WO2000048713A1 - Method for treating dilute gaseous hydrogen carbide contained in waste gas and device for performing the method - Google Patents

Method for treating dilute gaseous hydrogen carbide contained in waste gas and device for performing the method Download PDF

Info

Publication number
WO2000048713A1
WO2000048713A1 PCT/JP2000/000513 JP0000513W WO0048713A1 WO 2000048713 A1 WO2000048713 A1 WO 2000048713A1 JP 0000513 W JP0000513 W JP 0000513W WO 0048713 A1 WO0048713 A1 WO 0048713A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste gas
adsorption
gas
adsorbent layer
adsorbent
Prior art date
Application number
PCT/JP2000/000513
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Tahara
Hiroshi Nochi
Hideki Sakuma
Original Assignee
System Eng Service Co., Ltd.
Shinko Plantech Co., Ltd.
Tsuru, Yoshiko
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by System Eng Service Co., Ltd., Shinko Plantech Co., Ltd., Tsuru, Yoshiko filed Critical System Eng Service Co., Ltd.
Priority to AU23233/00A priority Critical patent/AU2323300A/en
Priority to KR1020017010446A priority patent/KR20010114209A/en
Publication of WO2000048713A1 publication Critical patent/WO2000048713A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • B01D2259/4141Further details for adsorption processes and devices using different types of adsorbents within a single bed
    • B01D2259/4143Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged as a mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases

Definitions

  • the present invention relates to a method and an apparatus for treating lean gaseous hydrocarbons contained in waste gas, and more particularly to efficiently separating hydrocarbons from waste gas containing harmful gaseous hydrocarbons that cause air pollution. And a detoxifying method and apparatus.
  • harmful gaseous hydrocarbons for example, gaseous substances such as benzene, toluene, methylethylketone, trichloroethylene, and chlorofluorocarbon, which are carcinogenic and are one of the three substances causing air pollution
  • the present invention relates to the treatment of waste gas containing hydrocarbons, and relates to the treatment method and apparatus for reducing the concentration of hydrocarbons to 100 ppm or less (preferably 10 ppm or less) and discharging the hydrocarbons to the atmosphere.
  • Gaseous hydrocarbons such as benzene, toluene, methyl ethyl ketone, trichloroethylene, and chlorofluorocarbon, which are one of the main causes of air pollution, are released into the atmosphere in the United States, Europe, Japan, and other developed countries. Concentrations are strictly regulated by law. Although the level of the regulation value varies depending on the circumstances of each country, in advanced countries other than Japan, for example, benzene is “5 ppm or less”, and in Japan, the Environment Agency Notification No. 5 (February 6, 1997) According to the Japanese government, the regulation was restricted to “30 ppm or less”.
  • a particularly problematic source of such gaseous hydrocarbons is, for example, a large amount of diluted waste gas of about 500 ppm or less generated in a printing factory, a cleaning factory, a painting factory, and the like. Yes, it is waste gas generated not only at factories but also at the time of unloading and unloading from tanks storing them.
  • the method (1) is a mainstream technology in Europe. If the amount of waste gas is large, the adsorption method is used as a polishing step in the treatment after the gas separation membrane method (pressurized membrane method). It is used. In Japan, as disclosed in Japanese Patent Publication No. 4-235658 / Japanese Patent Publication No. Hei 7-2846423, technologies belonging to this field are disclosed.
  • the adsorption method (2) is the most widely used method in the United States.
  • This method is disclosed in Japanese Patent Application Laid-Open No. 57-146687, Japanese Patent Application Laid-Open No. 57-42319, Japanese Patent Publication No. 59-50715, Japanese Patent Publication No. — It is disclosed in Japanese Patent Publication No. 507716 and Japanese Patent Publication No. 2-46663.
  • the adsorption method using activated carbon is the best industrial means. (Note that the catalytic combustion method is also a simple and effective means, but depending on the concentration of gaseous hydrocarbons in the waste gas, there is a danger of an explosion. Strong.)
  • steam is usually used as a purge gas at the time of desorption.
  • the amount of steam required for desorption is about three times the amount of adsorbent used, requiring a large amount.
  • hydrocarbons are entrained and mixed in when this steam condenses into water, so that clear water quality standards require a considerable burden on wastewater treatment facilities such as the activated sludge process.
  • a power scale method is used prior to recovering gaseous hydrocarbons from the purged exhaust gas.
  • One of the solutions is to concentrate the dilute gaseous hydrocarbons in the purged exhaust gas through a concentration adsorption tower (adapter) and remove it from this concentrated adsorption tower (adapter).
  • the gas is discharged in a state where gaseous hydrocarbons in the purged exhaust gas have been concentrated by applying a displacement purging means to the desorption tower in advance.
  • a method for cooling and liquefying the purged exhaust gas is one of the solutions.
  • any of the above-mentioned means liquefaction of gaseous hydrocarbons in the purged exhaust gas is possible only by cooling the purged exhaust gas, but involves means for concentrating the gaseous hydrocarbons in the purged exhaust gas, Moreover, it can be said that the enrichment means itself is complicated.
  • any of the above-mentioned means is not easily cooled and requires a powerful refrigerator, so that it is complicated to concentrate lean gaseous hydrocarbons. It is.
  • Oite activated carbon adsorption method has been widely used conventionally, when processing a large amount of gas that per minute hundred m 3, are used primarily fibrous active carbon
  • K-filter trade name, manufactured by Nitto Bo
  • Pyromex trade name, manufactured by Toho Rayon Co., Ltd.
  • a feature of this method is that it has a sorbent layer so that it can process large quantities of gas. However, it is difficult to reduce the hydrocarbon concentration in the gas discharged into the atmosphere to "100 ppm or less".
  • switching between adsorption and desorption is controlled by a time control via a solenoid valve.
  • time control it is necessary to know in advance the time required for the adsorption tower to break through experiments and experiences.
  • the concentration at the time of breakthrough is a trace concentration of several 10 ppm or less according to the recent severe air pollution control law, and the concentration that requires detection before that is 1-2 ppm.
  • the order is as follows, and requires a very dog-based and precise measuring device.
  • Adsorption, using a twin tower PSA purifier desorption performs adsorption wet gas in a state where pressurized adsorption tower 5 ⁇ 1 O kg Z cm 2 without using a vacuum pump, dry from the top
  • the gas flow rate through the adsorption tower that changes every moment, the inlet and outlet of the adsorption tower
  • the microcomputer stores the operating conditions of each part, including temperature, inlet and outlet pressures of the adsorption tower, and regeneration pressure of the desorption tower, as data, and calculates the material balance and heat balance instantaneously.
  • a method that controls the desorption time and indirectly automatically controls the timing of switching between adsorption and desorption. Is disclosed.
  • the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 55-35996 is a method in which switching between adsorption and desorption is performed not by time control but by a microcomputer in which the operating state of the device is stored. It was an epoch-making proposal in that it was left to the public, but at the time, there was no superior adsorption model as at present, so the simulation method could not be used. That is, the idea of “predicting the breakthrough concentration by simulation of an adsorption model” was not reached.
  • the concentration of the adsorbed component in the gas is quickly detected from the measurement port embedded in the adsorbent layer, and the solenoid valve is automatically switched when the concentration reaches a certain level. Proposed.
  • the adsorbent has a pore size of 10 OA from 5 people, such as granular activated carbon or silica gel, the concentration and temperature fluctuate locally. There is no guarantee that it will rise toward the exit with a uniform width without deviation. Therefore, it is difficult to specify the position to be measured. If the measurement port is inserted too deep from the top, it is hard to say that it is better than time control. For this reason, at present, the mainstream technology for switching between absorption and desorption is simple time control.
  • the present invention has been made in view of the problems and disadvantages of the prior art described in the above section ⁇ Prior art related to waste gas treatment method> and ⁇ Prior art related to absorption / desorption switching means>. This is an attempt to further improve the prior art.
  • the present invention concentrates the dilute gaseous hydrocarbons contained in a large amount of waste gas, extracts it as an extremely small amount of gas as a whole, and incurs an economic burden in incineration, industrial waste treatment, or liquefaction.
  • the objective (technical issue) is to reduce significantly.
  • the present invention also provides a method and an apparatus for detoxifying a large amount of waste gas containing a dilute gaseous hydrocarbon, wherein the waste gas is treated using a solid adsorbent such as hydrophobic silica gel, activated carbon, or synthetic zeolite. Safe, easy and efficient separation of harmful hydrocarbons from gas, and residual gas in waste gas released into the atmosphere after treatment
  • An object of the present invention is to provide a "method for treating a lean gaseous hydrocarbon contained in waste gas and an apparatus for performing the method", which can make the concentration of gaseous hydrocarbon less than 100 ppm.
  • Still another object of the present invention is to provide a method and apparatus which can be made portable so that the system can be integrated and mounted on a skid when the above method is implemented as an apparatus. Disclosure of the invention
  • the method according to the present invention (the method for treating a lean gaseous hydrocarbon contained in waste gas) is as follows:
  • the waste gas containing gaseous hydrocarbons is passed through one of the adsorbers, the gaseous hydrocarbons are adsorbed by the adsorbent layer in the adsorber, and the waste gas containing substantially no gaseous hydrocarbons is discharged into the atmosphere. Release to
  • the other adsorber is switched to desorption, and the gaseous hydrocarbon adsorbed on the adsorbent layer in the adsorber is desorbed by suction with a vacuum pump, and is converted into waste gas, which is transferred to purged exhaust gas.
  • the method according to the present invention comprises:
  • the adsorbent layer is composed of a layer of activated carbon and Z or hydrophobic silica gel, and a synthetic zeolite layer is disposed on top of the layer.
  • the temperature in the adsorbent layer can be easily and promptly kept constant at around room temperature, and the performance of the adsorbent can be fully exhibited without waste.
  • a gaseous hydrocarbon is pre-coated on the adsorbent or the adsorbent layer filled in the adsorption device
  • Air or liquid "water” heated above the boiling point of the hydrocarbon to be adsorbed is used as a means for releasing gaseous hydrocarbons adsorbed on the adsorbent layer in the adsorption device. .
  • an adsorbent other than activated carbon is used.
  • air having a high temperature of up to 250 ° C can be used as a purge gas.
  • this water is vaporized inside the desorption device in combination with the vacuum pump, and works in the same manner as the purge gas.
  • the amount of vaporized gas has the remarkable effect of being able to be purged with a gas amount as small as "several tenths" when using conventional steam.
  • the “means for switching to desorption before the adsorbent layer breaks through” that is the second feature of the present invention includes:
  • a temperature detection port is provided at the top of the adsorbent layer, and the solenoid valve is automatically switched when the temperature from the temperature detection port stops rising.
  • the hydrocarbon concentration in the clean gas discharged from the adsorption device into the atmosphere can be reduced to 100 ppm or less.
  • the "adsorption device having an adsorbent layer" in the device is composed of a component including an adsorbent layer, and the component is composed of a container that can be sealed but cannot be closed, that is, a container for containing the adsorbent. Regardless of the shape, the filled adsorbent does not leak from the container, and the container is provided with a large number of fine holes through which gas can flow in and out.
  • Container
  • the “adsorption device having an adsorbent layer” is an adsorption device that surrounds the adsorbent layer and has multiple built-in cylinders through which waste gas can be passed in the circumferential direction.
  • the enclosure of the adsorbent layer is a box-type component or a honeycomb-type component, and an adsorber that incorporates the component in a multiplex manner.
  • the adsorbent layer is a layer filled with fine adsorbent having a diameter of 0.1 to 1 mm,
  • FIG. 1 is a flow sheet diagram for explaining “a method for treating a lean gaseous hydrocarbon in a waste gas” which is one embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a “control panel for grasping and controlling an operating condition” in the flow sheet shown in FIG.
  • FIG. 3 is a longitudinal sectional view of an adsorption tower used in Example 1 of the present invention.
  • FIG. 4 is a longitudinal sectional view of the adsorption tower used in Embodiment 2 of the present invention.
  • FIG. 5 is a diagram further illustrating the adsorption tower of FIG. 4, wherein FIG. 5 (A) is a sectional view taken along line AA of FIG. 4, and FIG. 5 (B) is a diagram of FIG. It is the elements on larger scale of the figure.
  • FIG. 6 is a diagram showing a “water adsorption isotherm of activated carbon”.
  • 3-2b is a Y-type synthetic zeolite
  • 4a and 4b are inner cylinders
  • 5 is cooling water
  • 10 is a waste gas generation source
  • 11 is a waste gas air pipe
  • 12 is a discharge pipe
  • 13 is a discharge pipe.
  • Water pipe, 14 is a water ring vacuum pump, 15 is a purge exhaust gas pipe, 16 is a gas-liquid separator, 17 is an industrial waste treatment device, 18 is a return gas air pipe, 20 is a control Board, 21 is memory, 22 is CPU (calculation), 23 is memory (adsorption model), 41a (41b) is adsorption tower, 42a (42b), 42a ' (4 2 b ') is the outer cylinder, 4 3 a (4 3 b) is the adsorbent layer, 4 3-1 a (43 -lb) is crushed activated carbon, and 4 3 -2 a (43-2b) is Y-type synthetic zeolite.
  • BEST MODE FOR CARRYING OUT THE INVENTION hereinafter, embodiments of a method and an apparatus according to the present invention (hereinafter, simply referred to as “the present invention”) will be described, and the present invention will be described in more detail.
  • the first feature of the present invention lies in "returning all or most of the purged exhaust gas to the waste gas to be treated and increasing the hydrocarbon concentration in the adsorbent layer". Is to switch to desorption before the adsorbent layer breaks through, thereby safely, easily and efficiently treating hydrocarbons from waste gas, and after treatment, to the atmosphere.
  • the residual hydrocarbon concentration in the released gas can be less than 100 ppm, especially "less than 20 ppm".
  • the entire amount of the purged exhaust gas is returned to the waste gas to be treated, but the hydrocarbon concentration in the purge exhaust gas is reduced.
  • the adsorbent layer will break through in a very short time, which will adversely affect the treatment of waste gas. Therefore, as another embodiment of the present invention, when the hydrocarbon concentration is extremely high, a part of the purged exhaust gas is taken out, detoxified, for example, subjected to a combustion process, and the remaining (most) It is desirable to return the purge exhaust gas to the waste gas to be treated.
  • the liquid hydrocarbons can be separated and burned, or detoxified as industrial waste.
  • the breakthrough detecting means of the present invention basically includes a device. Although it is based on a built-in circuit chip, it uses an ultra-small chip, which has recently made remarkable progress, so that the above-mentioned known technology (the technology disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 55-35996) is used. It does not require a large microphone processor for the purpose of calculation as described in (1).
  • the adsorption model is entered into R ⁇ M, while By reading the operation data that changes during the operation as a logger signal into a computer and simulating it, the breakthrough concentration is preferably reduced.
  • This is completely different from the prior art in that it attempts to control the adsorption system by predicting in seconds. In other words, this is clearly different from the idea of “predicting breakthrough concentration by simulation of an adsorption model” which is a preferred embodiment of the present invention.
  • adsorption model By the way, various types of “adsorption model” have been proposed. Among them, the physical properties of the adsorbent, that is, “adsorption isotherm and adsorption pressure inside adsorption tower, vacuum degree of vacuum pump, gas flow rate in tower” , The height of the adsorbent layer and the purge coefficient are fixed, and the variable “inlet gas flow rate and concentration” is used as the switching time or the outlet of the adsorbent layer.
  • concentration breakthrough concentration
  • the second feature of the present invention that is, "switching to desorption before the adsorption device breaks through” is an essential component, because the first feature of the present invention, “purge exhaust gas” Is returned to the waste gas to be treated to increase the hydrocarbon concentration in the adsorbent layer. "
  • the present invention does not eliminate the switching means based on time control that has been performed conventionally. If the concentration of gaseous hydrocarbons contained in the gas at the inlet of the adsorption tower (waste gas / the above-mentioned uncondensed page exhaust gas) is almost constant over time, the operation of the adsorption tower is started and the destruction occurs. This is because it is one of the expedients to determine the time until the time is spent in advance, and to switch using this time as a guide in the next suction operation. You. In addition, in the adsorption apparatus developed by the present inventors, it is one of the options to adopt a “switching means by time control” by predicting the time when desorption is completed from the operation of the desorption tower. is there.
  • the means for switching the desorption tower to the adsorption tower can be time-controlled. If this means is described in detail, the operation shifts to the desorption operation, the vacuum pump starts operating, and after detecting the point when a predetermined degree of vacuum is reached, purge gas is introduced into the desorption tower, and this introduction time is set in advance. This is a method that automatically switches to the suction operation when the time is up.
  • the concentration of the gaseous hydrocarbon adsorbed on the adsorbent layer is automatically reduced to just before the breakthrough. It can be concentrated to a high concentration.
  • this purge exhaust gas can be taken out and subjected to, for example, a combustion treatment, and gaseous hydrocarbons in the purge exhaust gas can be removed. It can be separated as liquid hydrocarbons and burned, or detoxified as industrial waste.
  • the disadvantage is that if the time required for adsorption and the time required for desorption are too different, for example, it takes several days before adsorption and just before breakthrough, If the desorption process takes only a few hours, it is not necessarily the preferred method from the perspective of the person managing the work.
  • the amount of gaseous hydrocarbons to be adsorbed is extremely small near the top of the adsorbent layer, which is generated.
  • the amount of heat absorbed is extremely reduced, and more heat is radiated outside from the cooling water and the wall of the adsorption tower.
  • the signal from the measurement port inserted near the top to capture data into the chip, ie, the indicated temperature, stops, and the temperature gradually decreases over time. If the means for automatically switching the intake / desorption switching valve (solenoid valve) at this time is used together, the above-mentioned disadvantages can be solved, and this is also included in the present invention.
  • Adsorbent means that the adsorption pore diameter is controlled to a certain size, Adsorbents that are unlikely to cause unevenness in the amount of adsorption and that do not easily adsorb moisture even in areas where the relative humidity in the waste gas is as high as about 50% or more.For example, an adsorbent such as synthetic zeolite is optimal. .
  • a synthetic zeolite layer is provided on the top of the adsorbent layer, and a temperature detection port is provided in the adsorbent layer made of the synthetic zeolite.
  • a temperature detection port is provided in the adsorbent layer made of the synthetic zeolite.
  • means for automatically switching the solenoid valve when the temperature from the temperature detection port stops increasing its temperature is adopted.
  • pre-coated activated carbon or similarly pre-coated hydrophobic silica gel is preferable.
  • precoat which is a preferred embodiment of the present invention.
  • the degree to which gaseous hydrocarbons are concentrated in the adsorbent layer is, theoretically, "760725" if only hydrocarbons are adsorbed when the degree of vacuum is 25 mm Hg, That is, the density is about 25 times higher, but usually a large amount of air coexists, and the molecular diameter of nitrogen gas or oxygen gas in this air is larger than that of hydrocarbons. Therefore, nitrogen gas and oxygen gas are adsorbed in preference to hydrocarbon gas. As a result, it is empirically known that it can only be concentrated to four times the concentration of hydrocarbons at the inlet.
  • the solid adsorbent such as activated carbon, synthetic zeolite, and hydrophobic silica gel used in the present invention is not an adsorbent that does not adsorb moisture at all, but as shown in FIG. The water absorption varies greatly depending on the target concentration.
  • Fig. 6 shows the water adsorption isotherm of activated carbon, but the same can be said for other hydrophobic adsorbents.
