 where it is fully condensed by cooling. When the water of the condensate and the recovered solvent are insoluble in each other, the decanter 9 separates into a solvent phase and an aqueous phase due to the specific gravity difference, and the water is discharged and the solvent is recovered. Moreover, when both part mutually melt | dissolves mutually, it sends to a distillation tower (not shown) suitably, and separation of water and a solvent is performed.
[0004]
In this system, immediately after switching from the desorption process to the adsorption process, the inside of the adsorption tank is filled with water vapor, and the temperature in the tank is at the desorption vapor temperature (generally about 100 ° C.). (Generally around 20 to 40 ° C.), the water vapor in the cylinder is discharged, and the activated carbon layer is separated from the raw gas temperature or the adsorbed component in the raw gas by evaporation of moisture adsorbed during the desorption operation and sensible heat transfer to the raw gas. To a thermal equilibrium temperature of
For this reason, in Japanese Examined Patent Publication Nos. 53-22541 and 56-29574, when the desorption process is switched to the adsorption process, the solvent remaining in the adsorption tank at the end of the desorption process is removed from the system. In order to avoid the so-called blow-through situation where the solvent concentration increases instantaneously and shows a large value, a reflux circuit is provided to treat the gas containing the residual solvent mixed with the raw gas. Yes.
[0005]
The adsorption tank filled with activated carbon and provided with the activated carbon layer as described above is repeatedly heated and cooled between the adsorption temperature and the desorption temperature, but the heat transfer is the sensible heat of the raw gas, the adsorption / desorption of the solvent. Heat / water vapor absorption / desorption heat is performed, and a thermal dominant factor is water vapor absorption / desorption heat.
In addition, it is known that the adsorptivity of a substance deteriorates as the temperature increases.
In the case of a conventional solvent recovery using activated carbon and no cooling process, the activated carbon layer is hot at the initial stage of switching from the desorption process with water vapor to the adsorption process, and the activated carbon layer is actively cooled by evaporation of water vapor. Done. As a result, the adsorption capacity of the adsorbent is not fully demonstrated at the start of adsorption, causing the solvent in the raw gas to pass through the adsorption tank and be detected in the exhaust gas, or to generate a large amount of steam white smoke at the exhaust port. ing. In order to prevent white smoke from such an activated carbon adsorption device and prevent the solvent from blowing through at the beginning of adsorption, Japanese Patent Publication No. 63-24734 introduces a carrier gas into the adsorption tank after completion of the desorption process, There has been proposed a solvent recovery device configured to exhaust the vapor in the adsorption tank through a condenser cooler.
[0006]
Furthermore, at the beginning of adsorption, the activated carbon layer is cooled and the desorption (evaporation) of moisture occurs from the inlet side of the raw gas, resulting in a distribution difference in the amount of moisture adsorption in the activated carbon layer, and its adsorption performance such as methylene chloride and toluene. In the case of a component that is greatly affected by the water that coexists, there is a possibility that an excessive decrease in performance may occur.
[0007]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-mentioned problems. The object of the present invention is to reduce water vapor generated when moving from the desorption process to the adsorption process, and to reduce the amount of solvent in the initial stage of the adsorption process. There is a place to try to prevent the blow-through. Furthermore, it is intended to make the cooling in the activated carbon layer uniform by a simple operation and to effectively recover and develop the adsorption capacity.
[0008]
[Means for Solving the Problems]
In the present invention, an adsorption tank provided with an activated carbon layer filled with activated carbon is used to adsorb an organic solvent in the raw gas, and water is introduced into the adsorption tank under atmospheric pressure to be adsorbed on the activated carbon. In the solvent recovery method in which the desorption process for desorbing the organic solvent is repeated alternately, after the desorption process is completed, the adsorption tank is immediately depressurized to cool the activated carbon layer, and then the raw gas is introduced to restart the adsorption process. It is the cooling method of the activated carbon layer in the solvent recovery characterized. In the above-described cooling method of the activated carbon layer, it is desirable that the pressure in the adsorption tank is 0.2 atm or less.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In order to achieve the above object, the present inventors have studied the mass transfer and thermal behavior in the adsorption tank when shifting from the desorption process to the adsorption process. Most of the exchange is heat of absorption or desorption of water vapor or moisture, and solvent blow-off at the beginning of the adsorption process is supplied with a gas containing solvent in a state where the activated carbon layer is not yet sufficiently cooled and the amount of adsorbed moisture is large. In addition, the large amount of steam white smoke generated at the beginning of the adsorption process desorbs the moisture adsorbed during the desorption operation while taking away the heat of adsorption from the activated carbon while cooling the temperature of the activated carbon layer. As a result, it was found that the partial pressure of water vapor in the exhaust gas rises and is cooled by the outside air near the discharge port to become white smoke.
[0010]