  • the adsorbent layer is pre-coated by dripping liquid hydrocarbons into the waste gas to be treated, specifically, by spraying the liquid hydrocarbons into the conduit of the waste gas to be treated. can do.
  • the pre-coating agent in addition to the above liquid hydrocarbons, for example, substances such as hydrocarbons having an affinity for water and having a higher boiling point than water can be used.
  • the present inventor developed a system for processing a large amount of waste gas containing gaseous hydrocarbons, using the elemental technology on the hard surface called “loga signal”, which is a means for capturing data, in this system.
  • a new technique on the so-called soft surface that is, a “simulation of a ROMized adsorption model” that has been cleverly incorporated into the control system, it is possible to shorten the time regardless of the change of the hydrocarbon concentration at the inlet.
  • the temperature in the adsorbent layer was easily and promptly kept constant at around room temperature.
  • the timing of switching from adsorption to desorption is not simply set by a cycle of time, but is left to the discretion of a personal computer (software) that incorporates an "adsorption model", thereby reducing the performance of the adsorbent without waste. It is now possible to make full use of it. For this reason, it became possible to concentrate the lean hydrocarbons in the purge exhaust gas to just before breakthrough, and to extract it as an extremely rich hydrocarbon with a very small amount of purge exhaust gas.
  • any solid adsorbent having an affinity for the hydrocarbon gas in the waste gas can be used regardless of whether the material is flammable or nonflammable.
  • hydrophobic silica gel which is inexpensive and easy to handle is desirable. The reason is no. —Because the temperature of the digas can be raised to about 250 ° C for use.
  • non-combustible silica gel When using non-combustible silica gel, if it is hydrophobized with a silane coupling agent such as trimethylchlorosilane or treated at high temperature for a long time, it will be hydrophobic and lipophilic.
  • adsorbents or adsorbents precoated with high boiling hydrocarbons such as ethylene glycol heptane. But the best adsorbent is
  • solid adsorbents such as activated carbon, synthetic zeolite, silica gel, and activated alumina used as adsorbents have strong affinity for gaseous hydrocarbons, but are also widely used as heat insulators.
  • the other adsorbents have a wide distribution of adsorption pore diameters, so that the concentration at the adsorption site is not uniform and mouth-to-mouth heating tends to occur.
  • the recommended way to avoid this is to place the synthetic zeolite at the top of the adsorbent layer, ie, near the outlet.
  • Synthetic zeolite unlike hydrophobic silica gel or granular activated carbon, has a strictly controlled pore size to a certain size. Depending on the material selected, some varieties cover almost the entire molecular diameter of gaseous hydrocarbons. is there. In addition, despite the fact that the ratio of adsorbing gaseous hydrocarbons is 15% to 20% by weight, the amount of water adsorbed is 10% even for gases with RH of 50% or more. % Or less. For this reason, there is no deviation in the adsorption band having a certain width moving in this layer.
  • the port for detecting the concentration and temperature to be taken in as a data logger signal must be located at the center of the synthetic zeolite layer. In this way, the breakthrough point is detected.
  • the point at which the temperature indication at the central portion stops the temperature rise due to the heat of adsorption can be used as a guide for switching.
  • Such synthetic Zeorai DOO the ratio of S i 0 2, A 1 2 0 3 is 2 0 or more, those having a pore size of about 8 angstroms Ichimu is desirable.
  • the heat of adsorption generated in the adsorbent layer is used.
  • an adsorbent layer for adsorbing gaseous hydrocarbons and a cooling water layer for cooling the adsorbent layer are adjacent to each other. It is preferable to use a “double cylinder or multiple cylinder type adsorption tower” configured. In consideration of the tendency of static electricity generated in the adsorbent layer to gather at the center of the layer, use of an adsorption tower with a structure in which a metal cylinder is arranged at the center to release static electricity while also cooling. Is desirable.
  • the adsorption tower 1a (1b) comprises an outer cylinder 2a (2b) and an adsorbent. Layer 3 a (3 b), inner cylinder 4 a (4 b), and cooling water 5.
  • the adsorption tower 1a (1b) is an adsorption tower used in Example 1 of the present invention described later, and 3-la (3-lb) in the figure is activated carbon, and 3-2a ( 3-2b) is a Y-type synthetic zeolite.
  • the adsorption tower 1a (1b) of the present invention is that if the pressure inside the adsorption tower is increased, the effective adsorption amount of hydrocarbons adsorbed by the adsorbent is remarkably increased. since the pressure is a matter of course to say from the theory of PSA process, even in the practice of the present invention, the gauge pressure "1 kg / cm 2 or less that does not conflict with the internal pressure of the adsorption tower la (lb) to the" high pressure regulations " Working with "is highly desirable.
  • a conventionally used “tower-type, adsorption device that is densely packed with an adsorbent” can also be used, but when the amount of waste gas to be treated is large, In this case, a problem arises with this conventional type.
  • adsorption efficiency is closely related to the size of the adsorbent particles. For example, when comparing the case where a large particle size adsorbent and a small particle size adsorbent are packed in an adsorbent layer of the same capacity, it is natural that the smaller the particle size, the higher the efficiency, but the higher the flow rate. There is a problem even if it is too small. For this reason, the diameter of the conventionally used adsorbent depends on the type and shape of the adsorbent, but 2-3 mm is appropriate.
  • the adsorber which avoids the flow of the adsorbent and is densely packed, has a structure in which the cross of fibrous activated carbon is coordinated inside the adsorber and the waste gas flows in the direction across the cloth.
  • K-filter trade name, manufactured by Toyobo
  • Pyromex trade name, manufactured by Toho Rayon Co., Ltd.
  • the adsorber with the above structure has the advantage that a large gas passage area can be obtained, but has the disadvantage that the adsorbent layer is thin, so that the contact time is short and dilute hydrocarbons in waste gas cannot be collected sufficiently. are doing.
  • the desorption means of this device cannot be considered other than the use of steam, and cannot be used together with a vacuum pump.
  • the adsorption efficiency is "Kfav", that is, "overall mass transfer capacity”
  • Kfav the adsorption efficiency
  • the value of the coefficient (1 / sec) is shown in the following table. From the experiments conducted by the present inventor and the analysis of the operation results with the industrial equipment constructed by the present inventor, the value of K fav When the adsorbent is used, it is almost in the range of "3 to 6", depending on the properties of the gaseous hydrocarbon.
  • the adsorption performance is several times better in the range of "15 to 25". Specifically, the contact time between the gas and the adsorbent is "about 1 Z5".
  • an adsorption device having an adsorbent layer is composed of a component including an adsorbent layer, and the component can be hermetically sealed. It consists of a container that cannot be closed, that is, regardless of the shape of the container containing the adsorbent, the filled (contained) adsorbent does not leak out of the container, and It is a container that has a configuration with many micropores that allow gas inflow and outflow.
  • the adsorbing device having an adsorbent layer is an adsorbing device that surrounds the adsorbent layer and has multiple built-in cylinders through which the waste gas can be passed in the circumferential direction;
  • the enclosure of the adsorbent layer is a box-type component or a honeycomb-type component, and is an adsorption device in which the component is multiplexed;
  • fine particles of 0.1 to 1 mm are used, thereby shortening the contact time with the gas,
  • the configuration of the adsorbent layer in the adsorber is multiplexed to increase the gas passage area.
  • the use of fine particles of 0.1 to 1 mm as the adsorbent has an excellent effect that the contact time can be reduced to "about 1/5" as compared with the conventional means. And to say that it can be reduced to "about 1 Z5" This means that the thickness of the adsorbent layer will also be “about 1 Z5".
  • the thickness (layer height) is “l to 2 m”.
  • the thickness of the adsorbent layer is “about 1 Z5”. From that point, the thickness is "20 cm to 40 cm", and as a result, there is an excellent effect that the adsorbent layer does not need to be cooled in principle.
  • the concentration of the adsorbed hydrocarbon is extremely low because the waste gas ends up in one pass through this adsorbent layer, and the means for desorption is other than steam. I could not imagine.
  • the hydrocarbon concentration in the adsorbent layer can be increased. This makes it possible to use a vacuum pump that could not be achieved by using a vacuum pump.
  • the adsorption tower 41a (41b) is filled with the adsorbent layer 43a (43b).
  • the outer cylinder is composed of a double cylinder of 42a (42b) and 42a '(42b'). Then, the waste gas passes through the adsorbent layer 43a (43b) as shown by the arrow line in Fig. 5 (B), thus increasing the gas passage area. It is.
  • This adsorption tower 4 la (41b) is an adsorption tower used in Example 2 of the present invention described later, and 43-1a (43 -lb) in the figure indicates crushed activated carbon, 43 -2a (43-2b) is a Y-type synthetic zeolite.
  • the adapter-type system disclosed in Japanese Patent Nos. 2,840,563, 2,766,793, and 2,382,335, which have already been obtained by the present inventors instead of using the purging method and the purging method, the gaseous hydrocarbons in the purged exhaust gas are recovered without using a method of washing with the same type of hydrocarbon liquid, and the desorbed gas is recycled. Instead of using a complicated cooling means to recover gaseous hydrocarbons from the gas as a liquid after enriching the hydrocarbon concentration in the adsorption tower, a simple and economical method in which the recovery means is omitted is provided. Provided.
  • air or water heated above the boiling point of the hydrocarbon to be adsorbed can be used as a means for releasing gaseous hydrocarbons adsorbed on the adsorbent layer.
  • water is particularly preferred (see below).
  • the means for detoxifying dilute hydrocarbons contained in a large amount of waste gas the adsorption method has been used exclusively.
  • the adsorbent used is, with exceptions, granular activated carbon or fibrous activated carbon.
  • This type of activated carbon has excellent adsorption capacity compared to other adsorbents, but has the drawback that it is extremely difficult to desorb. For this reason, at the time of desorption as described above, at present, a large amount of steam, which is about three times the amount of filled activated carbon, is used.
  • the hydrocarbons entrained in the steam are detoxified together with water by wastewater treatment means such as activated sludge treatment equipment.
  • the gaseous hydrocarbon desorbed along with the heated purge gas is a gas suitable for burning as it is as a purge exhaust gas.
  • the degree of vacuum to be sucked is "60 to 15 OT orr". Since the vacuum pump is expensive, it can be said that this is a remarkable effect of the application of the present invention.
  • the desorption tower By injecting water into the desorption tower, not only can it be vaporized inside the desorption tower with the help of a vacuum pump and exert the same effect as the purge gas, but also the amount of vaporized gas can be reduced by the conventional steam use. In this case, the gas can be purged with a small gas amount of "several tenths".
  • a water-sealed vacuum pump is preferable as the vacuum pump used at that time.
  • the reason is that the concentrated hydrocarbon gas is mixed with the water in the water seal to obtain wastewater and wastewater suitable for industrial waste treatment.
  • the embodiment according to the present invention is as described in detail above.
  • the method according to the present invention can employ a publicly known PSA method or PTSA method.
  • VSA method, VTSA method, etc. are also included in the present invention.
  • the present invention provides a treatment method for concentrating and separating a dilute gaseous hydrocarbon contained in a waste gas and an apparatus for performing the method, wherein a dilute hydrocarbon generated at the time of coating is provided.
  • a dilute hydrocarbon generated at the time of coating is provided.
  • multi-component hydrocarbon gas but also benzene, toluene, It is widely applied to dilute single-component gases such as trichloroethylene, methylethylketone, and even freon.
  • FIG. 1 is a flow sheet diagram for explaining “a method for treating a lean gaseous hydrocarbon in a waste gas” which is one embodiment of the present invention.
  • FIG. 2 is a flow sheet diagram shown in FIG. It is a figure which shows an example of the "control panel for grasping and controlling an operating condition" in a flow sheet.
  • FIG. 3 is a longitudinal sectional view showing one example (Example 1) of the structure of the adsorption tower used in the flow sheet shown in FIG.
  • the adsorption column la (lb) composed of the double cylinder of b) was used.
  • the cooling water 5 flowing through the inner cylinder 4a (4b) is turbulent so that it flows countercurrently to the waste gas flowing through the adsorbent layer 3a (3b).
  • granular activated carbon granular Shirasagi No .: trade name, manufactured by Takeda Pharmaceutical Co., Ltd.
  • Y-type synthetic zeolite 360 HUD: trade name, manufactured by Tosoh Corporation
  • Fig. 3 the Y-type synthetic zeolite 3-2a (3-2b) was filled in the upper part of the granular activated carbon 3-la (3-lb) into the adsorption tower 1a (1b), This was used as an adsorbent layer 3a (3b).
  • the granular activated carbon used was pre-coated with benzene vapor in advance.
  • Example 1 will be described in detail with reference to FIG. 1.
  • a waste gas generated from a waste gas generation source (a waste gas containing about 500 ppm benzene: 20 liters) (Amount of gas in Torr Z) is blown to the adsorption tower 1a by a blower (not shown) that compresses the gauge pressure to 1 kg / cm or less or the waste gas air pipe 11 by its own pressure.
  • the gas velocity passing through the adsorbent layer 3a (3b) was "about 10 cm / sec".
  • the treated waste gas after the adsorption process contains 20 ppm or less of benzene vapor from the top of the adsorption tower la (adsorption tower 1b after switching to the desorption step) via the discharge pipe 12. Released into the atmosphere as air (clean gas).
  • the adsorption towers 1a and 1b are operated while alternately switching between the above adsorption step and the desorption step described later, but at this switching point, the adsorbent layer in the adsorption towers 1a and 1 lb is broken. This is done before passing through, and by automatically opening and closing valves (2) and (2) shown in Fig. 1.
  • valves (e) and (e) for switching between suction and desorption are opened and closed
  • the water ring vacuum pump 14 is operated at about 60 T 0 rr, and the pressure in the adsorption tower 1 a (the tower switched to desorption) is reduced to a low pressure (vacuum).
  • the supplied water turns into steam in the adsorption tower 1a to become a purge gas.
  • the gas is extracted as purged exhaust gas from the purge gas air supply pipe 15 through the water ring vacuum pump 14.
  • Room temperature industrial water was used to cool the purged exhaust gas sucked by the water ring vacuum pump 14. That is, the purge exhaust gas is sent to the gas-liquid separator 16.
  • the gas-liquid separator 16 is cooled by industrial water flowing through a cooling pipe (not shown) arranged inside.
  • the benzene vapor in the purged exhaust gas is condensed and liquefied in the water-sealed water in the gas-liquid separator 16 connected to the lower part, and is separated from uncondensed gas. Accumulated water And benzene are taken out of the system and are subjected to industrial waste treatment with an industrial waste treatment unit 17.
  • the benzene vapor remains in the exhaust gas not condensed in the gas-liquid separator 16
  • the benzene vapor is returned to the waste gas air pipe 11 again via the return gas air pipe 18, and is returned together with the waste gas. To perform the adsorption process.
  • the uncondensed gas contains a high concentration of residual benzene, and by returning the entire amount to the waste gas supply pipe 11, the benzene concentration in the adsorption tower is further increased. Then, by using the above-described means, the switching time of the valve (e) is set by predicting the time at which the adsorbent layer in the adsorption tower breaks through, and the operation is automatically switched to the desorption operation.
  • a to J shown in Fig. 1 indicate the positions of the instruments provided to grasp the operation status.
  • (a) to (2) indicate the This shows the position of the provided valve.
  • FIG. 2 shows a control panel 20 for grasping and controlling the operation status in the flow shown in FIG. 1, and includes a memory 21, a memory (adsorption model) 23, and a CPU ( Arithmetic) 22.
  • a memory adsorption model
  • CPU Arithmetic
  • the concentration When the concentration is low, the concentration can be concentrated several times in the adsorption tower, and by devising cooling means to remove the heat generated in the adsorbent layer (see Fig. 3 above), local heating is avoided.
  • the temperature of the adsorbent layer during the operation period was almost room temperature.
  • the benzene concentration in the gas released into the atmosphere from the discharge pipe 12 was substantially less than 20 ppm.
  • FIG. 4 is a longitudinal sectional view of an adsorption tower used in Example 2.
  • FIG. 5 is a diagram further explaining the adsorption tower of FIG. 4, wherein FIG. 5 (A) is a cross-sectional view taken along the line A-A of FIG. 4, and FIG. 5 (B) is a diagram of FIG. It is the elements on larger scale of the figure.
  • the adsorbent layer Adsorption tower 4 1a (4 1 b) consisting of a double cylinder of outer cylinder 4 2 b (4 2 b) and 4 2 a '(4 2 b') filled with 4 3 a (4 3 b) ) was used.
  • crushed activated carbon with a particle size of 0.4 mm (HC42: trade name of Tsurumi Coal) and Y-type synthetic zeolite with a particle size of 1.0 mm (360 HUD: East (Trade name, manufactured by Soviet Union).
  • the Y-type synthetic zeolite 43-2a (43-2b) is adsorbed on the top of the broken activated carbon 43-la (43-lb).
  • the column 41a (41b) was packed and used as an adsorbent layer 43a (43b).
  • the crushed activated carbon used was previously pre-coated with benzene vapor.
  • Example 2 the above-mentioned crushed activated carbon and Y-type synthetic zeolite were used using the adsorption towers 41a (41b) shown in FIGS. 4 and 5 (A) and (B) described above. Except for the above, waste gas (waste gas containing about 50,000 ppm of benzene: gas amount of 300 liters Z) was treated under the same conditions and means as in Example 1. At this time, the gas velocity passing in the circumferential direction through the adsorbent layer 43a (43b) was "1.5 cmZ seconds".
  • Example 2 the benzene concentration in the gas released into the atmosphere from the discharge pipe 12 (see Fig. 1) was such that it could not be detected with a commercially available HC concentration detection pipe (isobutane conversion). It was a trace amount.
  • Example 1 the benzene concentration in the gas released into the atmosphere is 20 ppm or less, whereas in Example 2, as described above, a trace amount It can be understood that the amount is superior to that of Example 1.
  • the double-cylinder adsorption towers 1a and 1b shown in FIG. 3 are used as the first embodiment of the present invention.
  • the present invention is not limited to such a double cylinder.
  • the suction of the multiple cylinders shown in FIGS. Although a landing tower was used, the present invention is not limited to such a multi-cylinder, and for example, an adsorbent configured by filling an adsorbent into a honeycomb-shaped core and bundling the same, or It is also possible to use an adsorption device or the like constituted by packing adsorbents in a box and stacking them.
  • the benzene concentration specified in the amendment of the Air Pollution Control Law not only can the emission standard “30 ppm or less” be completely cleared, but even if this figure becomes less than half strict, it can sufficiently cope with it.
  • the present invention can be configured to be portable so that the system can be integrated and mounted on a skid when the method according to the present invention is implemented as an apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treating Waste Gases (AREA)

Abstract

A method for treating waste gas and a device for performing the method, which can treat a large amount of waste gas containing dilute gaseous hydrogen carbide for separation of the dilute gaseous hydrogen carbide safely, easily and efficiently, and can reduce, after the treating, a gaseous hydrogen carbide concentration remaining in the waste gas to be exhausted into the air to up to 100 ppm. The method comprises the steps of (1) using as an adsorption device an adsorbent layer and adsorption columns (1a, 1b) for cooling the layer, (2) filling into the adsorption columns active carbon and Y-type synthetic zeolite over the active carbon, (3) switching between adsorption and desorption alternately at a switching timing determined by operating automatically adsorption/desorption switching valves (d) according to an instruction of 'an estimated concentration at which the absorbent layer breaks through' by a data logger, (4) using 'water' at adsorption and sucking it by a water-sealed vacuum pump (14), and (5) returning the entire amount of purged exhaust gas into a waste gas feed pipe (11) while (6) treating liquid from a gas/liquid separator (16) at an industrial waste treating device (17).

Description

明 細 書 廃棄ガス中に含まれる希薄なガス状炭化水素の処理方法および該方法を実施す るための装置。 技術分野  Description: A method for treating a lean gaseous hydrocarbon contained in waste gas and an apparatus for performing the method. Technical field
本発明は、 廃棄ガス中に含まれる希薄なガス状炭化水素の処理方法および装置 に関し、 特に、 大気汚染の原因である有害なガス状炭化水素を含む廃棄ガスから、 該炭化水素を効率よく分離し、 無害化処理する方法および装置に関する。  The present invention relates to a method and an apparatus for treating lean gaseous hydrocarbons contained in waste gas, and more particularly to efficiently separating hydrocarbons from waste gas containing harmful gaseous hydrocarbons that cause air pollution. And a detoxifying method and apparatus.
具体的には、 有害なガス状炭化水素として、 例えば、 発がん性があり、 大気公 害の原因物質の一^ 3であるベンゼンやトルエン, メチルェチルケトン, トリクロ 口エチレン, フロン等のガス状炭化水素を含む廃棄ガスの処理に係り、 該炭化水 素の濃度を 1 0 0 p p m以下 (好ましくは 1 0 p p m以下) にして、 大気中に排 出するための上記処理方法および装置に関する。 背景技術  Specifically, as harmful gaseous hydrocarbons, for example, gaseous substances such as benzene, toluene, methylethylketone, trichloroethylene, and chlorofluorocarbon, which are carcinogenic and are one of the three substances causing air pollution The present invention relates to the treatment of waste gas containing hydrocarbons, and relates to the treatment method and apparatus for reducing the concentration of hydrocarbons to 100 ppm or less (preferably 10 ppm or less) and discharging the hydrocarbons to the atmosphere. Background art
大気公害の元凶物質の一つであるベンゼンやトルエン, メチルェチルケトン, トリクロロエチレン, フロンなどのガス状炭化水素については、 米国, 欧州, 日 本をはじめとする先進国では、 大気中に放散する濃度を法的に厳しく規制してい る。 規制値の水準は、 各国の事情によって異なるが、 日本を除く先進諸国では、 例えばベンゼンについては 「5 p p m以下」 であり、 日本に於いても環境庁告示 第 5号 (平成 9年 2月 6日) によれば 「3 0 p p m以下」 に規制されるようにな つた o  Gaseous hydrocarbons, such as benzene, toluene, methyl ethyl ketone, trichloroethylene, and chlorofluorocarbon, which are one of the main causes of air pollution, are released into the atmosphere in the United States, Europe, Japan, and other developed countries. Concentrations are strictly regulated by law. Although the level of the regulation value varies depending on the circumstances of each country, in advanced countries other than Japan, for example, benzene is “5 ppm or less”, and in Japan, the Environment Agency Notification No. 5 (February 6, 1997) According to the Japanese government, the regulation was restricted to “30 ppm or less”.
ところで、 かかるガス状炭化水素の発生源として特に問題視されているのは、 例えば、 印刷工場やクリーニング工場, 塗装工場等で発生する大量でしかも約 5 0 0 0 p p m以下の希薄な廃棄ガスであり、 工場のみならず、 それ等を貯蔵す るタンクから荷揚げする時や積み卸しする時に発生する廃棄ガスである。  By the way, a particularly problematic source of such gaseous hydrocarbons is, for example, a large amount of diluted waste gas of about 500 ppm or less generated in a printing factory, a cleaning factory, a painting factory, and the like. Yes, it is waste gas generated not only at factories but also at the time of unloading and unloading from tanks storing them.
〈廃棄ガスの処理方法に係る従来技術〉 前述のようなガス状炭化水素を含む廃棄ガスの無害化処理方法として、 従来か ら広く用いられている方法は、 <Conventional technology related to waste gas treatment method> As a method for detoxifying waste gas containing gaseous hydrocarbons as described above, methods that have been widely used in the past include:
(1 ) ガス分離膜法 +吸着法  (1) Gas separation membrane method + adsorption method
(2) 活性炭ゃゼォライ ト, 疎水性シリカゲル等を用いる吸着法  (2) Adsorption method using activated carbon zeolite, hydrophobic silica gel, etc.
などである。 And so on.
上記方法のうち(1 ) の方法は、 欧州では主流の技術であって、 廃棄ガスが大量 の場合、 ガス分離膜法 (加圧膜法) を施した後の処理にポリツシング工程として 吸着法を用いるものである。 日本においても、 特公平 4 - 2 3 5 6 8号公報ゃ特 開平 7— 2 8 4 6 2 3号公報にみられるように、 この分野に属する技術が開示さ れている。  Of the above methods, the method (1) is a mainstream technology in Europe. If the amount of waste gas is large, the adsorption method is used as a polishing step in the treatment after the gas separation membrane method (pressurized membrane method). It is used. In Japan, as disclosed in Japanese Patent Publication No. 4-235658 / Japanese Patent Publication No. Hei 7-2846423, technologies belonging to this field are disclosed.
一方、 米国でもっとも広く採用されている方法は、 前記(2) の吸着法であって、 特に活性炭を用いる吸着法である。 この方法については、 特開昭 5 7 - 1 4 6 8 7号公報, 特開昭 5 7— 4 2 3 1 9号公報, 特公昭 5 9— 5 0 7 1 5号公報, 特 公昭 5 9— 5 0 7 1 6号公報, 特公平 2 - 4 6 6 3 0号公報に開示されている。 現在の技術水準では、 希薄なガス状炭化水素を含む大量の廃棄ガスを処理して、 大気中に放散するクリーンなガス中の炭化水素濃度を 1 0 0 0 p p m以下にする には、 上記した活性炭を用いる吸着法が最もすぐれた工業的手段である。 (なお、 触媒燃焼法も簡便で有効な手段であるが、 廃棄ガス中のガス状炭化水素濃度の如 何によっては、 爆発の危険性も危惧され、 居住地付近での設置には拒否反応が強 い。 )  On the other hand, the most widely used method in the United States is the adsorption method (2), particularly the adsorption method using activated carbon. This method is disclosed in Japanese Patent Application Laid-Open No. 57-146687, Japanese Patent Application Laid-Open No. 57-42319, Japanese Patent Publication No. 59-50715, Japanese Patent Publication No. — It is disclosed in Japanese Patent Publication No. 507716 and Japanese Patent Publication No. 2-46663. With the current state of the art, the above-mentioned methods for processing large amounts of waste gas containing dilute gaseous hydrocarbons to reduce the hydrocarbon concentration in clean gas released to the atmosphere to less than 100 ppm are as described above. The adsorption method using activated carbon is the best industrial means. (Note that the catalytic combustion method is also a simple and effective means, but depending on the concentration of gaseous hydrocarbons in the waste gas, there is a danger of an explosion. Strong.)
しかし、 従来の上記活性炭による吸着法では、 脱着時のパージガスとして、 通 常、 "スチーム" を使用している。 そして、 脱着に必要なスチームの量としては、 使用する吸着剤量の約 3倍にものぼり、 大量を必要とする。 しかも、 このスチ一 ムが凝縮して水になる際に炭化水素を巻き込み混入するので、 厳しい水質基準を クリャ一するには、 活性汚泥法のような排水処理設備にかなりの負担がかかると いう欠点があつた。  However, in the conventional adsorption method using activated carbon, "steam" is usually used as a purge gas at the time of desorption. The amount of steam required for desorption is about three times the amount of adsorbent used, requiring a large amount. In addition, hydrocarbons are entrained and mixed in when this steam condenses into water, so that clear water quality standards require a considerable burden on wastewater treatment facilities such as the activated sludge process. There were drawbacks.
このため、 脱着時のパージガスとして、 スチームの代わりに "高温に加熱され た窒素" を用い、 これを循環使用する方法も提案されているが、 循環窒素に蓄積 される希薄なガス状炭化水素の分離には大型の冷凍機を必要とし、 o °c以下の低 温に冷却しなければならなず、 寧ろ不経済であると言える。 For this reason, it has been proposed to use "heated nitrogen" instead of steam as the purge gas for desorption, and to recycle it. Separation of lean gaseous hydrocarbons requires a large refrigerator and must be cooled to a low temperature of less than o ° c, which is rather uneconomical.
上記問題点を解決する手段として、 日本特許第 2 8 2 3 8 3 5号明細書に開示 されているように、 パージ排ガスからガス状炭化水素を回収するに先立って、 力 スケ一ド方式による濃縮吸着塔 (アダプター) を介して、 パージ排ガス中の希薄 なガス状炭化水素を濃縮し、 この濃縮吸着塔 (アダプター) から取り出すのも解 決手段の一つである。  As a means for solving the above-mentioned problems, as disclosed in Japanese Patent No. 28323835, prior to recovering gaseous hydrocarbons from the purged exhaust gas, a power scale method is used. One of the solutions is to concentrate the dilute gaseous hydrocarbons in the purged exhaust gas through a concentration adsorption tower (adapter) and remove it from this concentrated adsorption tower (adapter).
また、 吸着塔を脱着塔に切り替えて真空ポンプで吸引する際、 予め置換パージ 手段を脱着塔に適用して、 パージ排ガス中のガス状炭化水素を濃縮せしめた状態 でこのガスを排出し、 得られたパージ排ガスを冷却して液化分離する方法も解決 手段の一つである。  In addition, when the adsorption tower is switched to the desorption tower and suction is performed by the vacuum pump, the gas is discharged in a state where gaseous hydrocarbons in the purged exhaust gas have been concentrated by applying a displacement purging means to the desorption tower in advance. A method for cooling and liquefying the purged exhaust gas is one of the solutions.
上述の何れの手段も、 パージ排ガス中のガス状炭化水素の液化は、 このパージ 排ガスを冷却するだけで可能であるけれども、 パージ排ガス中のガス状炭化水素 を濃縮する手段を伴うものであり、 しかも、 この濃縮手段それ自体煩雑であると 言うことができる。  In any of the above-mentioned means, liquefaction of gaseous hydrocarbons in the purged exhaust gas is possible only by cooling the purged exhaust gas, but involves means for concentrating the gaseous hydrocarbons in the purged exhaust gas, Moreover, it can be said that the enrichment means itself is complicated.
また、 上述の何れの手段も、 沸点の低い炭化水素の場合は、 容易に冷却せず、 強力な冷凍機を必要とするがために、 希薄なガス状炭化水素を濃縮する手段とし ては煩雑である。  In addition, in the case of hydrocarbons having a low boiling point, any of the above-mentioned means is not easily cooled and requires a powerful refrigerator, so that it is complicated to concentrate lean gaseous hydrocarbons. It is.
従って、 上記欠点を解消するために、 従来から多用されている活性炭吸着法に おいては、 毎分数百 m 3 という多量なガスを処理する場合、 主として繊維状活性 炭が使われており、 一方、 装置としては、 この繊維状活性炭からなる吸着剤層を 数 c m〜" h数 c mの厚さで薄く囲った "円筒または箱を多数内部に配置した吸着 装置" が使われてきた。 例えば 「K一フィルター (日東紡社製の商品名) 」 ある いは 「パイロメックス (東邦レーヨン社製の商品名) 」 などが使用されている。 この方法は、 後に詳述する本発明のように希薄な炭化水素を濃縮せずに、 数十 分〜数時間という長い時間をかけて吸着させ、 その後は、 スチームで脱着するだ けである。 Therefore, in order to overcome the above drawbacks, Oite activated carbon adsorption method has been widely used conventionally, when processing a large amount of gas that per minute hundred m 3, are used primarily fibrous active carbon, On the other hand, as an apparatus, there has been used an “adsorption apparatus in which a large number of cylinders or boxes are arranged inside” in which the adsorbent layer made of the fibrous activated carbon is thinly surrounded by a thickness of several cm to several hours. "K-filter (trade name, manufactured by Nitto Bo)" or "Pyromex (trade name, manufactured by Toho Rayon Co., Ltd.)" is used. In this method, a dilute hydrocarbon is adsorbed over a long period of time of several tens of minutes to several hours without being concentrated as in the present invention which will be described later, and then desorbed by steam.
しかし、 この方法の特徴は、 大量のガスを処理できるように 「吸着剤層を有す る吸着装置」 に工夫を凝らしているが、 大気中に排出されるガス中の炭化水素濃 度を " 1 0 0 p p m以下" にすることは困難である。 However, a feature of this method is that it has a sorbent layer so that it can process large quantities of gas. However, it is difficult to reduce the hydrocarbon concentration in the gas discharged into the atmosphere to "100 ppm or less".
く吸 ·脱着の切換え手段に係る従来技術〉  Conventional technology relating to means for switching between absorption and desorption>
一方、 前記吸着法によるガス状炭化水素を含む廃棄ガスの処理方法において、 吸着と脱着の切換えは、 電磁弁を介して時間制御で操作されている。 しかしなが ら、 時間制御で切り換える場合、 吸着塔が破過するに至る時間を予め実験や経験 で把握しておく必要がある。  On the other hand, in the method for treating waste gas containing gaseous hydrocarbons by the adsorption method, switching between adsorption and desorption is controlled by a time control via a solenoid valve. However, when switching by time control, it is necessary to know in advance the time required for the adsorption tower to break through experiments and experiences.
また、 時間制御による切換えは、 安直であるけれども、 吸着塔入口のガス状炭 化水素の量と濃度が絶えず大きく変動する場合、 吸着剤を必要量以上に多量充填 し、 そして、 早めに切り換えることが余儀なくされる。 そのため、 吸着剤が有効 に使用されないという問題が生じることもあった。  Switching by time control is straightforward, but if the amount and concentration of gaseous hydrocarbon at the inlet of the adsorption tower constantly fluctuates greatly, the adsorbent should be filled more than required and then switched earlier. Is forced. Therefore, there was a problem that the adsorbent was not used effectively.
上記問題点を解消するため、 吸着塔の 「破過の検知」 を種々の測定器を用いて 行い、 破過が検知しうる濃度になった時に脱着に切り換える方法が以前から行わ れてきた。  In order to solve the above problems, a method of detecting the breakthrough of the adsorption tower using various measuring instruments and switching to desorption when the concentration reaches a level at which breakthrough can be detected has been used for some time.
しかしながら、 破過する時の濃度は、 昨今の厳しい大気汚染防止法に従えば、 数 1 0 p p m以下という微量濃度が問題になるので、 それ以前に検知を必要とす る濃度は 1〜2 p p m以下のオーダ一になり、 相当に犬がかりで精密な測定器を 必要とする。  However, the concentration at the time of breakthrough is a trace concentration of several 10 ppm or less according to the recent severe air pollution control law, and the concentration that requires detection before that is 1-2 ppm. The order is as follows, and requires a very dog-based and precise measuring device.
また、 上記検知方法についても古くから種々提案がなされてきた。 例えば、 特 開昭 5 5— 3 5 9 9 6号公報には、  In addition, various proposals have been made for the above detection method since ancient times. For example, Japanese Patent Publication No. 55-39996 describes
「吸着, 脱着の二塔式 P S A精製装置を用い、 真空ポンプを使わずに吸着塔を 5 〜 1 O k g Z c m 2 に加圧した状態で湿ったガスの吸着を行い、 塔頂から乾いた ガスを放散させ、 一方、 脱着は、 塔の圧力を常圧に戻すことによって、 吸着ガス を吐き出させて再生する脱湿方法において、 刻々に変わる吸着塔を通るガス流量, 吸着塔の入口及び出口温度, 吸着塔の入口及び出口圧力, 脱着塔の再生圧力を含 む各部位の運転状態をデータとしてマイクロコンピューターに記憶させ、 物質収 支と熱収支の計算を瞬時に行わしめ、 その結果に基づいて、 脱着時間を制御し、 間接的に吸着と脱着の切り換え時期を自動制御する方法。 」 が開示されている。 "Adsorption, using a twin tower PSA purifier desorption performs adsorption wet gas in a state where pressurized adsorption tower 5 ~ 1 O kg Z cm 2 without using a vacuum pump, dry from the top In the dehumidification method in which the gas is released and the adsorption gas is discharged and regenerated by returning the pressure of the tower to normal pressure, the gas flow rate through the adsorption tower that changes every moment, the inlet and outlet of the adsorption tower The microcomputer stores the operating conditions of each part, including temperature, inlet and outlet pressures of the adsorption tower, and regeneration pressure of the desorption tower, as data, and calculates the material balance and heat balance instantaneously. A method that controls the desorption time and indirectly automatically controls the timing of switching between adsorption and desorption. " Is disclosed.
上記特開昭 5 5 - 3 5 9 9 6号公報に開示されている方法は、 吸着, 脱着の切 り換えを、 時間制御ではなく、 装置の運転状況を記憶させたマイクロコンピュー ターの指示に任せるという点で画期的な提案ではあるが、 当時は、 現在のように 優れた吸着モデルが無かったため、 シミュレーション手法を用いることができな かった。 即ち、 「破過濃度を吸着モデルのシミュレーションによって予測する」 という発想には至らなかった。  The method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 55-35996 is a method in which switching between adsorption and desorption is performed not by time control but by a microcomputer in which the operating state of the device is stored. It was an epoch-making proposal in that it was left to the public, but at the time, there was no superior adsorption model as at present, so the simulation method could not be used. That is, the idea of “predicting the breakthrough concentration by simulation of an adsorption model” was not reached.
その後、 破過に至る前に、 吸着剤層内に埋め込んだ測定ポートからガス中の被 吸着成分の濃度をいち早く検知し、 或るレベルの濃度に達した時に自動的に電磁 弁を切り換える方法が提案されている。  After that, before the breakthrough, the concentration of the adsorbed component in the gas is quickly detected from the measurement port embedded in the adsorbent layer, and the solenoid valve is automatically switched when the concentration reaches a certain level. Proposed.
しかしながら、 吸着剤が粒状活性炭やシリカゲルのように、 吸着孔径が 5人か ら 1 0 O Aの広がりを持つ場合、 局所的に濃度も温度も変動するので、 「吸着帯 層がガスの流れに沿って片寄らず、 一様な巾で出口に向かって上昇する」 という 保証はなく、 そのため、 測定する位置を特定することが困難である。 頂部から余 り深い位置に測定ポートを差し込むのであれば、 時間制御に勝る方法とは言い難 い。 このため、 現在では、 吸 ·脱着の切換え手段としては、 簡便な時間制御で行 うのが主流の技術になっている。  However, when the adsorbent has a pore size of 10 OA from 5 people, such as granular activated carbon or silica gel, the concentration and temperature fluctuate locally. There is no guarantee that it will rise toward the exit with a uniform width without deviation. Therefore, it is difficult to specify the position to be measured. If the measurement port is inserted too deep from the top, it is hard to say that it is better than time control. For this reason, at present, the mainstream technology for switching between absorption and desorption is simple time control.
本発明は、 前記 〈廃棄ガスの処理方法に係る従来技術〉 及び く吸 ·脱着の切換 え手段に係る従来技術〉 の項で記述した従来技術の問題点, 欠点に鑑み成された ものであり、 前記従来技術の更なる改良を試みたものである。  The present invention has been made in view of the problems and disadvantages of the prior art described in the above section <Prior art related to waste gas treatment method> and <Prior art related to absorption / desorption switching means>. This is an attempt to further improve the prior art.