If only this is solved, a non-condensable gas such as air or nitrogen is supplied to the adsorption tank as a carrier gas as described in Japanese Patent Publication No. 63-24734, and a so-called air cooling or cooling step is provided. This can be realized by cooling the exhaust gas containing the water vapor and non-condensable gas to be discharged.
However, in this case, since the exhaust gas contains non-condensable gas, the water vapor mist generated by cooling is fine and insufficiently separated, and if the solvent remains in the activated carbon layer, Since some parts are desorbed and entrained in the exhaust gas, there may be cases where it is difficult to remove them by cooling alone. The adsorption moisture is unfavorable for the treatment of substances that have a distribution difference and the adsorption is sensitive to coexisting moisture, and part of the heat deprived from the activated carbon layer is used to raise the supply gas temperature, There was a problem that all of the heat that was used could not be used for desorption of adsorbed moisture.
[0011]
For this reason, a method for overcoming the above-mentioned problems was studied and the present invention was completed.
That is, the present invention immediately reduces the pressure in the adsorption tank after the desorption of water vapor using a vacuum generator or the like, sucks the water vapor in the space, and desorbs the moisture adsorbed on the activated carbon layer almost uniformly from within the layer. In addition, the activated carbon layer is uniformly cooled by taking the heat of adsorption of moisture into the desorbed moisture gas so as to obtain a preferable activated carbon layer temperature, and also effectively prevents white smoke from the exhaust port.
Further, in order to reduce the capacity of a vacuum generator or the like for reducing the pressure in the adsorption tank, a cooling step using a non-condensable gas such as air or nitrogen may be used in combination after the vacuum cooling.
[0012]
The degree of depressurization in the adsorption tank depends on the target cooling temperature, but the heat of adsorption of water on activated carbon is approximately 2440 kJ / kg, which is almost the same as the latent heat of vaporization of water, and the adsorption equilibrium depends on the relative humidity. Thus, the temperature of the activated carbon layer equilibrates very close to the temperature given by the vapor pressure of water. Therefore, the pressure should be reduced according to the target operating temperature, but depending on the degree of heating, in the case of atmospheric vapor desorption, the vapor temperature is set to 100 ° C. or slightly above it, so that it is considerably lower than that, Since it is desirable to make it 60 degrees C or less, it is desirable that the pressure in an adsorption tank shall be 0.2 atm or less.
Moreover, although it is thought that the lower limit of the temperature of the activated carbon layer to be cooled is essentially not present, in terms of facilities and economy, it may be considered that the normal raw gas temperature is about 20 to 40 ° C. The lower limit pressure is about 0.02 atm.
[0013]
Further, in order to reduce the capacity of the vacuum generator or the like in order to reduce the pressure in the adsorption tank, it is also effective to pass air or a gas such as nitrogen after this pressure reducing step to cool it. For example, the inside of the adsorption tank is depressurized to 0.197 atm, the activated carbon layer temperature is about 60 ° C., most of the steam is discharged and cooled, and then air is introduced to cool the activated carbon layer temperature to 30-40 ° C. To the adsorption process. As a result, the required degree of vacuum is 0.197 atm. Compared with the fact that the degree of pressure reduction for bringing the activated carbon layer temperature to 30 to 40 ° C. only by the pressure reducing operation is 0.042 to 0.073 atm, the pressure reduction is as described above. By using the operation and the subsequent passage of gas such as air or nitrogen, the degree of vacuum, that is, the vacuum pressure can be reduced.
However, in this case, since the gas supplied to cool the activated carbon layer is a non-condensable gas, it is desirable to make the capacity of the subsequent condensing system sufficient.
[0014]
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a flowchart showing the contents of the present invention. In FIG. 1, it is assumed that the adsorption tank 3-1 is immediately after finishing the desorption process, and the adsorption tank 3-2 is in the adsorption process. In this adsorption equipment, the sum of the time required for the desorption process and the pressure reduction process is set to be equal to the time required for the adsorption process.
At this time, the adsorption tank 3-1 is filled with water vapor, and in the case of atmospheric pressure desorption, it is almost at atmospheric pressure.
The gas in the adsorption tank 3-1 in such a state is sucked through the vent pipe of the condensation cooler 5 by the vacuum pump 6, and the pressure in the adsorption tank 3-1 is reduced to a predetermined pressure. By reducing the pressure in the adsorption tank, most of the water vapor filled in the adsorption tank and the moisture adsorbed on the activated carbon during the desorption operation are desorbed to an adsorption amount corresponding to the specified pressure. The temperature of the activated carbon decreases to a temperature at which the partial pressure of water vapor equilibrates with the partial pressure of water vapor.
Since the vacuum pump to be used is almost a condensable gas, it may be of a small capacity by being installed downstream of the condenser cooler. The decrease in the temperature in the adsorption tank follows the decrease in the pressure in the adsorption tank, and since the purpose is cooling the activated carbon layer, it is sufficient to reach a predetermined temperature, and it is not necessary to lengthen the holding time. The time for the decompression step is approximately 5 to 20 minutes, although it depends on the capacity of the vacuum pump. Since the temperature of the activated carbon layer is lowered by utilizing desorption of adsorbed water due to reduced pressure, the temperature of the activated carbon layer is uniformly reduced.