そして、 本発明は、 大量の廃棄ガス中に含まれる希薄なガス状炭化水素を濃縮 し、 全体として極めて小量なガスとして取り出し、 それを焼却または産廃処理、 もしくは液化させる際の経済的負担を著しく軽減することを目的 (技術課題) と する。  And, the present invention concentrates the dilute gaseous hydrocarbons contained in a large amount of waste gas, extracts it as an extremely small amount of gas as a whole, and incurs an economic burden in incineration, industrial waste treatment, or liquefaction. The objective (technical issue) is to reduce significantly.
また、 本発明は、 希薄なガス状炭化水素を含む大量の廃棄ガスを無害化処理す る方法および装置において、 疎水性シリカゲルや活性炭, 合成ゼォライ ト等の固 体吸着剤を用いて、 該廃棄ガスを、 安全に、 しかも容易に、 かつ効率よく有害な 炭化水素を分離すると共に、 処理後に、 大気中に放出する廃棄ガス中の残存ガス 状炭化水素濃度を 1 0 0 p p m以下にし得る 「廃棄ガス中に含まれる希薄なガス 状炭化水素の処理方法および該方法を実施するための装置」 を提供することにあ る。 The present invention also provides a method and an apparatus for detoxifying a large amount of waste gas containing a dilute gaseous hydrocarbon, wherein the waste gas is treated using a solid adsorbent such as hydrophobic silica gel, activated carbon, or synthetic zeolite. Safe, easy and efficient separation of harmful hydrocarbons from gas, and residual gas in waste gas released into the atmosphere after treatment An object of the present invention is to provide a "method for treating a lean gaseous hydrocarbon contained in waste gas and an apparatus for performing the method", which can make the concentration of gaseous hydrocarbon less than 100 ppm.
更に、 本発明の他の目的は、 上記方法を装置化する際に、 システムを一体化し てスキッドに載せられるように、 可搬可能なように成し得る方法および装置を提 供することにある。 発明の開示  Still another object of the present invention is to provide a method and apparatus which can be made portable so that the system can be integrated and mounted on a skid when the above method is implemented as an apparatus. Disclosure of the invention
本発明に係る方法 (廃棄ガス中に含まれる希薄なガス状炭化水素の処理方法) は、  The method according to the present invention (the method for treating a lean gaseous hydrocarbon contained in waste gas) is as follows:
( 1 ) 吸着と脱着を交互に行う "吸着剤層を有する吸着装置" を用い、 [特に、 1分間に数百 m 3 という大量の廃棄ガスを処理する場合は、 内部に吸着剤層を多 重に配置した吸着装置 (—下記 (9 ) 〜 ( 1 2 ) 参照) を用い、 ] (1) alternately performs adsorption and desorption using an "adsorption unit having an adsorbent layer", [especially when dealing with large volumes of waste gas hundreds m 3 per minute, multi internal adsorbent layer Using a double-placed adsorption device (see (9) to (12) below)
一方の吸着装置にガス状炭化水素を含む廃棄ガスを通過せしめ、 該吸着装置内 の吸着剤層にガス状炭化水素を吸着させ、 実質的にガス状炭化水素を含まない廃 棄ガスを大気中に放出し、  The waste gas containing gaseous hydrocarbons is passed through one of the adsorbers, the gaseous hydrocarbons are adsorbed by the adsorbent layer in the adsorber, and the waste gas containing substantially no gaseous hydrocarbons is discharged into the atmosphere. Release to
その間に、 他方の吸着装置を脱着に切り換え、 該吸着装置内の吸着剤層に吸着 したガス状炭化水素を、 真空ポンプで吸引して離脱せしめ、 パージ排ガスに移行 させることから成る廃棄ガス中に含まれる希薄なガス状炭化水素の処理方法にお いて、  In the meantime, the other adsorber is switched to desorption, and the gaseous hydrocarbon adsorbed on the adsorbent layer in the adsorber is desorbed by suction with a vacuum pump, and is converted into waste gas, which is transferred to purged exhaust gas. In the method of treating lean gaseous hydrocarbons contained,
前記パージ排ガスの全量もしくは大部分を被処理廃棄ガスに戻し、 これによつ て、 吸着剤層内の炭化水素濃度を高め、 該吸着剤層が破過する前に脱着に切り換 えること、  Returning all or most of the purge exhaust gas to the waste gas to be treated, thereby increasing the hydrocarbon concentration in the adsorbent layer and switching to desorption before the adsorbent layer breaks through;
を特徴 (発明を特定する事項) とする。 (Characterizing the invention).
そして、 本発明に係る方法によれば、 上記したように、  And according to the method of the present invention, as described above,
•パージ排ガスの全量もしくは大部分を披処理廃棄ガスに戻し、 吸着剤層内の炭 化水素濃度を高めること (第 1の特徴点) 、  • Return all or most of the purged exhaust gas to waste gas to increase the concentration of hydrocarbons in the adsorbent layer (first feature).
•吸着剤層が破過する前に脱着に切り換えること (第 2の特徴点) 、 を特徴とし、 これによつて、 廃棄ガスから安全に、 しかも容易に、 かつ効率よく 炭化水素を処理すると共に、 処理後に、 大気中に放出するガス中の残存炭化水素 濃度を 1 0 0 p p m以下、 特に " 2 0 p p m以下" にすることができる。 • Switch to desorption before the adsorbent layer breaks through (second feature), This makes it possible to safely, easily, and efficiently treat hydrocarbons from waste gas, and reduce the concentration of residual hydrocarbons in the gas released into the atmosphere after treatment to 100 ppm or less. In particular, it can be "less than 20 ppm".
また、 本発明に係る方法は、  Also, the method according to the present invention comprises:
( 2 ) パージ排ガス中のガス状炭化水素の一部が液化した場合、 該液状炭化水 素を燃焼処理し、 または、 産業廃棄物として無害化処理することを特徴とし、 これにより、 ガス状炭化水素の回収に伴う煩雑な手段を回避できる。  (2) When a part of the gaseous hydrocarbons in the purged exhaust gas is liquefied, the liquid hydrocarbons are burned or detoxified as industrial waste, whereby the gaseous carbon Complex means associated with the recovery of hydrogen can be avoided.
さらに、 本発明に係る方法では、  Further, in the method according to the present invention,
( 3 ) 吸着剤層が、 活性炭および Zまたは疎水性シリカゲルの層から成り、 そ の頂部に合成ゼォライ ト層を配することを特徴とし、  (3) The adsorbent layer is composed of a layer of activated carbon and Z or hydrophobic silica gel, and a synthetic zeolite layer is disposed on top of the layer.
このような吸着剤を組み合わせることにより、 吸着剤層内の温度を容易に、 かつ 速やかに、 常温近くに一定させることができ、 吸着剤の性能を無駄なく、 フルに 発揮させることができる。 By combining such an adsorbent, the temperature in the adsorbent layer can be easily and promptly kept constant at around room temperature, and the performance of the adsorbent can be fully exhibited without waste.
また、 本発明に係る方法では、  In the method according to the present invention,
( 4 ) 吸着装置に充塡する吸着剤または充塡した吸着剤層に、 ガス状炭化水素 でプレコ一卜することを特徴とし、  (4) A gaseous hydrocarbon is pre-coated on the adsorbent or the adsorbent layer filled in the adsorption device,
これにより、 本来優先的に吸着される廃棄ガス中の窒素ガスや酸素ガス, 更には 水分の吸着を防止し、 廃棄ガス中のガス状炭化水素を有効に吸着させることがで き、 吸着剤層を極めて有効に活用することができる。 As a result, it is possible to prevent the adsorption of nitrogen gas and oxygen gas in the waste gas, which is originally preferentially adsorbed, as well as the adsorption of water, and to effectively adsorb gaseous hydrocarbons in the waste gas. Can be utilized very effectively.
さらに、 本発明に係る方法では、  Further, in the method according to the present invention,
( 5 ) 吸着装置内の吸着剤層に吸着したガス状炭化水素を離脱せしめる手段と して、 被吸着炭化水素の沸点以上に加熱した空気または液体の "水" を使用する ことを特徴とする。  (5) Air or liquid "water" heated above the boiling point of the hydrocarbon to be adsorbed is used as a means for releasing gaseous hydrocarbons adsorbed on the adsorbent layer in the adsorption device. .
ただし、 加熱空気を使用する場合は、 活性炭以外の吸着剤を使用する場合であ る。 活性炭以外の例えば不燃性の疎水性シリカゲルを用いる場合は、 最高 2 5 0 °Cという高温の空気をパージガスとして用いることができる。  However, when heated air is used, an adsorbent other than activated carbon is used. When using nonflammable hydrophobic silica gel other than activated carbon, for example, air having a high temperature of up to 250 ° C can be used as a purge gas.
また、 本発明に係る方法において、 特に液体の "水" を使用すると、 この水は、 真空ポンプとの併用によって脱着装置の内部で気化させ、 パージガスと同様な作 用効果を発揮させ得るばかりでなく、 気化したガス量は、 従来のスチーム使用の 場合の "数十分の一" という少ないガス量でパージできるという顕著な作用効果 が生じる。 In addition, in the method according to the present invention, particularly when liquid “water” is used, this water is vaporized inside the desorption device in combination with the vacuum pump, and works in the same manner as the purge gas. In addition to the use of steam, the amount of vaporized gas has the remarkable effect of being able to be purged with a gas amount as small as "several tenths" when using conventional steam.
本発明の前記第 2の特徴点である "吸着剤層が破過する前に脱着に切り換える 手段" としては、  The “means for switching to desorption before the adsorbent layer breaks through” that is the second feature of the present invention includes:
( 6 ) 吸着剤層内の頂部に温度検知ポートを配設し、 該温度検知ポー卜からの 温度がその上昇を停止した時点をもって、 自動的に電磁弁を切り換えることを特 徵とし、 また、  (6) A temperature detection port is provided at the top of the adsorbent layer, and the solenoid valve is automatically switched when the temperature from the temperature detection port stops rising.
( 7 ) 吸着運転時に得られる吸着装置の 「入口のガス流量」 , 「入口ガス中の 炭化水素濃度」 及び 「出口ガス中の所望の炭化水素濃度 (仮定値) 」 を数値デー タとしてチップに読み込ませ、 該チップ内に組み込んだ制御を目的としたシミュ レーションモデルを用いて切り換え時間を予め設定することを特徴とし、  (7) The “inlet gas flow rate”, “hydrocarbon concentration in the inlet gas”, and “desired hydrocarbon concentration in the outlet gas (assumed value)” of the adsorption device obtained during the adsorption operation are written as numerical data on the chip. The switching time is set in advance by using a simulation model for control incorporated in the chip.
これらの手段を採用することにより、 吸着剤層の破過時点を自動的に検知でき、 吸着 ·脱着の切り換えを自動的に行うことができる。  By employing these means, it is possible to automatically detect the breakthrough point of the adsorbent layer and automatically switch between adsorption and desorption.
そして、 本発明に係る方法によれば、  And according to the method of the present invention,
( 8 ) 吸着装置から大気に排出されるクリーンなガス中の炭化水素濃度を 1 0 0 p p m以下にすることができるものである。  (8) The hydrocarbon concentration in the clean gas discharged from the adsorption device into the atmosphere can be reduced to 100 ppm or less.
一方、 本発明に係る装置は、  On the other hand, the device according to the present invention
( 9 ) 前記 ( 1 ) 〜 (8 ) のいずれかに記載の処理方法を実施するための装置 であって、  (9) An apparatus for performing the processing method according to any one of (1) to (8),
該装置中の "吸着剤層を有する吸着装置" 力 吸着剤層を含むコンポーネント からなり、 該コンポーネントが密閉し得るが閉鎖し得ない容器からなること、 す なわち、 吸着剤を収容する容器の形状が如何なるものであっても、 充塡 (収容) した吸着剤が該容器から漏出することがなく、 かつ、 この容器に気体の流入 '流 出が可能な微細孔を多数設けた構成からなる容器であること、  The "adsorption device having an adsorbent layer" in the device is composed of a component including an adsorbent layer, and the component is composed of a container that can be sealed but cannot be closed, that is, a container for containing the adsorbent. Regardless of the shape, the filled adsorbent does not leak from the container, and the container is provided with a large number of fine holes through which gas can flow in and out. Container,
を特徴 (発明を特定する事項) とし、 Is a feature (items that specify the invention),
( 1 0 ) 前記 "吸着剤層を有する吸着装置" 力 吸着剤層を囲い、 かつ廃棄ガ スが円周方向に通気できる円筒を多重に内蔵する吸着装置であること、 ( 1 1 ) 前記吸着剤層の囲いが、 箱型コンポーネントないしはハニカム型コン ポ一ネン卜であって、 該コンポーネントを多重に内蔵する吸着装置であること、(10) The “adsorption device having an adsorbent layer” is an adsorption device that surrounds the adsorbent layer and has multiple built-in cylinders through which waste gas can be passed in the circumferential direction. (11) The enclosure of the adsorbent layer is a box-type component or a honeycomb-type component, and an adsorber that incorporates the component in a multiplex manner.
( 1 2) 前記吸着剤層が、 径が 0. 1〜 1 mmの微粒の吸着剤を充塡した層か らなること、 (1 2) The adsorbent layer is a layer filled with fine adsorbent having a diameter of 0.1 to 1 mm,
を特徴とし、 これにより、 特に、 1分間に数百 m3 という大量の廃棄ガスを処理 する場合に好適な装置を提供することができる。 図面の簡単な説明 This makes it possible to provide a device suitable for treating a large amount of waste gas of several hundred m 3 per minute. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の一実施例である 「廃棄ガス中の希薄なガス状炭化水素の処 理方法」 を説明するためのフローシート図である。  FIG. 1 is a flow sheet diagram for explaining “a method for treating a lean gaseous hydrocarbon in a waste gas” which is one embodiment of the present invention.
第 2図は、 第 1図に示すフローシートにおける 「運転状況を把握し制御するた めの制御盤」 の一例を示す図である。  FIG. 2 is a diagram showing an example of a “control panel for grasping and controlling an operating condition” in the flow sheet shown in FIG.
第 3図は、 本発明の実施例 1で使用する吸着塔の縦断面図である。  FIG. 3 is a longitudinal sectional view of an adsorption tower used in Example 1 of the present invention.
第 4図は、 本発明の実施例 2で使用する吸着塔の縦断面図である。  FIG. 4 is a longitudinal sectional view of the adsorption tower used in Embodiment 2 of the present invention.
第 5図は、 第 4図の吸着塔を更に説明する図であって、 第 5図 (A) は、 第 4 図の A— A断面図であり、 第 5図 (B) は、 第 4図の部分拡大詳細図である。 第 6図は、 「活性炭の水分吸着等温線」 を示す図である。  FIG. 5 is a diagram further illustrating the adsorption tower of FIG. 4, wherein FIG. 5 (A) is a sectional view taken along line AA of FIG. 4, and FIG. 5 (B) is a diagram of FIG. It is the elements on larger scale of the figure. FIG. 6 is a diagram showing a “water adsorption isotherm of activated carbon”.
なお、 図中の符号は、 1 a, 1 bは吸着塔、 2 a, 2 bは外筒、 3 a, 3 bは 吸着剤層、 3 - la, 3 - lbは活性炭、 3 - 2a, 3 -2 bは Y型合成ゼォライ ト、 4 a, 4 bは内筒、 5は冷却水、 1 0は廃棄ガス発生源、 1 1は廃棄ガス送気管、 1 2は排出管、 1 3は送水管、 1 4は水封式真空ポンプ、 1 5はパージ排ガス送 気管、 1 6は気液分離器、 1 7は産業廃棄物処理装置、 1 8はリターンガス送気 管、 2 0は制御盤、 2 1はメモリ、 2 2は C PU (演算) 、 2 3はメモリ (吸着 モデル) 、 4 1 a (4 1 b) は吸着塔、 4 2 a (4 2 b) , 4 2 a' (4 2 b' ) は外筒、 4 3 a (4 3 b) は吸着剤層、 4 3 - 1 a (4 3 -lb) は破砕活性炭、 4 3 -2 a ( 4 3 - 2b) は Y型合成ゼォライ トである。 発明を実施するための最良の形態 以下、 本発明に係る方法および装置 (以下、 単に "本発明" という) の実施の 形態について説明すると共に、 本発明をより詳細に具体的に説明する。 The symbols in the figure are 1a and 1b for the adsorption tower, 2a and 2b for the outer cylinder, 3a and 3b for the adsorbent layer, 3-la and 3-lb for activated carbon, 3-2a and 3-lb. 3-2b is a Y-type synthetic zeolite, 4a and 4b are inner cylinders, 5 is cooling water, 10 is a waste gas generation source, 11 is a waste gas air pipe, 12 is a discharge pipe, and 13 is a discharge pipe. Water pipe, 14 is a water ring vacuum pump, 15 is a purge exhaust gas pipe, 16 is a gas-liquid separator, 17 is an industrial waste treatment device, 18 is a return gas air pipe, 20 is a control Board, 21 is memory, 22 is CPU (calculation), 23 is memory (adsorption model), 41a (41b) is adsorption tower, 42a (42b), 42a ' (4 2 b ') is the outer cylinder, 4 3 a (4 3 b) is the adsorbent layer, 4 3-1 a (43 -lb) is crushed activated carbon, and 4 3 -2 a (43-2b) is Y-type synthetic zeolite. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a method and an apparatus according to the present invention (hereinafter, simply referred to as “the present invention”) will be described, and the present invention will be described in more detail.
本発明の第 1の特徴点は、 前記したとおり、 「パージ排ガスの全量もしくは大 部分を被処理廃棄ガスに戻し、 吸着剤層内の炭化水素濃度を高めること」 にあり、 第 2の特徴点は、 「吸着剤層が破過する前に脱着に切り換えること」 にあり、 こ れによって、 廃棄ガスから安全に、 しかも容易に、 かつ効率よく炭化水素を処理 すると共に、 処理後に、 大気中に放出するガス中の残存炭化水素濃度を 1 0 O p p m以下、 特に " 2 0 p p m以下'' にすることができる。  As described above, the first feature of the present invention lies in "returning all or most of the purged exhaust gas to the waste gas to be treated and increasing the hydrocarbon concentration in the adsorbent layer". Is to switch to desorption before the adsorbent layer breaks through, thereby safely, easily and efficiently treating hydrocarbons from waste gas, and after treatment, to the atmosphere. The residual hydrocarbon concentration in the released gas can be less than 100 ppm, especially "less than 20 ppm".
まず、 本発明の上記第 1の特徵点について説明すると、 本発明に係る方法の一 実施形態としては、 パージ排ガスの全量を被処理廃棄ガスに戻すが、 パージ排ガ ス中の炭化水素濃度が極端に高い場合、 吸着剤層が極めて短時間に破過するよう になり、 これでは、 廃棄ガスの処理に悪影響を与えことになる。 そのため、 本発 明の他の実施形態としては、 炭化水素濃度が極端に高い場合に、 パージ排ガスの 一部を取り出し、 これを無害化処理、 例えば燃焼処理に付し、 残部 (大部分) の パージ排ガスを被処理廃棄ガスに戻すのが望ましい。  First, the first feature of the present invention will be described. In one embodiment of the method according to the present invention, the entire amount of the purged exhaust gas is returned to the waste gas to be treated, but the hydrocarbon concentration in the purge exhaust gas is reduced. At extremely high levels, the adsorbent layer will break through in a very short time, which will adversely affect the treatment of waste gas. Therefore, as another embodiment of the present invention, when the hydrocarbon concentration is extremely high, a part of the purged exhaust gas is taken out, detoxified, for example, subjected to a combustion process, and the remaining (most) It is desirable to return the purge exhaust gas to the waste gas to be treated.
また、 パージ排ガス中のガス状炭化水素の一部が液化した場合、 該液状炭化水 素を分取し、 これを燃焼処理し、 または、 産業廃棄物として無害化処理すること もできる。  Further, when a part of the gaseous hydrocarbons in the purged exhaust gas is liquefied, the liquid hydrocarbons can be separated and burned, or detoxified as industrial waste.
次に、 本発明の第 2の特徴点である 「吸着装置が破過する前に脱着に切り換え る」 点について説明すると、 本発明における破過の検知手段は、 基本的には、 装 置に組み込んだ回路チップによるものであるが、 最近めざましく進歩してきた超 小型のチップを用いるため、 前記公知技術 (前掲の特開昭 5 5 - 3 5 9 9 6号公 報に開示されている技術) に記載されているような演算を目的とする大型マイク 口プロセッサ一を必要としない。  Next, the second feature of the present invention, that is, "switching to desorption before the adsorption device breaks through" will be described. The breakthrough detecting means of the present invention basically includes a device. Although it is based on a built-in circuit chip, it uses an ultra-small chip, which has recently made remarkable progress, so that the above-mentioned known technology (the technology disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 55-35996) is used. It does not require a large microphone processor for the purpose of calculation as described in (1).
そのうえ、 本発明の好ましい実施形態によれば、 運転時に得られたデータを拾 つてきて、 物質収支と熱収支の計算だけをさせるのではなく、 吸着モデルを R〇 Mに打ち込んで、 一方刻々に変化する運転時のデーターをロガ信号としてパソコ ンに読み込ませ、 シミ ュレーションさせることによって、 破過濃度を好ましくは 秒の単位で予測し、 吸着系を制御しょうとする点で、 前記従来技術とは全く異な る。 つまり、 本発明の好ましい実施形態である 「破過濃度を吸着モデルのシミュ レーションによって予測する」 という発想と明らかに相違する。 In addition, according to a preferred embodiment of the present invention, instead of picking up data obtained during operation and calculating only the material balance and heat balance, the adsorption model is entered into R〇M, while By reading the operation data that changes during the operation as a logger signal into a computer and simulating it, the breakthrough concentration is preferably reduced. This is completely different from the prior art in that it attempts to control the adsorption system by predicting in seconds. In other words, this is clearly different from the idea of “predicting breakthrough concentration by simulation of an adsorption model” which is a preferred embodiment of the present invention.
ところで、 "吸着モデル" としては、 種々提案されている力く、 その中でも、 吸 着剤の物性、 即ち、 "吸着等温曲線および吸着塔内部の吸着圧力, 真空ポンプの 真空度, 塔内ガス流速, 吸着剤層の高さ, パージ係数" を固定 (f r o z e n ) し、 そして、 時々刻々に変化する "入口ガス流量と濃度" を変数にして、 切り換 え時間か、 若しくは、 吸着剤層の出口濃度 (破過濃度) を仮定値としてチップに 入力して演算させる、 いわゆる " F r o z e n M o d e l " が著名である。  By the way, various types of "adsorption model" have been proposed. Among them, the physical properties of the adsorbent, that is, "adsorption isotherm and adsorption pressure inside adsorption tower, vacuum degree of vacuum pump, gas flow rate in tower" , The height of the adsorbent layer and the purge coefficient are fixed, and the variable “inlet gas flow rate and concentration” is used as the switching time or the outlet of the adsorbent layer. The so-called "Frozen Model", in which the concentration (breakthrough concentration) is input to the chip as an assumed value and calculated, is famous.
この他に、 時間がかかるが精度において優れた "平衡モデル" も知られている が、 本発明で用いる 「吸着モデル」 としては、 特にこれらに限定するものではな い。  In addition, an "equilibrium model", which takes time but is excellent in accuracy, is also known, but the "adsorption model" used in the present invention is not particularly limited to these.
本発明の第 2の特徴点である 「吸着装置が破過する前に脱着に切り換える」 点 を必須の構成要件とする理由は、 前記本発明の第 1の特徴点である 「パージ排ガ スの全量もしくは大部分を被処理廃棄ガスに戻し、 吸着剤層内の炭化水素濃度を 高める」 点と密接に関連する。  The second feature of the present invention, that is, "switching to desorption before the adsorption device breaks through" is an essential component, because the first feature of the present invention, "purge exhaust gas" Is returned to the waste gas to be treated to increase the hydrocarbon concentration in the adsorbent layer. "
即ち、 処理すべき廃棄ガスの量と含まれるガス状炭化水素濃度が一定せずに刻 々と変化し、 破過する迄の時間を予め想定することが困難である場合において、 更に加えて、 該廃棄ガスに未凝縮パージ排ガスを混入することにより (第 1の特 徴点を採用することにより) 、 吸着装置入口ガスの炭化水素濃度および吸着装置 内の吸着剤層中の炭化水素濃度が、 共により一層変化し、 そのため、 破過する迄 の時間を予め想定することがより一層困難になるからである。 従って、 この問題 点を解消するために、 上記第 2の特徴点を必須の構成要件とするものである。  In other words, when the amount of waste gas to be treated and the concentration of gaseous hydrocarbons contained therein are not constant and change every moment, and it is difficult to predict in advance the time until breakthrough, By mixing the uncondensed purge exhaust gas with the waste gas (by adopting the first feature point), the hydrocarbon concentration in the adsorber inlet gas and the hydrocarbon concentration in the adsorbent layer in the adsorber are reduced. Both of them change even more, and it becomes even more difficult to predict the time until breakthrough. Therefore, in order to solve this problem, the above-mentioned second characteristic point is set as an essential component.
もっとも、 本発明は、 従前から行われている時間制御による切り換え手段を排 除するものではない。 何故ならば、 吸着塔の入口ガス (廃棄ガス十前記未凝縮パ ージ排ガス) に含まれるガス状炭化水素の濃度が時間の経過においてほぼ一定の 場合は、 吸着塔の運転を開始して破過する迄の時間を予め求めておき、 次回の吸 着操作では、 この時間を目安にして切り換えることも便法の一^ ^であるからであ る。 加えて、 本発明者等が開発した吸着装置において、 脱着塔の運転操作から脱 着が完了する時間を予測して "時間制御による切り換え手段" を採用することも 選択肢の一つであるからである。 すなわち、 前記の例( 吸着塔の脱着塔への切り 換え) とは逆に、 脱着塔の吸着塔への切り換え手段についても、 時間制御による 手段を採用することができる。 この手段を詳記すれば、 脱着操作に移行して真空 ポンプが稼動を開始し、 所定の真空度に達した時点を検知した後に、 パージガス を脱着塔に導入し、 この導入時間を予めセッ トしておいて、 時間がきたら自動的 に吸着操作に切り換える方法である。 However, the present invention does not eliminate the switching means based on time control that has been performed conventionally. If the concentration of gaseous hydrocarbons contained in the gas at the inlet of the adsorption tower (waste gas / the above-mentioned uncondensed page exhaust gas) is almost constant over time, the operation of the adsorption tower is started and the destruction occurs. This is because it is one of the expedients to determine the time until the time is spent in advance, and to switch using this time as a guide in the next suction operation. You. In addition, in the adsorption apparatus developed by the present inventors, it is one of the options to adopt a “switching means by time control” by predicting the time when desorption is completed from the operation of the desorption tower. is there. That is, contrary to the above-described example (switching the adsorption tower to the desorption tower), the means for switching the desorption tower to the adsorption tower can be time-controlled. If this means is described in detail, the operation shifts to the desorption operation, the vacuum pump starts operating, and after detecting the point when a predetermined degree of vacuum is reached, purge gas is introduced into the desorption tower, and this introduction time is set in advance. This is a method that automatically switches to the suction operation when the time is up.
前述のように、 入口ガスの流量と濃度とが刻々変動する場合、 本発明の好まし い実施形態によれば、 吸着剤層に吸着されるガス状炭化水素の濃度を破過寸前に まで自動的に高濃度に濃縮することができる。  As described above, in the case where the flow rate and the concentration of the inlet gas fluctuate, according to a preferred embodiment of the present invention, the concentration of the gaseous hydrocarbon adsorbed on the adsorbent layer is automatically reduced to just before the breakthrough. It can be concentrated to a high concentration.
そして、 これを僅かなパージ排ガス量として取り出した後は、 前記したとおり、 このパージ排ガスの一部を取り出し、 これを例えば燃焼処理に付すことができ、 また、 パージ排ガス中のガス状炭化水素を液状炭化水素として分取し、 これを燃 焼処理し、 または、 産業廃棄物として無害化処理することもできる。  Then, after taking out this as a small amount of purge exhaust gas, as described above, a part of this purge exhaust gas can be taken out and subjected to, for example, a combustion treatment, and gaseous hydrocarbons in the purge exhaust gas can be removed. It can be separated as liquid hydrocarbons and burned, or detoxified as industrial waste.
ただし、 このような利点がある反面、 欠点としては、 吸着に要する時間と脱着 に要する時間とが余りにも違い過ぎる場合、 例えば、 吸着して破過寸前になるま でに数日かかり、 一方、 脱着工程は数時間で済むといった場合、 作業を管理する 者の立場からすれば、 必ずしも好ましい方法とは言い難い。  However, while having such advantages, the disadvantage is that if the time required for adsorption and the time required for desorption are too different, for example, it takes several days before adsorption and just before breakthrough, If the desorption process takes only a few hours, it is not necessarily the preferred method from the perspective of the person managing the work.
そこで、 「適正な吸着剤」 が適正に充塡されている場合には、 吸着剤層の頂部 付近では、 吸着すべきガス状炭化水素の量が極端に少なくなつており、 このため に発生する吸着熱量が極端に少なくなり、 しかも、 それを上回る熱量が冷却水や 吸着塔の塔壁から外に放散されるようになる。 その結果、 チップにデータを取り 込むために頂上付近に差し込んだ測定ポートからの信号、 即ち、 指示温度が停止 し、 そのうちに次第に温度が下がってくる。 この時点を見計らって自動的に吸 · 脱着の切り換え弁 (電磁弁) を切り換える手段を併用すれば、 前述の欠点は解消 でき、 これも本発明に包含されるものである。  Therefore, when the “appropriate adsorbent” is properly filled, the amount of gaseous hydrocarbons to be adsorbed is extremely small near the top of the adsorbent layer, which is generated. The amount of heat absorbed is extremely reduced, and more heat is radiated outside from the cooling water and the wall of the adsorption tower. As a result, the signal from the measurement port inserted near the top to capture data into the chip, ie, the indicated temperature, stops, and the temperature gradually decreases over time. If the means for automatically switching the intake / desorption switching valve (solenoid valve) at this time is used together, the above-mentioned disadvantages can be solved, and this is also included in the present invention.
「適正な吸着剤」 とは、 吸着孔径が或る大きさにコントロールされ、 局部的に 吸着量にムラが生じ難い、 しかも、 廃棄ガス中の相対湿度が約 5 0 %以上と高い 領域でも、 水分を吸着し難い吸着剤であり、 例えば合成ゼォライ 卜のような吸着 剤が最適である。 “Appropriate adsorbent” means that the adsorption pore diameter is controlled to a certain size, Adsorbents that are unlikely to cause unevenness in the amount of adsorption and that do not easily adsorb moisture even in areas where the relative humidity in the waste gas is as high as about 50% or more.For example, an adsorbent such as synthetic zeolite is optimal. .
そこで、 本発明の好ましい実施形態の一例としては、 吸着剤層の頂部に合成ゼ オライ ト層を配することであり、 そして、 この合成ゼォライ トからなる吸着剤層 内に温度検知ポートを配設し、 該温度検知ポ一卜からの温度がその上昇を停止し た時点をもって、 自動的に電磁弁を切り換える手段を採用することである。 そし て、 この合成ゼォライ トからなる吸着剤層の下部に充塡する吸着剤としては、 プ レコートされた活性炭、 または、 同じくプレコートされた疎水性シリカゲルが好 適である。  Therefore, as an example of a preferred embodiment of the present invention, a synthetic zeolite layer is provided on the top of the adsorbent layer, and a temperature detection port is provided in the adsorbent layer made of the synthetic zeolite. However, means for automatically switching the solenoid valve when the temperature from the temperature detection port stops increasing its temperature is adopted. As the adsorbent to be filled in the lower part of the adsorbent layer composed of the synthetic zeolite, pre-coated activated carbon or similarly pre-coated hydrophobic silica gel is preferable.
ここで、 本発明の好ましい実施形態である上記 "プレコート" の技術的意義に ついて説明する。  Here, the technical significance of the above-mentioned “precoat”, which is a preferred embodiment of the present invention, will be described.
吸着剤層にガス状炭化水素が濃縮される程度は、 理論的には、 真空度が 2 5 m m H gの場合、 炭化水素だけが吸着されるのであれば " 7 6 0 7 2 5 " 、 すなわ ち "約 2 5倍" の濃さになるが、 通常、 多量の空気が共存しており、 そして、 こ の空気中の窒素ガスや酸素ガスの分子径は、 炭化水素の分子径よりも極めて小さ く、 このため、 窒素ガスや酸素ガスが炭化水素ガスに優先して吸着されることに なる。 その結果として、 入口の炭化水素濃度の 4倍の濃さにしか濃縮できないこ とが経験的に知られるている。  The degree to which gaseous hydrocarbons are concentrated in the adsorbent layer is, theoretically, "760725" if only hydrocarbons are adsorbed when the degree of vacuum is 25 mm Hg, That is, the density is about 25 times higher, but usually a large amount of air coexists, and the molecular diameter of nitrogen gas or oxygen gas in this air is larger than that of hydrocarbons. Therefore, nitrogen gas and oxygen gas are adsorbed in preference to hydrocarbon gas. As a result, it is empirically known that it can only be concentrated to four times the concentration of hydrocarbons at the inlet.
また、 本発明で使用する活性炭や合成ゼォライ ト, 疎水性シリカゲル等の固体 吸着剤では、 全く水分を吸着しないという吸着剤ではなく、 第 6図に示すように、 被吸着ガス中の水分の相対的濃度によって、 吸水率は大きく変化する。  In addition, the solid adsorbent such as activated carbon, synthetic zeolite, and hydrophobic silica gel used in the present invention is not an adsorbent that does not adsorb moisture at all, but as shown in FIG. The water absorption varies greatly depending on the target concentration.
被吸着ガスが湿った空気の場合、 関係温度が約 4 0 %以下では殆ど水分を吸着 しないが、 5 0 %を超えると急激に水を吸着するようになる (第 6図参照) 。 な お、 第 6図は、 活性炭の水分吸着等温線を示したが、 他の疎水性の吸着剤につい ても同様なことが言える。  When the gas to be adsorbed is moist air, almost no water is adsorbed when the relevant temperature is less than about 40%, but water is rapidly adsorbed when the temperature exceeds 50% (see Fig. 6). Fig. 6 shows the water adsorption isotherm of activated carbon, but the same can be said for other hydrophobic adsorbents.
そこで、 本来優先的に吸着される廃棄ガス中の窒素ガスや酸素ガス, 水分の吸 着を妨げるために、 吸着剤層を予めプレコ一卜するのが望ましい。 プレコート手段としては、 例えば、 処理すべき廃棄ガスに液状炭化水素を滴下 することにより、 具体的には、 処理すべき廃棄ガスの導管に液状炭化水素をスプ レーすることにより、 吸着剤層をプレコートすることができる。 また、 プレコ一 卜剤としては、 上記液状炭化水素以外に、 例えば、 水と親和性があって沸点が水 より高い炭化水素のような物質を使用することができる。 Therefore, it is desirable to pre-coat the adsorbent layer in order to prevent the adsorption of nitrogen gas, oxygen gas, and moisture in waste gas which is originally preferentially adsorbed. As a pre-coating method, for example, the adsorbent layer is pre-coated by dripping liquid hydrocarbons into the waste gas to be treated, specifically, by spraying the liquid hydrocarbons into the conduit of the waste gas to be treated. can do. As the pre-coating agent, in addition to the above liquid hydrocarbons, for example, substances such as hydrocarbons having an affinity for water and having a higher boiling point than water can be used.
前記したように、 本発明者は、 ガス状炭化水素を含む大量の廃棄ガスを処理す る手段の開発にあたって、 データを取り込む手段である "ロガ信号" というハー ド面における要素技術をこのシステムに巧みに組み込み、 さらに、 制御システム に組み込んだ " R O M化した吸着モデルのシミュレーション" という、 いわゆる ソフ ト面における新規な手段を併用することによって、 入口の炭化水素濃度が刻 々変化するに関わらず短時間内に破過濃度を容易に推定でき、 更に適切な吸着剤 を選定することにより、 吸着剤層内の温度を容易に、 かつ、 速やかに、 常温近く に一定させることに成功した。  As described above, the present inventor developed a system for processing a large amount of waste gas containing gaseous hydrocarbons, using the elemental technology on the hard surface called “loga signal”, which is a means for capturing data, in this system. By using a new technique on the so-called soft surface, that is, a “simulation of a ROMized adsorption model” that has been cleverly incorporated into the control system, it is possible to shorten the time regardless of the change of the hydrocarbon concentration at the inlet. By easily estimating the breakthrough concentration in time and selecting an appropriate adsorbent, the temperature in the adsorbent layer was easily and promptly kept constant at around room temperature.
その結果、 吸着から脱着への切り替え時期を、 単に時間のサイクルで設定する のではなく、 "吸着モデル" を組み込んだパソコン (ソフ ト) の判断に任せるこ とによって、 吸着剤の性能を無駄なく、 フルに発揮させることができるようにな つた。 このため、 パージ排ガス中の希薄な炭化水素を破過する寸前にまで濃縮し、 そして、 極めて少量のパージ排ガスで、 且つ、 極めて濃厚な炭化水素として取り 出すことが可能となった。  As a result, the timing of switching from adsorption to desorption is not simply set by a cycle of time, but is left to the discretion of a personal computer (software) that incorporates an "adsorption model", thereby reducing the performance of the adsorbent without waste. It is now possible to make full use of it. For this reason, it became possible to concentrate the lean hydrocarbons in the purge exhaust gas to just before breakthrough, and to extract it as an extremely rich hydrocarbon with a very small amount of purge exhaust gas.
(吸着剤について)  (About adsorbent)
本発明において使用する吸着剤としては、 素材が可燃性, 不燃性を問わず、 廃 棄ガス中の炭化水素ガスと親和性のある固体吸着剤であれば任意に使用すること ができる。  As the adsorbent used in the present invention, any solid adsorbent having an affinity for the hydrocarbon gas in the waste gas can be used regardless of whether the material is flammable or nonflammable.
しかし、 廃棄ガス中の炭化水素の濃度が 5 0 0 0 p p m程度と希薄な場合は、 望ましくは、 安価で人手が容易な疎水性シリカゲルが望ましい。 その理由は、 ノ、。 —ジガスの温度を約 2 5 0 °Cまで高めて使用することができるためである。  However, when the concentration of hydrocarbons in the waste gas is as low as about 500 ppm, hydrophobic silica gel which is inexpensive and easy to handle is desirable. The reason is no. —Because the temperature of the digas can be raised to about 250 ° C for use.