Thereafter, the raw gas is introduced into the adsorption tank 3-1, and the process proceeds to the adsorption process. At the same time, the adsorption tank 3-2 proceeds to the desorption process by blowing water vapor. Since the adsorption tank 3-1 is sufficiently cooled by the decompression process and then moves to the adsorption process, the solvent in the adsorption gas is not adsorbed and is not released into the exhaust gas.
[0015]
【Example】
Using an experimental device in which activated carbon is packed in a column with a diameter of 40 mm at a height of 500 mm, normal pressure water vapor at 100 ° C. assuming water vapor desorption is sufficiently passed to reach a predetermined temperature. The change in the temperature of the activated carbon layer was measured when cooling was performed at a temperature of [° C.] and when cooling was performed according to the reduced pressure (0.042 atm) of the present invention, and the results are shown in FIG. In addition, the temperature measurement at this time is 50 mm (lower layer) from the bottom surface of the activated carbon layer, 250 mm (middle layer) from the bottom surface of the activated carbon layer, and 450 mm (upper layer) from the bottom surface of the activated carbon layer. went.
As shown in FIG. 2b, which shows the result of the conventional method of the comparative example, in the case of air cooling, in the lower layer (♦ mark) on the air inlet side, the temperature rapidly decreases, but the layer on the air outlet side It can be seen that in the upper stage (▲ mark), the decrease is gentle, and it takes a long time to cool the whole to the inlet temperature. On the other hand, in the case of the reduced pressure cooling of the present invention (FIG. 2a), the temperature was uniformly lowered within a few minutes. Furthermore, from the temperature change of these activated carbon layers, the temperature drops rapidly and uniformly in the present invention, but in the case of conventional air cooling, it is recognized that the residual moisture in the activated carbon layer varies depending on the site, and the adsorption There is a risk of adverse effects when changing to operation.
[0016]
Next, the solvent was recovered from the methylene chloride and ethanol solvent-containing gas using the adsorption facility based on FIG. The time for each process is 90 minutes for the adsorption process, 75 minutes for the desorption process using water vapor, and 15 minutes for the vacuum cooling process. In the reduced pressure cooling process, the pressure was reduced to 0.056 atm corresponding to the raw gas temperature of 35 ° C. The total organic substance concentration in the exhaust gas during the adsorption operation in this repetitive operation was measured using a hydrocarbon meter (THC meter), and is shown in FIG. 3 in comparison with a conventional method that does not use a vacuum cooling step. . In the case of the conventional method, about 200 to 500 ppm of the adsorbed component solvent was detected in the exhaust gas immediately after switching to the adsorption step, but in the case of the present invention, it was below the detection lower limit. In addition, a large amount of white smoke that had been generated at the exhaust port at the beginning of the adsorption process was not observed.
[0017]
【The invention's effect】
According to the present invention, it is possible to prevent the solvent from blowing through at the initial stage of switching to the adsorption process, and to prevent the generation of a large amount of steam white smoke at the exhaust port at this time.
If the purpose is simply to cool the adsorption tank, air can be passed at room temperature without using reduced pressure, but the supply gas has an effect as a carrier and the temperature of the activated carbon layer is still at the initial stage of cooling. When there is a high temperature, there is a possibility that the residual solvent in the coal bed may be desorbed and transported, and since this gas contains a non-condensed gas, it is difficult to prevent white smoke due to water vapor unless sufficient cooling is performed. Further, if the solvent component is contained, the solvent always has a gas partial pressure, and thus complete removal and recovery is difficult. According to the reduced-pressure cooling system of the present invention, the generated gas (vapor) is condensable and can be easily removed.
In addition, when the solvent to be recovered is affected by the coexisting moisture, such as methylene chloride, the control of residual moisture in the activated carbon layer is important for maintaining the adsorption performance. By cooling, it is possible to uniformly desorb moisture adsorbed during the desorption operation.
In addition, it is possible to use an operation such as air cooling together with a pressure reducing operation in order to reduce the load of the vacuum generator used for pressure reduction. In this case, it is preferable to perform the air cooling operation after the pressure reducing operation, The water vapor is extracted under reduced pressure, and then cooled to a more appropriate temperature with a non-condensable gas such as air at room temperature. Although the effect is slightly inferior to the case of cooling to the target temperature by the reduced pressure cooling alone, the effect can be selected in consideration of the equipment cost, the operation cost and the like.
[Brief description of the drawings]
FIG. 1 shows a solvent recovery flow chart of a reduced pressure cooling operation method according to the present invention. FIG. 2 shows an example of a result of measuring a temperature change in an activated carbon layer by reduced pressure cooling according to the present invention. Example of change measurement results [Fig. 3] Hydrocarbon concentration in exhaust gas during adsorption operation according to the method of the present invention and the conventional method [Fig. 4] Flow diagram of solvent recovery equipment by the conventional method [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw gas 2 Gas blower 3-1, 3-2 Adsorption layer 4-1, 4-2 Activated carbon layer 5 Condensation cooler 6 Vacuum pump 7 Relay layer 8 Feed pump 9 Decanter S Steam (steam)
W Cooling water