不燃性のシリ力ゲルを用し、る場合は、 トリメチルクロロシラン等のシランカツ プリング剤で疎水化処理したものや、 高温で長時間処理して疎水性, 親油性を持 たせたもの、 或いは、 エチレングライコ一ルゃヘプタンのような高沸点の炭化水 素でプレコートした吸着剤が好適である。 もっとも、 最適な吸着剤はと言えば、When using non-combustible silica gel, if it is hydrophobized with a silane coupling agent such as trimethylchlorosilane or treated at high temperature for a long time, it will be hydrophobic and lipophilic. Preferred are adsorbents or adsorbents precoated with high boiling hydrocarbons such as ethylene glycol heptane. But the best adsorbent is
R Hが 5 0 %以上であっても、 数%の水しか吸はない個体吸着剤である。 It is a solid adsorbent that absorbs only a few% of water, even if R H is 50% or more.
そもそも、 吸着剤として用いられる活性炭, 合成ゼォライ ト, シリカゲル, 活 性アルミナ等の固体吸着剤は、 ガス状炭化水素と強い親和性を持つ一方、 断熱剤 としても重用されているものである。 また、 合成ゼォライ トは別として、 それ以 外の吸着剤は、 吸着孔径の分布が広いため、 吸着箇所の濃度が一様ではなく、 口 一カルヒーティングを起こし易い。  In the first place, solid adsorbents such as activated carbon, synthetic zeolite, silica gel, and activated alumina used as adsorbents have strong affinity for gaseous hydrocarbons, but are also widely used as heat insulators. Apart from synthetic zeolite, the other adsorbents have a wide distribution of adsorption pore diameters, so that the concentration at the adsorption site is not uniform and mouth-to-mouth heating tends to occur.
一般的に云って、 疎水性シリカゲルや粒状活性炭の場合は、 粒径や上昇温度に もよるが、 約 4インチ以上の厚みでは、 吸着熱を冷却水層にまで短期間に移動さ せることができないとされている。  Generally speaking, in the case of hydrophobic silica gel or granular activated carbon, depending on the particle size and the temperature rise, for a thickness of about 4 inches or more, the heat of adsorption can be transferred to the cooling water layer in a short time. It is not possible.
従って、 4インチ以上の厚みでは、 円周方向の熱移動にそれ程期待できず、 縦 方向に流れるガスが持ち出す熱移動に頼ることになる。 このため、 吸着塔内の温 度分布に影響されて、 或る幅をもつ吸着帯層が均一に、 かつ、 一様に吸着塔出口 に向かって移動するかどうかが問題になる。 即ち、 破過時点の濃度を吸着塔の出 口で検知する場合は問題にならないが、 吸着剤の中に埋め込んだ位置に配した検 知ポ一卜で見る場合は問題になる。  Therefore, with a thickness of 4 inches or more, heat transfer in the circumferential direction cannot be expected so much, and it depends on heat transfer carried out by gas flowing in the vertical direction. For this reason, it is a problem whether or not the adsorption zone having a certain width moves uniformly and uniformly toward the outlet of the adsorption tower, affected by the temperature distribution in the adsorption tower. That is, there is no problem when the concentration at the time of breakthrough is detected at the outlet of the adsorption tower, but it is a problem when viewed at the detection port disposed at the position embedded in the adsorbent.
これを避けるために推奨される手段は、 吸着剤層の最上段、 即ち、 出口にもつ とも近い位置に合成ゼォライ トを載せることである。 例えば、 Y型ゼォライ ト " 3 6 0 H U D (東ソ一社の製品名) " 等である。  The recommended way to avoid this is to place the synthetic zeolite at the top of the adsorbent layer, ie, near the outlet. For example, Y-type zeolite “360 HUD (product name of Tosoh Corporation)” or the like.
合成ゼォライ 卜は、 疎水性シリカゲルや粒状活性炭と違って、 孔径が或る大き さに厳密にコントロールされ、 選択する素材によっては、 ガス状炭化水素の分子 径のほぼ全部をカバーしている品種もある。 しかも、 ガス状炭化水素を吸着する 割合は、 重量比で 1 5〜2 0 %であるのにも関わらず、 R Hが 5 0 %以上の状態 のガスに対しても水の吸着量は 1 0 %以下である。 このため、 この層を移動する 或る巾を持った吸着帯には片寄りが生じないからである。  Synthetic zeolite, unlike hydrophobic silica gel or granular activated carbon, has a strictly controlled pore size to a certain size.Depending on the material selected, some varieties cover almost the entire molecular diameter of gaseous hydrocarbons. is there. In addition, despite the fact that the ratio of adsorbing gaseous hydrocarbons is 15% to 20% by weight, the amount of water adsorbed is 10% even for gases with RH of 50% or more. % Or less. For this reason, there is no deviation in the adsorption band having a certain width moving in this layer.
また、 データロガ信号として取り込む濃度並びに温度の検知用ポートは、 合成 ゼォライ ト層の中心部に配する必要がある。 このようにすれば、 破過時点を検出 する上記の手段に併せて、 その中心部での温度の指示が、 吸着熱による温度の上 昇を停止した時点を切り換えの目安にすることができる。 かかる合成ゼォライ ト は、 S i 02,A 1 203の比が 2 0以上で、 約 8オングストロ一ムの孔径をもつ ものが望ましい。 In addition, the port for detecting the concentration and temperature to be taken in as a data logger signal must be located at the center of the synthetic zeolite layer. In this way, the breakthrough point is detected. In addition to the above-mentioned means, the point at which the temperature indication at the central portion stops the temperature rise due to the heat of adsorption can be used as a guide for switching. Such synthetic Zeorai DOO, the ratio of S i 0 2, A 1 2 0 3 is 2 0 or more, those having a pore size of about 8 angstroms Ichimu is desirable.
(吸着装置について)  (About the adsorption device)
次に、 本発明で用いる "吸着剤層を有する吸着装置" の実施形態 (第 1および 第 2の実施形態) について説明する。  Next, embodiments (first and second embodiments) of the “adsorption device having an adsorbent layer” used in the present invention will be described.
(吸着装置の第 1の実施形態)  (First embodiment of the adsorption device)
本発明で用いる "吸着剤層を有する吸着装置" の第 1の実施形態は、 吸着剤層 の温度と濃度を局所的に均一化するために、 上記の吸着剤層中で発生した吸着熱 を横方向に吸着剤層から速やかに移動させ、 除去する手段として、 ガス状炭化水 素を吸着するための吸着剤層と、 この吸着剤層を冷却するための冷却水層とが、 隣接して構成される "2重円筒または多重円筒型の吸着塔" を用いることが好ま しい。 そして、 吸着剤層内に発生する静電気が該層の中心部に集まる傾向を考慮 して、 冷却を兼ねて静電気を逃がすために、 金属製の円筒を中心部に配した構造 の吸着塔の使用が望ましい。  In the first embodiment of the "adsorption device having an adsorbent layer" used in the present invention, in order to locally uniform the temperature and concentration of the adsorbent layer, the heat of adsorption generated in the adsorbent layer is used. As a means for quickly moving and removing the adsorbent layer in the lateral direction, an adsorbent layer for adsorbing gaseous hydrocarbons and a cooling water layer for cooling the adsorbent layer are adjacent to each other. It is preferable to use a “double cylinder or multiple cylinder type adsorption tower” configured. In consideration of the tendency of static electricity generated in the adsorbent layer to gather at the center of the layer, use of an adsorption tower with a structure in which a metal cylinder is arranged at the center to release static electricity while also cooling. Is desirable.
本発明で用いる上記第 1の実施形態の具体的な吸着塔について、 第 3図を参照 して説明すると、 この吸着塔 1 a ( 1 b) は、 外筒 2 a ( 2 b) , 吸着剤層 3 a ( 3 b) , 内筒 4 a (4 b) , 冷却水 5により構成される。  The specific adsorption tower of the first embodiment used in the present invention will be described with reference to FIG. 3. The adsorption tower 1a (1b) comprises an outer cylinder 2a (2b) and an adsorbent. Layer 3 a (3 b), inner cylinder 4 a (4 b), and cooling water 5.
なお、 この吸着塔 1 a ( 1 b) は、 後記する本発明の実施例 1で使用する吸着 塔であり、 図中の 3 - la ( 3 - lb) は活性炭であり、 3 - 2 a ( 3 -2 b) は Y型合 成ゼォライ トである。  The adsorption tower 1a (1b) is an adsorption tower used in Example 1 of the present invention described later, and 3-la (3-lb) in the figure is activated carbon, and 3-2a ( 3-2b) is a Y-type synthetic zeolite.
また、 本発明の上記吸着塔 1 a ( 1 b) として付記すべき点の一つは、 吸着塔 の内部の圧力を高めれば、 吸着剤に吸着される炭化水素の有効吸着量が格段に增 加することは P S A法の理論から言って当然のことであるので、 本発明の実施 に際しても、 吸着塔 l a ( l b) の内圧を 「高圧法規」 に抵触しないゲージ圧 " 1 k g/ c m2以下" で操作することは極めて望ましいことである。 One of the points to be noted as the adsorption tower 1a (1b) of the present invention is that if the pressure inside the adsorption tower is increased, the effective adsorption amount of hydrocarbons adsorbed by the adsorbent is remarkably increased. since the pressure is a matter of course to say from the theory of PSA process, even in the practice of the present invention, the gauge pressure "1 kg / cm 2 or less that does not conflict with the internal pressure of the adsorption tower la (lb) to the" high pressure regulations " Working with "is highly desirable.
(吸着装置の第 2の実施形態) 本発明において、 従来から汎用されている "塔式であって、 内部に密に吸着剤 を充塡した吸着装置" をも用いることができるが、 処理すべき廃棄ガスの量が多 量の場合には、 この従来型では問題が生じる。 (Second embodiment of the adsorption device) In the present invention, a conventionally used “tower-type, adsorption device that is densely packed with an adsorbent” can also be used, but when the amount of waste gas to be treated is large, In this case, a problem arises with this conventional type.
この問題点を詳細に説明すると、 例えば 1時間に " 3 6, 0 0 0 m 3 " の廃棄 ガスを処理しょうとする場合、 従来型では、 塔径が約 1 O m必要になる。 To explain this problem in detail, for example, when processing 36,000 m 3 of waste gas per hour, the conventional type requires a tower diameter of about 1 Om.
その理由は、 吸着効率の面から吸着剤層を通過する廃棄ガスの通過速度 [即ち 吸着剤と接触する時間 (S V値) ] に制限があるためである。 一般にこの速度は、 吸着剤粒子が流動しない値以下に定められており、 通常 " 1 0〜2 0 c mZ秒" である。 このガス通過速度の平均値 " 1 5 c mZ秒 (0 . 1 5 m/秒) " をとつ て算出すると、 次式で示すように " 1 O m" となる。  The reason is that there is a limitation on the passage speed of waste gas passing through the adsorbent layer [that is, the time of contact with the adsorbent (SV value)] in terms of adsorption efficiency. Generally, this speed is set to a value below which the adsorbent particles do not flow, and is usually "10 to 20 cmZ seconds". Calculating the average value of this gas passage velocity "15 cmZ seconds (0.15 m / sec)" results in "1 Om" as shown in the following equation.
'式: TT R 2 X O . 1 5 = 3 6 , 0 0 0 / 3 , 6 0 0 = 1 0 'Formula: TTR 2 XO. 15 = 3 6, 0 0 0/3, 6 0 0 = 1 0
本発明では、 このような塔径の吸着塔を用いることは現実的ではない。  In the present invention, it is not practical to use an adsorption tower having such a diameter.
一方、 吸着効率は、 吸着剤粒子の大きさに密に関係する。 例えば、 同じ容量の 吸着剤層に粒径の大きな吸着剤と粒径の小さな吸着剤を詰め込んだ場合を比較し てみると、 当然のことながら粒径の小さい方が効率は良くなるけれども、 流動し 易くなるので、 小さすぎても問題がある。 このため、 従来使用されている吸着剤 は、 その径としては、 吸着剤の種類や形状等にもよるが、 2〜3 m mが適当とさ れている。  On the other hand, adsorption efficiency is closely related to the size of the adsorbent particles. For example, when comparing the case where a large particle size adsorbent and a small particle size adsorbent are packed in an adsorbent layer of the same capacity, it is natural that the smaller the particle size, the higher the efficiency, but the higher the flow rate. There is a problem even if it is too small. For this reason, the diameter of the conventionally used adsorbent depends on the type and shape of the adsorbent, but 2-3 mm is appropriate.
吸着剤の流動を避け、 かつ密に充塡した吸着装置としては、 繊維状活性炭のク ロスを吸着装置の内部に配位させ、 このクロスを横切る方向に廃棄ガスを流すよ うな構造のものであり、 この具体例としては、 前述の 「K—フィルター (東洋紡 社製の商品名) 」 , 「パイロメ ックス (東邦レーヨン社製の商品名) 」 である。 上記構造の吸着装置では、 ガスの通過面積を大きく取れる利点がある反面、 吸 着剤層が薄いため、 接触時間が短く、 廃棄ガス中の希薄な炭化水素を充分に捕集 できないという欠点を有している。  The adsorber, which avoids the flow of the adsorbent and is densely packed, has a structure in which the cross of fibrous activated carbon is coordinated inside the adsorber and the waste gas flows in the direction across the cloth. There are specific examples of the above-mentioned "K-filter (trade name, manufactured by Toyobo)" and "Pyromex (trade name, manufactured by Toho Rayon Co., Ltd.)". The adsorber with the above structure has the advantage that a large gas passage area can be obtained, but has the disadvantage that the adsorbent layer is thin, so that the contact time is short and dilute hydrocarbons in waste gas cannot be collected sufficiently. are doing.
しかも、 この装置における脱着手段としては、 スチームの使用以外に考えられ ず、 真空ポンプの併用ができないものである。  In addition, the desorption means of this device cannot be considered other than the use of steam, and cannot be used together with a vacuum pump.
吸着理論から言えば、 吸着効率は、 " K f a v " 、 即ち、 "総括物質移動容量 係数 ( 1 /s e c) の値" で示される。 本発明者が行った実験および本発明者が 建設した工業装置での運転実績の解析から、 K f a vの値は、 粒径が 2〜3 mm の吸着剤を使用した場合は、 ガス状炭化水素の性状にもよるが、 ほぼ "3〜6" の範囲にある。 In terms of adsorption theory, the adsorption efficiency is "Kfav", that is, "overall mass transfer capacity" The value of the coefficient (1 / sec) is shown in the following table. From the experiments conducted by the present inventor and the analysis of the operation results with the industrial equipment constructed by the present inventor, the value of K fav When the adsorbent is used, it is almost in the range of "3 to 6", depending on the properties of the gaseous hydrocarbon.
これに対して、 繊維状活性炭を使用した場合は、 "1 5〜2 5" の範囲にあつ て、 吸着性能が数倍優れていることになる。 具体的に言えば、 ガスと吸着剤の接 触時間が "約 1 Z5" で済むということになる。  On the other hand, when fibrous activated carbon is used, the adsorption performance is several times better in the range of "15 to 25". Specifically, the contact time between the gas and the adsorbent is "about 1 Z5".
本発明者は、 この点に着目して、 処理すべき廃棄ガスが大量である場合にも適 応できる、 新規で且つ経済的な吸着装置 [本発明で用いる "吸着剤層を有する吸 着装置" の第 2の実施形態] を開発したものである。  By paying attention to this point, the present inventor has developed a novel and economical adsorption apparatus that can be applied even when the amount of waste gas to be treated is large [adsorption apparatus having an adsorbent layer used in the present invention] 2nd Embodiment] was developed.
本発明の新規で且つ経済的な吸着装置 (第 2の実施形態に係る吸着塔) として は、 吸着剤層を有する吸着装置が、 吸着剤層を含むコンポーネントからなり、 該 コンポーネントが密閉し得るが閉鎖し得ない容器からなること、 すなわち、 吸着 剤を収容する容器の形状が如何なるものであっても、 充塡 (収容) した吸着剤が 該容器から漏出することがなく、 かつ、 この容器に気体の流入 ·流出が可能な微 細孔を多数設けた構成からなる容器であること、 具体的には、  As a novel and economical adsorption device (adsorption tower according to the second embodiment) of the present invention, an adsorption device having an adsorbent layer is composed of a component including an adsorbent layer, and the component can be hermetically sealed. It consists of a container that cannot be closed, that is, regardless of the shape of the container containing the adsorbent, the filled (contained) adsorbent does not leak out of the container, and It is a container that has a configuration with many micropores that allow gas inflow and outflow.Specifically,
,前記 "吸着剤層を有する吸着装置" カ^ 吸着剤層を囲い、 かつ廃棄ガスが円周 方向に通気できる円筒を多重に内臓する吸着装置であること、  The adsorbing device having an adsorbent layer is an adsorbing device that surrounds the adsorbent layer and has multiple built-in cylinders through which the waste gas can be passed in the circumferential direction;
•前記吸着剤層の囲いが、 箱型コンポ一ネントまたはハニカム型コンポ一ネント であって、 該コンポーネントを多重に内臓する吸着装置であること、  The enclosure of the adsorbent layer is a box-type component or a honeycomb-type component, and is an adsorption device in which the component is multiplexed;
を特徴とする。 It is characterized by.
そして、 充塡 (収容) する吸着剤として、 0. 1〜 1 mmの微粒 (望ましくは 0. 2〜0. 5 mmの微粒) を用い、 これによつてガスとの接触時間を短縮し、 かつ、 ガスの通過面積を広げるべく吸着装置内の吸着剤層の配位を多重にしたも のである。  As the adsorbent to be filled (contained), fine particles of 0.1 to 1 mm (preferably fine particles of 0.2 to 0.5 mm) are used, thereby shortening the contact time with the gas, In addition, the configuration of the adsorbent layer in the adsorber is multiplexed to increase the gas passage area.
上記のように、 吸着剤として 0. 1〜 1 mmの微粒を用いることによって、 接 触時間が従来の手段に比べて "約 1 /5" に短縮し得るという優れた作用効果が 生じる。 しかも、 このように "約 1 Z5" に短縮することができると言うことは、 吸着剤層の厚みも "約 1 Z5" になると言うことである。 As described above, the use of fine particles of 0.1 to 1 mm as the adsorbent has an excellent effect that the contact time can be reduced to "about 1/5" as compared with the conventional means. And to say that it can be reduced to "about 1 Z5" This means that the thickness of the adsorbent layer will also be "about 1 Z5".
従来の商業プラントは全て一塔式であって、 この厚み (層高) は "l ~2 m" であるが、 本発明の上記吸着装置では、 吸着剤層の厚みが "約 1 Z5" なるとこ ろから、 その厚みは "2 0 cm〜4 0 cm" となり、 その結果として、 原則とし て吸着剤層を冷却する必要がなくなると言う優れた作用効果が生じる。  Conventional commercial plants are all single towers, and the thickness (layer height) is “l to 2 m”. However, in the adsorption apparatus of the present invention, the thickness of the adsorbent layer is “about 1 Z5”. From that point, the thickness is "20 cm to 40 cm", and as a result, there is an excellent effect that the adsorbent layer does not need to be cooled in principle.
その理由は、 吸着剤層を通過する多量な廃棄ガス中に含まれる炭化水素ガスは 極めて希薄であり、 殆どが空気であるため、 空気の持ち出す熱量を上回るほどの 吸着熱が吸着剤層に留まることはないからである。  The reason is that the hydrocarbon gas contained in the large amount of waste gas passing through the adsorbent layer is extremely dilute, and most of it is air, so the amount of heat absorbed exceeds the amount of heat carried out by the air and remains in the adsorbent layer Because there is nothing.