Claims (3)

活性炭を充填してある活性炭層を設けた吸着槽を用いて、原ガス中の有機溶剤を吸着させる吸着工程と前記吸着槽に大気圧下に水蒸気を導入し活性炭に吸着された有機溶剤を脱着する脱着工程を交互に繰り返す溶剤回収方法において、脱着工程終了後の吸着槽内を直ちに減圧状態にして活性炭層を冷却した後に、原ガスを導入して吸着工程を再開させることを特徴とする溶剤回収における活性炭層の冷却方法。Using an adsorption tank equipped with an activated carbon layer filled with activated carbon, an adsorption process for adsorbing the organic solvent in the raw gas and water vapor introduced into the adsorption tank under atmospheric pressure to desorb the organic solvent adsorbed on the activated carbon In the solvent recovery method in which the desorption process is alternately repeated, after the desorption process is completed, the adsorption tank is immediately depressurized to cool the activated carbon layer, and then the raw gas is introduced to restart the adsorption process. Cooling method of activated carbon layer in recovery. 吸着槽内の圧力を0.2atm以下とする請求項1記載の溶剤回収における活性炭層の冷却方法。The method for cooling an activated carbon layer in solvent recovery according to claim 1, wherein the pressure in the adsorption tank is 0.2 atm or less. 脱着工程終了後の吸着槽内を直ちに減圧状態にして活性炭層を冷却した後に、空気または窒素を吹き込む請求項1または2に記載の溶剤回収における活性炭層の冷却方法。The method for cooling an activated carbon layer in solvent recovery according to claim 1 or 2, wherein air or nitrogen is blown after the activated carbon layer is cooled by immediately reducing the pressure in the adsorption tank after completion of the desorption process.
JP35213499A 1999-11-08 1999-11-08 Cooling method of activated carbon layer in solvent recovery Expired - Lifetime JP3983440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35213499A JP3983440B2 (en) 1999-11-08 1999-11-08 Cooling method of activated carbon layer in solvent recovery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35213499A JP3983440B2 (en) 1999-11-08 1999-11-08 Cooling method of activated carbon layer in solvent recovery