しかも、 前記した従来の繊維状活性炭層を用いる吸着装置では、 廃棄ガスはこ の吸着剤層を一回の通過で終わるため、 吸着した炭化水素の濃度が極めて薄く、 脱着の手段としてはスチーム以外には考えられなかった。 し力、し、 本発明の上記 吸着装置では、 パージ排ガスの全量もしくは大部分を被処理廃棄ガスに戻すこと により、 吸着剤層内の炭化水素濃度を高めることができるるため、 従来の吸着装 置では成し得なかった真空ポンプの併用を可能にしたものである。  Moreover, in the conventional adsorption apparatus using the fibrous activated carbon layer described above, the concentration of the adsorbed hydrocarbon is extremely low because the waste gas ends up in one pass through this adsorbent layer, and the means for desorption is other than steam. I could not imagine. In the above-described adsorption apparatus of the present invention, since the entire or most of the purged exhaust gas is returned to the waste gas to be treated, the hydrocarbon concentration in the adsorbent layer can be increased. This makes it possible to use a vacuum pump that could not be achieved by using a vacuum pump.
また、 真空ポンプを併用することによって、 脱着の際のパージ媒体に水を用い ることが可能になったものである。 ( "真空ポンプの併用" "パージ媒体として 水の使用" については、 後記参照)  By using a vacuum pump, water can be used as a purge medium for desorption. (For details on "Using vacuum pump" and "Using water as purge medium", see below.)
本発明の上記した顕著な作用効果を奏する新規で且つ経済的な吸着装置 [本発 明で用いる "吸着剤層を有する吸着装置" の第 2の実施形態] の具体的な吸着塔 について、 第 4図および第 5図 (A) , 第 5図 (B) を参照して説明すると、 こ の吸着塔 4 1 a (4 1 b) は、 吸着剤層 4 3 a (4 3 b) を充塡した外筒 4 2 a (4 2 b) および 4 2 a' (4 2 b' ) の二重円筒で構成される。 そして、 廃棄 ガスは、 第 5図 (B) の矢印線に示すように吸着剤層 4 3 a (4 3 b) 内を通過 し、 このように、 ガスの通過面積を広げるように構成したものである。  Regarding a specific adsorption tower of a novel and economical adsorption apparatus [the second embodiment of the “adsorption apparatus having an adsorbent layer” used in the present invention], which exhibits the above-mentioned remarkable effects of the present invention, Referring to Fig. 4 and Figs. 5 (A) and 5 (B), the adsorption tower 41a (41b) is filled with the adsorbent layer 43a (43b). The outer cylinder is composed of a double cylinder of 42a (42b) and 42a '(42b'). Then, the waste gas passes through the adsorbent layer 43a (43b) as shown by the arrow line in Fig. 5 (B), thus increasing the gas passage area. It is.
なお、 この吸着塔 4 l a (4 1 b) は、 後記する本発明の実施例 2で使用する 吸着塔であり、 図中の 4 3 -1 a (4 3 -lb) は破砕活性炭, 4 3 -2 a (4 3 -2 b) は Y型合成ゼォライ トである。  This adsorption tower 4 la (41b) is an adsorption tower used in Example 2 of the present invention described later, and 43-1a (43 -lb) in the figure indicates crushed activated carbon, 43 -2a (43-2b) is a Y-type synthetic zeolite.
(システムの一体化について) 更にまた、 本発明者は、 本発明で提案した装置をシステムとして一体化し、 ス キッドに載せられるような可搬性を持たせた装置にするべく鋭意研究の結果、 本 発明に至ったものである。 (About system integration) Furthermore, the inventor of the present invention has made the present invention as a result of intensive studies to integrate the apparatus proposed in the present invention as a system and to make the apparatus portable so that it can be mounted on a skid. .
即ち、 本発明者が既に取得した日本特許第 2 8 4 0 5 6 3号, 同第 2 7 6 6 7 9 3号, 及び同第 2 8 2 3 8 3 5号等々に開示したアダプタ一方式や置換パージ 方式によるのではなく、 また、 パージ排ガスのガス状炭化水素を回収するにあた つて、 同質の炭化水素液体で洗浄する方法を用いることなく、 さらには、 脱着ガ スをリサイクルさせて吸着塔内の炭化水素濃度を濃く した後に煩瑣な冷却手段を 用いて該ガスからガス状炭化水素を液体として回収する方法ではなく、 回収手段 を省略した簡潔な、 かつ、 経済性のある方法を提供したものである。  That is, the adapter-type system disclosed in Japanese Patent Nos. 2,840,563, 2,766,793, and 2,382,335, which have already been obtained by the present inventors. Instead of using the purging method and the purging method, the gaseous hydrocarbons in the purged exhaust gas are recovered without using a method of washing with the same type of hydrocarbon liquid, and the desorbed gas is recycled. Instead of using a complicated cooling means to recover gaseous hydrocarbons from the gas as a liquid after enriching the hydrocarbon concentration in the adsorption tower, a simple and economical method in which the recovery means is omitted is provided. Provided.
(脱着手段について)  (About desorption means)
本発明において、 吸着剤層に吸着したガス状炭化水素を離脱せしめる手段とし て、 被吸着炭化水素の沸点以上に加熱した空気または水を用いることができる。 このうち、 特に "水" の使用が好ましい (後記参照) 。  In the present invention, air or water heated above the boiling point of the hydrocarbon to be adsorbed can be used as a means for releasing gaseous hydrocarbons adsorbed on the adsorbent layer. Of these, the use of "water" is particularly preferred (see below).
(なお、 この空気としては、 吸着剤層から大気中に排出されるクリーンなガスの 一部を用いることができる。 )  (Note that as this air, a part of the clean gas discharged into the atmosphere from the adsorbent layer can be used.)
従来、 本発明の適用分野である "大量の廃棄ガス中に含まれる希薄な炭化水素 の無害化処理手段" においては、 もっぱら吸着法が用いられてきた。 使用される 吸着剤は、 例外を除いて、 粒状の活性炭もしくは繊維状の活性炭である。  Conventionally, in the field of application of the present invention, "the means for detoxifying dilute hydrocarbons contained in a large amount of waste gas", the adsorption method has been used exclusively. The adsorbent used is, with exceptions, granular activated carbon or fibrous activated carbon.
し力、しな力くら、 この種の活性炭は、 他の吸着剤に比して吸着能力は抜群に優れ ているものの、 極めて脱着し難い欠点を有している。 このために、 前述したよう な脱着に際しては、 充塡した活性炭量の約 3倍もの大量のスチームを用いている のが現状である。 しかも、 スチームに同伴された炭化水素は、 水と一緒に活性汚 泥処理装置のような廃水処理手段で無害化しているのが現状である。  This type of activated carbon has excellent adsorption capacity compared to other adsorbents, but has the drawback that it is extremely difficult to desorb. For this reason, at the time of desorption as described above, at present, a large amount of steam, which is about three times the amount of filled activated carbon, is used. In addition, the hydrocarbons entrained in the steam are detoxified together with water by wastewater treatment means such as activated sludge treatment equipment.
スチームの代わりに加熱した空気をパージガスとして大量に用いて脱着するこ とは、 活性炭が燃える危険性があり、 常温の空気以外もしくは不燃性の窒素以外 は、 活性炭の使用は消防法で許可されていない c Desorption using a large amount of heated air as a purge gas instead of steam may cause the activated carbon to burn, and the use of activated carbon other than room temperature air or non-combustible nitrogen is permitted by the Fire Service Law. Not c
しかしながら、 吸着剤に不燃性の疎水性シリカゲルを用いる場合は、 かような 危険性は全くない。 このために、 最高 2 5 0 °Cという高温の空気をパージガスと して用いることが可能になった。 (なお、 ガス状炭化水素の濃度は、 爆発下限値 以下に定められている。 従って、 望ましくは約 5 0 0 O p p m以下でなければな らない。 ) However, when non-combustible hydrophobic silica gel is used as the adsorbent, There is no danger. This has made it possible to use high-temperature air, up to 250 ° C, as the purge gas. (Note that the concentration of gaseous hydrocarbons is specified below the lower explosive limit. Therefore, it should be preferably less than about 500 ppm.)
本発明において、 加熱されたパージガスに同伴して脱着されたガス状炭化水素 は、 パージ排ガスとしてそのまま燃焼させるには好適なガスである。  In the present invention, the gaseous hydrocarbon desorbed along with the heated purge gas is a gas suitable for burning as it is as a purge exhaust gas.
更に、 脱着の際の補助的手段として、 真空ポンプを併用する場合、 加熱空気の 量、 即ちパージ係数が大きい程真空ポンプの負荷が軽減されるばかりではなく、 脱着が充分に遂行され、 このため、 吸引する真空度は " 6 0〜 1 5 O T o r r " で充分である。 真空ポンプが高価であるが故に本発明適用の著しい効果であると 言うことができる。  Furthermore, when a vacuum pump is used as an auxiliary means for desorption, the larger the amount of heated air, that is, the purge coefficient, the more the load on the vacuum pump is reduced, and the more desorption is carried out. The degree of vacuum to be sucked is "60 to 15 OT orr". Since the vacuum pump is expensive, it can be said that this is a remarkable effect of the application of the present invention.
一方、 吸着剤として活性炭を使用する場合、 脱着の際のパージガスとしては、 前記したとおり、 従来は大量のスチーム (ないしは窒素ガス) 以外に選択肢がな かったが、 本発明では、 液体の "水" を用いることを見い出した。  On the other hand, when activated carbon is used as the adsorbent, as described above, there has conventionally been no choice except for a large amount of steam (or nitrogen gas) as the purge gas at the time of desorption. "Has been found.
水を脱着塔に注入することにより、 真空ポンプの助けを借りて脱着塔の内部で 気化させ、 パージガスと同様な作用効果を発揮させ得るばかりでなく、 気化した ガス量は、 従来のスチーム使用の場合の "数十分の一" という少ないガス量でパ ージできる、 という顕著な作用効果が生じるものである。  By injecting water into the desorption tower, not only can it be vaporized inside the desorption tower with the help of a vacuum pump and exert the same effect as the purge gas, but also the amount of vaporized gas can be reduced by the conventional steam use. In this case, the gas can be purged with a small gas amount of "several tenths".
そして、 本発明において "水" を用いた場合、 その際に使用する真空ポンプと しては、 水封式真空ポンプが望ましい。 その理由は、 濃縮された炭化水素ガスが 水封の水に混じつて産廃処理に好適な廃水および廃水量になるためである。  When "water" is used in the present invention, a water-sealed vacuum pump is preferable as the vacuum pump used at that time. The reason is that the concentrated hydrocarbon gas is mixed with the water in the water seal to obtain wastewater and wastewater suitable for industrial waste treatment.
本発明に係る実施の形態は、 以上に詳述した通りであるが、 尚、 本発明に係る 方法は、 公知の P S A法や P T S A法を適用することができ、 その他、 V S A法, V T S A法などにも適用することができ、 これらの適用も本発明に包含されるも のである。  The embodiment according to the present invention is as described in detail above. However, the method according to the present invention can employ a publicly known PSA method or PTSA method. In addition, VSA method, VTSA method, etc. And these applications are also included in the present invention.
また、 本発明は、 廃棄ガス中に含まれる希薄なガス状炭化水素を濃縮して分離 させる処理方法および該方法を実施するための装置を提供したものであって、 塗 装時に発生する希薄な多成分系の炭化水素ガスに限らず、 ベンゼンやトルエン, ト リ クロロエチレン, メチルェチルケトン、 更には、 フロンのような単一成分の 希薄なガスに対しても広く適用されるものである。 実施例 Further, the present invention provides a treatment method for concentrating and separating a dilute gaseous hydrocarbon contained in a waste gas and an apparatus for performing the method, wherein a dilute hydrocarbon generated at the time of coating is provided. Not only multi-component hydrocarbon gas, but also benzene, toluene, It is widely applied to dilute single-component gases such as trichloroethylene, methylethylketone, and even freon. Example
次に、 本発明の実施例を挙げて本発明を具体的に説明するが、 本発明は、 以下 の実施例 1および実施例 2に限定されるものではない。  Next, the present invention will be specifically described with reference to examples of the present invention. However, the present invention is not limited to Examples 1 and 2 below.
(実施例 1 )  (Example 1)
第 1図は、 本発明の一実施例である 「廃棄ガス中の希薄なガス状炭化水素の処 理方法」 を説明するためのフローシート図であり、 第 2図は、 第 1図に示すフロ 一シートにおける 「運転状況を把握し制御するための制御盤」 の一例を示す図で ある。 また、 第 3図は、 第 1図に示すフローシートにおいて使用した吸着塔の構 造の一例 (実施例 1 ) を示す縦断面図である。  FIG. 1 is a flow sheet diagram for explaining “a method for treating a lean gaseous hydrocarbon in a waste gas” which is one embodiment of the present invention. FIG. 2 is a flow sheet diagram shown in FIG. It is a figure which shows an example of the "control panel for grasping and controlling an operating condition" in a flow sheet. FIG. 3 is a longitudinal sectional view showing one example (Example 1) of the structure of the adsorption tower used in the flow sheet shown in FIG.
本実施例 1では、 第 3図に示すように、 冷却水 5が循環する内筒 4 a (4 b) 及びその外側に吸着剤層 3 a (3 b) を充填した外筒 2 a (2 b) の二重円筒で 構成される吸着塔 l a ( l b) を用いた。 なお、 内筒 4 a (4 b) を流れる冷却 水 5は、 乱流にして吸着剤層 3 a (3 b) を流れる廃棄ガスと向流に流すように し/ o  In the first embodiment, as shown in FIG. 3, the inner cylinder 4a (4b) through which the cooling water 5 circulates and the outer cylinder 2a (2b) filled with the adsorbent layer 3a (3b) outside The adsorption column la (lb) composed of the double cylinder of b) was used. The cooling water 5 flowing through the inner cylinder 4a (4b) is turbulent so that it flows countercurrently to the waste gas flowing through the adsorbent layer 3a (3b).
また、 吸着剤として粒状活性炭 (粒状白鷺一号:武田薬品工業社製の商品名) および Y型合成ゼォライ ト (3 6 0 HUD :東ソ一社製の商品名) を用いた。 そして、 第 3図に示すように、 粒状活性炭 3 - la (3 -lb) の上部に Y型合成ゼ ォライ 卜 3-2a (3- 2b) を吸着塔 1 a ( 1 b) に充填し、 吸着剤層 3 a (3 b) として実施に供した。 なお、 上記粒状活性炭は、 予めベンゼン蒸気でプレコー ト したものを用いた。  In addition, granular activated carbon (granular Shirasagi No .: trade name, manufactured by Takeda Pharmaceutical Co., Ltd.) and Y-type synthetic zeolite (360 HUD: trade name, manufactured by Tosoh Corporation) were used as adsorbents. Then, as shown in Fig. 3, the Y-type synthetic zeolite 3-2a (3-2b) was filled in the upper part of the granular activated carbon 3-la (3-lb) into the adsorption tower 1a (1b), This was used as an adsorbent layer 3a (3b). The granular activated carbon used was pre-coated with benzene vapor in advance.
以下、 本実施例 1を第 1図に基づいて詳細に説明すると、 廃棄ガス発生源 (図 示せず) から発生した廃棄ガス (約 5 0 0 0 p pmのベンゼンを含む廃棄ガス : 2 0 リツ トル Z分のガス量) を、 ゲージ圧 1 k g/c m以下に圧縮するブロア一 (図示せず) 又は自圧で廃棄ガス送気管 1 1より、 吸着塔 1 aに送気する。 この 際、 吸着剤層 3 a ( 3 b) を通過するガス速度は "約 1 0 c m/秒" であった。 吸着工程を終えた処理済み廃棄ガスは、 吸着塔 l a (脱着工程に切り換えた後 は吸着塔 1 b ) の頂部から、 排出管 1 2を介して、 2 0 p p m以下のベンゼンべ 一パーを含む空気 (クリーンなガス) として大気中に放出する。 Hereinafter, Example 1 will be described in detail with reference to FIG. 1. A waste gas generated from a waste gas generation source (not shown) (a waste gas containing about 500 ppm benzene: 20 liters) (Amount of gas in Torr Z) is blown to the adsorption tower 1a by a blower (not shown) that compresses the gauge pressure to 1 kg / cm or less or the waste gas air pipe 11 by its own pressure. At this time, the gas velocity passing through the adsorbent layer 3a (3b) was "about 10 cm / sec". The treated waste gas after the adsorption process contains 20 ppm or less of benzene vapor from the top of the adsorption tower la (adsorption tower 1b after switching to the desorption step) via the discharge pipe 12. Released into the atmosphere as air (clean gas).
また、 吸着塔 1 a, 1 bは、 上記の吸着工程と後記する脱着工程とを交互に切 り換えながら運転するが、 この切り換え時点は、 吸着塔 1 a, l b内の吸着剤層 が破過する前に行い、 そして、 第 1図に示す弁 (二) , (二) を自動的に開閉す ることにより行う。  In addition, the adsorption towers 1a and 1b are operated while alternately switching between the above adsorption step and the desorption step described later, but at this switching point, the adsorbent layer in the adsorption towers 1a and 1 lb is broken. This is done before passing through, and by automatically opening and closing valves (2) and (2) shown in Fig. 1.
即ち、 吸 ·脱着の切り換え用弁 (ホ) , (ホ) の開閉は、  That is, the valves (e) and (e) for switching between suction and desorption are opened and closed
'吸着塔 l a, 1 bの 「入口ガス流量」 " J " と 「入口ガス濃度」 "H" とを第 2図に示すメモリ一 2 1に読み込ませ、 予めメモリー (吸着モデル) 2 3に記入 した吸着モデルの C P U (演算) 2 2による演算結果を示す "破過予想時間" と、 '吸着剤層の上部に配した温度検知ボー ド (図示せず) によって、 Y型合成ゼォ ライ ト 3 - 2 a ( 3 -2 b ) [前掲の第 3図参照] から取りだした吸着剤層内の 「温 度」 " F " , " G" がその上昇を停止した時点と、  'Read the "inlet gas flow rate" "J" and the "inlet gas concentration" "H" of the adsorption towers la and 1b into the memory 1 shown in Fig. 2 and fill in the memory (adsorption model) 23 in advance. The CPU (calculation) of the selected adsorption model 22 The “expected breakthrough time,” which indicates the result of the calculation, and the temperature detection board (not shown) placed above the adsorbent layer allows the Y-type synthetic zeolite 3-2 a (3-2 b) [See Fig. 3 above] The time when the "temperatures" "F" and "G" in the adsorbent layer stopped rising,
を併用して自動的に切り換える。 Automatically switches using.
一方、 吸着工程を終えた後の吸着塔 1 a (脱着工程に切り換えた後は吸着塔 1 b ) には、 送水管 1 3を介して、 水を吸着塔 1 a (脱着に切り換えた塔) に供給 し、 併せて水封式真空ポンプ 1 4 (ナッシュポンプ:栗村制作所製の商品名) を 用いて、 吸引することにより脱着させる。  On the other hand, to the adsorption tower 1a after the completion of the adsorption step (the adsorption tower 1b after switching to the desorption step), water is supplied via the water pipe 13 to the adsorption tower 1a (the tower switched to desorption). And a water ring vacuum pump 14 (Nash Pump: trade name, manufactured by Kurimura Seisakusho), and then detached by suction.