Publications (2)

Publication Number Publication Date
JP2001129350A JP2001129350A (en) 2001-05-15
JP3983440B2 true JP3983440B2 (en) 2007-09-26

Family

ID=18422015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35213499A Expired - Lifetime JP3983440B2 (en) 1999-11-08 1999-11-08 Cooling method of activated carbon layer in solvent recovery

Country Status (1)

Country Link
JP (1) JP3983440B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194398A (en) * 2010-02-25 2011-10-06 Toyobo Co Ltd Organic solvent recovery apparatus
JP5835662B2 (en) * 2011-10-18 2015-12-24 株式会社栗本鐵工所 Control method of volatile organic compound processing apparatus
JP6671204B2 (en) * 2016-03-24 2020-03-25 大阪瓦斯株式会社 Gas separation equipment
EP3426381B1 (en) * 2016-03-31 2023-05-03 Inventys Thermal Technologies Inc. Adsorptive gas separation employing steam for regeneration
CN107138021A (en) * 2017-07-12 2017-09-08 云汇环保科技南通有限公司 A kind of protection device for active-carbon bed safety applications
CN110394025A (en) * 2019-08-26 2019-11-01 河北恒嘉元环保科技有限公司 Organic waste gas treatment device and its application method

Also Published As

Publication number Publication date
JP2001129350A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
US4056369A (en) Method of and apparatus for the recovery of a desired material from a carrier stream
US4259094A (en) Apparatus for continuous recovery of solvent
CA1070620A (en) Apparatus for the continuous purification of exhaust gas containing solvent vapours
JPH0716574B2 (en) Method and apparatus for purifying gas
JPH05237329A (en) Method and device for separating gas
EP0688596B1 (en) Recovery of substances from exhaust streams
US5125935A (en) Method for efficiently obtaining an adsorbable gas from a gas containing a low concentration of the adsorbably gas
JP3983440B2 (en) Cooling method of activated carbon layer in solvent recovery
CN112105441B (en) Carbon dioxide separation and recovery system and method
WO2020090806A1 (en) System and method for separating and recovering carbon dioxide
EP1492610B1 (en) Method and system for desorption and recovery of desorbed compounds
US2674338A (en) Method and apparatus for the recovery of nitrogen oxides from gaseous mixtures
JPH0768127A (en) Hot-air desorption type solvent recovering device
JP3364118B2 (en) Gas treatment method and apparatus using inorganic adsorbent
WO2000048713A1 (en) Method for treating dilute gaseous hydrogen carbide contained in waste gas and device for performing the method
JP3069578B2 (en) Solvent recovery method and apparatus
JPH06226029A (en) Method for recovering solvent
JP3657425B2 (en) Organic solvent recovery method and recovery device
WO2010038684A1 (en) Device and method for purifying gas
JPS593928B2 (en) Activated carbon desorption method and device
JP3631073B2 (en) Organic solvent recovery method
JPH06205926A (en) Improved device for rapid drying of compressed air
KR830000349B1 (en) Activated Carbon Desorption Device
JPH0938445A (en) Method for regenerating adsorption tower
JP7494838B2 (en) Organic Solvent Recovery System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3983440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140713

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term