本実施例 1では、 上記水封式真空ポンプ 1 4を約 6 0 T 0 r rで運転し、 吸着 塔 1 a (脱着に切り換えた塔) 内を低圧 (真空) にする。 これにより、 供給した 水は、 この吸着塔 1 a内で蒸気となってパージガスとなる。 そして、 パ一ジ排ガ ス送気管 1 5から水封式真空ポンプ 1 4を経て、 パージ排ガスとして取り出す。 水封式真空ポンプ 1 4で吸引したパージ排ガスの冷却には、 室温の工業用水を 用いた。 即ち、 パージ排ガスは、 気液分離器 1 6に送気される。 気液分離器 1 6 は、 内部に配した冷却管 (図示せず) を流れる工業用水によって、 冷やされる。 この際、 パージ排ガス中のベンゼンベーパ一は、 下部に連結した気液分離器 1 6に、 水封の水に混じって凝縮液化し、 未凝縮ガスと分けられる。 溜まった水 とベンゼンは、 系外に取り出し、 産業廃棄物処理装置 1 7で産廃処理する。 In the first embodiment, the water ring vacuum pump 14 is operated at about 60 T 0 rr, and the pressure in the adsorption tower 1 a (the tower switched to desorption) is reduced to a low pressure (vacuum). As a result, the supplied water turns into steam in the adsorption tower 1a to become a purge gas. Then, the gas is extracted as purged exhaust gas from the purge gas air supply pipe 15 through the water ring vacuum pump 14. Room temperature industrial water was used to cool the purged exhaust gas sucked by the water ring vacuum pump 14. That is, the purge exhaust gas is sent to the gas-liquid separator 16. The gas-liquid separator 16 is cooled by industrial water flowing through a cooling pipe (not shown) arranged inside. At this time, the benzene vapor in the purged exhaust gas is condensed and liquefied in the water-sealed water in the gas-liquid separator 16 connected to the lower part, and is separated from uncondensed gas. Accumulated water And benzene are taken out of the system and are subjected to industrial waste treatment with an industrial waste treatment unit 17.
気液分離器 1 6で凝縮しなかった排気ガス中には、 尚、 ベンゼンベーパーが残 存するので、 リターンガス送気管 1 8を介して、 再度廃棄ガス送気管 1 1に戻し、 廃棄ガスと一緒にして吸着処理を行う。  Since benzene vapor remains in the exhaust gas not condensed in the gas-liquid separator 16, the benzene vapor is returned to the waste gas air pipe 11 again via the return gas air pipe 18, and is returned together with the waste gas. To perform the adsorption process.
未凝縮ガスには、 高濃度の残存ベンゼンが含まれており、 この全量を廃棄ガス 送気管 1 1に戻すことにより吸着塔内のベンゼン濃度が益々濃くなる。 そして、 前記の手段を用いて、 この吸着塔内の吸着剤層が破過する時点を予測して弁 (ホ) の切り換え時期を設定し、 脱着操作に自動的に切り換える。  The uncondensed gas contains a high concentration of residual benzene, and by returning the entire amount to the waste gas supply pipe 11, the benzene concentration in the adsorption tower is further increased. Then, by using the above-described means, the switching time of the valve (e) is set by predicting the time at which the adsorbent layer in the adsorption tower breaks through, and the operation is automatically switched to the desorption operation.
なお、 第 1図中に示した A〜 Jは、 運転状況を把握するために設けた計器の位 置を示したものであり、 一方、 (ィ) 〜 (二) は、 運転制御のために設けた弁の 位置を示したものである。  In addition, A to J shown in Fig. 1 indicate the positions of the instruments provided to grasp the operation status. On the other hand, (a) to (2) indicate the This shows the position of the provided valve.
また、 第 2図は、 第 1図に示したフローにおいて、 運転状況を把握し制御する ための制御盤 2 0を示したものであり、 メモリ 2 1, メモリ (吸着モデル) 2 3 および C P U (演算) 2 2から構成されているものである。 なお、 第 2図におい て、 メモリ 2 1に読み込ませるデータ信号として、 吸,脱着切り換え時に必要な ものだけを " X " として挙げた。 (その他のデータ信号の読み込みを省略した。 ) 本実施例 1では、 前記したように、 吸着 ·脱着の切り換えを吸着塔が破過する 前にデータロガ信号で検知して行うため、 ガス状炭化水素が希薄な場合は、 その 濃度を吸着塔で数倍に濃縮することができ、 且つ吸着剤層の発熱を除去する冷却 手段を工夫したことにより (前掲の第 3図参照) 、 局部加熱が避けられており、 運転期間中の吸着剤層の温度はほぼ常温であつた。  FIG. 2 shows a control panel 20 for grasping and controlling the operation status in the flow shown in FIG. 1, and includes a memory 21, a memory (adsorption model) 23, and a CPU ( Arithmetic) 22. In FIG. 2, as the data signals to be read into the memory 21, only those necessary at the time of switching between absorption and desorption are indicated as “X”. (Reading of other data signals was omitted.) In the first embodiment, as described above, switching between adsorption and desorption is performed by detecting a data logger signal before the adsorption tower breaks through, so that gaseous hydrocarbons are used. When the concentration is low, the concentration can be concentrated several times in the adsorption tower, and by devising cooling means to remove the heat generated in the adsorbent layer (see Fig. 3 above), local heating is avoided. The temperature of the adsorbent layer during the operation period was almost room temperature.
また、 排出管 1 2から大気中に放出されるガス中のベンゼン濃度は、 実質的に 2 0 p p m以下であった。  The benzene concentration in the gas released into the atmosphere from the discharge pipe 12 was substantially less than 20 ppm.
(実施例 2 )  (Example 2)
第 4図は、 実施例 2で使用する吸着塔の縦断面図である。 また、 第 5図は、 第 4図の吸着塔を更に説明する図であって、 そのうち、 第 5図 (A ) は第 4図の A 一 A断面図、 第 5図 (B ) は第 4図の部分拡大詳細図である。  FIG. 4 is a longitudinal sectional view of an adsorption tower used in Example 2. FIG. 5 is a diagram further explaining the adsorption tower of FIG. 4, wherein FIG. 5 (A) is a cross-sectional view taken along the line A-A of FIG. 4, and FIG. 5 (B) is a diagram of FIG. It is the elements on larger scale of the figure.
本実施例 2では、 第 4図および第 5図 (A ) , ( B ) に示すように、 吸着剤層 4 3 a ( 4 3 b) を充塡した外筒 4 2 b (4 2 b) および 4 2 a' (4 2 b' ) の二重円筒で構成される吸着塔 4 1 a (4 1 b) を用いた。 In Embodiment 2, as shown in FIGS. 4 and 5 (A) and (B), the adsorbent layer Adsorption tower 4 1a (4 1 b) consisting of a double cylinder of outer cylinder 4 2 b (4 2 b) and 4 2 a '(4 2 b') filled with 4 3 a (4 3 b) ) Was used.
また、 吸着剤として、 粒径が 0. 4 mmの破砕活性炭 (HC 4 2 : ツルミコー ル社製の商品名) 及び粒径が 1. 0 mmの Y型合成ゼォライ ト (3 6 0 HUD : 東ソ一社製の商品名) を用いた。  As adsorbents, crushed activated carbon with a particle size of 0.4 mm (HC42: trade name of Tsurumi Coal) and Y-type synthetic zeolite with a particle size of 1.0 mm (360 HUD: East (Trade name, manufactured by Soviet Union).
そして、 第 4図および第 5図 (B) に示すように、 破碎活性炭 4 3 -la (4 3 - lb) の上部に Y型合成ゼォライ ト 4 3 -2a (4 3 -2 b) を吸着塔 4 1 a (4 1 b) に充填し、 吸着剤層 4 3 a (4 3 b) として実施に供した。 なお、 上記破碎 活性炭は、 予めベンゼン蒸気でプレコ一トしたものを用いた。  Then, as shown in Fig. 4 and Fig. 5 (B), the Y-type synthetic zeolite 43-2a (43-2b) is adsorbed on the top of the broken activated carbon 43-la (43-lb). The column 41a (41b) was packed and used as an adsorbent layer 43a (43b). The crushed activated carbon used was previously pre-coated with benzene vapor.
本実施例 2では、 上記した第 4図および第 5図 (A) , (B) に示す吸着塔 4 1 a (4 1 b) を用い、 上記した破碎活性炭および Y型合成ゼォライ トを使用 した以外は、 前記実施例 1 と同様の条件, 手段で、 廃棄ガス (約 5 0 0 0 p pm のベンゼンを含む廃棄ガス : 3 0 0 リ ツ トル Z分のガス量) を処理した。 なお、 この際に吸着剤層 4 3 a (4 3 b) を円周方向に通過するガス速度は、 " 1. 5 cmZ秒" であった。  In Example 2, the above-mentioned crushed activated carbon and Y-type synthetic zeolite were used using the adsorption towers 41a (41b) shown in FIGS. 4 and 5 (A) and (B) described above. Except for the above, waste gas (waste gas containing about 50,000 ppm of benzene: gas amount of 300 liters Z) was treated under the same conditions and means as in Example 1. At this time, the gas velocity passing in the circumferential direction through the adsorbent layer 43a (43b) was "1.5 cmZ seconds".
本実施例 2では、 排出管 1 2 (第 1図参照) から大気中に放出されるガス中の ベンゼン濃度は、 市販されているポータブルの HC濃度検知管 (イソブタン換算) で検知できないないほどの微量な量であつた。  In Example 2, the benzene concentration in the gas released into the atmosphere from the discharge pipe 12 (see Fig. 1) was such that it could not be detected with a commercially available HC concentration detection pipe (isobutane conversion). It was a trace amount.
前記実施例 1では、 大気中に放出されるガス中のベンゼン濃度が 2 0 p pm以 下であるのに対して、 本実施例 2では、 上記したように、 検出検知できないない ほどの微量な量であり、 前記実施例 1に比し優れていることが理解できる。  In Example 1 described above, the benzene concentration in the gas released into the atmosphere is 20 ppm or less, whereas in Example 2, as described above, a trace amount It can be understood that the amount is superior to that of Example 1.
また、 本実施例 2では、 "3 0 0 リツ トル/分 ( 1 8 m3/時) " という大量 の廃棄ガスを有効に処理できることが理解できる。 Further, in the second embodiment, it can be understood that a large amount of waste gas of "300 liters / minute (18 m 3 / hour)" can be effectively treated.
以上、 本発明の実施例 1 として、 前掲の第 3図に示した 2重円筒の吸着塔 1 a, 1 bを用いたが、 本発明は、 このような 2重円筒に限定されるものではなく、 例 えば吸着剤を内筒に充填し、 その外側に吸着剤層を冷却するための水を循環する ようにした二重円筒、 または、 多重円筒型の吸着塔を用いることもできる。  As described above, the double-cylinder adsorption towers 1a and 1b shown in FIG. 3 are used as the first embodiment of the present invention. However, the present invention is not limited to such a double cylinder. Instead, for example, it is also possible to use a double-cylinder or multi-cylinder adsorption tower in which an adsorbent is filled in an inner cylinder and water for cooling the adsorbent layer is circulated outside the inner cylinder.
また、 本発明の実施例 2として、 前掲の第 4図, 第 5図に示した多重円筒の吸 着塔を用いたが、 本発明は、 このような多重円筒に限定されるものではなく、 例 えば吸着剤をハニカム状のコア一に充填し、 それを束ねて構成される吸着装置、 ないしは、 吸着剤を箱に詰めてそれを重ねて構成される吸着装置などを用いるこ ともできる。 In addition, as Embodiment 2 of the present invention, the suction of the multiple cylinders shown in FIGS. Although a landing tower was used, the present invention is not limited to such a multi-cylinder, and for example, an adsorbent configured by filling an adsorbent into a honeycomb-shaped core and bundling the same, or It is also possible to use an adsorption device or the like constituted by packing adsorbents in a box and stacking them.
その他の要件についても、 上記実施例に限定されるものではなく、 前記した本 発明の特徵 (発明を限定する事項) の範囲内で種々の態様が可能である。 産業上の利用可能性  The other requirements are not limited to the above embodiments, and various embodiments are possible within the scope of the features of the present invention (items limiting the invention). Industrial applicability
本発明は、 以上詳記したとおり、  The present invention, as described in detail above,
·離脱したガス状炭化水素を含むパージ排ガスの全量もしくは大部分を、 被処理 廃棄ガスに戻し、 これによつて吸着剤層内の炭化水素濃度を高め (第 1の特徴点) • この吸着剤層が破過する前に脱着に切り換える (第 2の特徴点)  · Return all or most of the purged exhaust gas containing the released gaseous hydrocarbons to the waste gas to be treated, thereby increasing the hydrocarbon concentration in the adsorbent layer (first feature point). • This adsorbent Switch to desorption before the layer breaks through (second feature)
ことを特徴とし、 これにより、 廃棄ガスから安全に、 しかも容易に、 かつ効率よ く炭化水素を処理すると共に、 処理後に、 大気中に放出するガス中の残存炭化水 素濃度を 1 0 0 p p m以下、 特に 「 2 0 p p m以下」 にすることができる。 This makes it possible to safely, easily and efficiently treat hydrocarbons from waste gas, and to reduce the residual hydrocarbon concentration in the gas released into the atmosphere after treatment to 100 ppm. In particular, it can be set to “20 ppm or less”.
従って、 本発明によれば、 大気汚染物質であるガス状炭化水素の除去処理にお いて、 大気汚染防止法の改正で定められた (平成 9年 2月 6日に官報告示) ベン ゼン濃度の排出基準 「3 0 p p m以下」 を完全にクリヤーできるのみならず、 更 にこの数値が半分以下の厳しさになっても充分対応できるものである。  Therefore, according to the present invention, in the removal treatment of gaseous hydrocarbons as air pollutants, the benzene concentration specified in the amendment of the Air Pollution Control Law (publicly announced on February 6, 1997) Not only can the emission standard “30 ppm or less” be completely cleared, but even if this figure becomes less than half strict, it can sufficiently cope with it.
また、 本発明は、 本発明に係る方法を装置化する際、 システムを一体化してス キッドに載せられるように、 可搬可能なように成し得るものである。  Further, the present invention can be configured to be portable so that the system can be integrated and mounted on a skid when the method according to the present invention is implemented as an apparatus.

Claims

請 求 の 範 囲 The scope of the claims
1 . 吸着と脱着を交互に行う "吸着剤層を有する吸着装置" を用い、 一方の吸 着装置にガス状炭化水素を含む廃棄ガスを通過せしめ、 該吸着装置内の吸着剤層 にガス状炭化水素を吸着させ、 実質的にガス状炭化水素を含まない廃棄ガスを大 気中に放出し、 その間に、 他方の吸着装置を脱着に切り換え、 該吸着装置内の吸 着剤層に吸着したガス状炭化水素を、 真空ポンプで吸引して離脱せしめ、 パージ 排ガスに移行させることから成る廃棄ガス中に含まれる希薄なガス状炭化水素の 処理方法において、 1. Using an "adsorption device having an adsorbent layer" that alternately performs adsorption and desorption, let waste gas containing gaseous hydrocarbons pass through one of the adsorption devices, and apply gaseous gas to the adsorbent layer in the adsorption device. The hydrocarbons are adsorbed and the waste gas substantially free of gaseous hydrocarbons is released into the atmosphere, during which time the other adsorber is switched to desorption and adsorbed on the adsorbent layer in the adsorber A method for treating lean gaseous hydrocarbons contained in waste gas, comprising removing gaseous hydrocarbons with a vacuum pump to remove the gaseous hydrocarbons and transferring the gaseous gas to a purged exhaust gas.
前記パージ排ガスの全量もしくは大部分を被処理廃棄ガスに戻し、 これによつ て、 吸着剤層内の炭化水素濃度を高め、 該吸着剤層が破過する前に脱着に切り換 えることを特徴とする廃棄ガス中に含まれる希薄なガス状炭化水素の処理方法。  All or most of the purged exhaust gas is returned to the waste gas to be treated, thereby increasing the hydrocarbon concentration in the adsorbent layer and switching to desorption before the adsorbent layer breaks through. A method for treating a lean gaseous hydrocarbon contained in waste gas.
2 . 前記パージ排ガス中のガス状炭化水素の一部が液化した場合、 該液状炭化 水素を燃焼処理し、 または、 産業廃棄物として無害化処理することを特徴とする 請求の範囲第 1項に記載の廃棄ガス中に含まれる希薄なガス状炭化水素の処理方 2. When part of the gaseous hydrocarbons in the purge exhaust gas is liquefied, the liquid hydrocarbons are burned or detoxified as industrial waste. For the treatment of dilute gaseous hydrocarbons contained in the waste gases mentioned
3 . 前記吸着剤層が、 活性炭および Zまたは疎水性シリ力ゲルの層から成り、 その頂部に合成ゼォライ ト層を配することを特徴とする請求の範囲第 1項に記載 の廃棄ガス中に含まれる希薄なガス状炭化水素の処理方法。 3. The waste gas according to claim 1, wherein the adsorbent layer comprises a layer of activated carbon and Z or a hydrophobic silicic acid gel, and a synthetic zeolite layer is disposed on top of the layer. A method for treating a lean gaseous hydrocarbon contained.
4 . 前記吸着装置に充填する吸着剤または充填した吸着剤層に、 ガス状炭化水 素でプレコ一卜することを特徴とする請求の範囲第 1項〜第 3項のいずれかに記 載の廃棄ガス中に含まれる希薄なガス状炭化水素の処理方法。 4. The method according to any one of claims 1 to 3, wherein the adsorbent or the adsorbent layer filled in the adsorber is pre-coated with gaseous hydrocarbon. A method for treating lean gaseous hydrocarbons contained in waste gas.
5 . 前記吸着装置内の吸着剤層に吸着したガス状炭化水素を離脱せしめる手段 として、 被吸着炭化水素の沸点以上に加熱した空気または水を使用することを特 徴とする請求の範囲第 1項〜第 4項のいずれかに記載の廃棄ガス中に含まれる希 薄なガス状炭化水素の処理方法。 5. As means for releasing gaseous hydrocarbons adsorbed on the adsorbent layer in the adsorber, use is made of air or water heated above the boiling point of the hydrocarbons to be adsorbed. The method for treating a lean gaseous hydrocarbon contained in a waste gas according to any one of claims 1 to 4, characterized in that:
6 . 前記吸着剤層が破過する前に脱着に切り換える手段として、 前記吸着剤層 内の頂部に温度検知ポートを配設し、 該温度検知ポ一卜からの温度がその上昇を 停止した時点をもって、 自動的に電磁弁を切り換えることを特徴とする請求の範 囲第 1項〜第 5項のいずれかに記載の廃棄ガス中に含まれる希薄なガス状炭化水 素の処理方法。 6. As a means for switching to desorption before the adsorbent layer breaks through, a temperature detection port is provided at the top of the adsorbent layer, and when the temperature from the temperature detection port stops its rise 6. The method for treating a lean gaseous hydrocarbon contained in waste gas according to any one of claims 1 to 5, wherein the solenoid valve is automatically switched with the method.
7 . 前記吸着剤層が破過する前に脱着に切り換える手段として、 吸着運転時に 得られる吸着装置の 「入口のガス流量」 , 「入口ガス中の炭化水素濃度」 および7. As means for switching to desorption before the adsorbent layer breaks through, the "gas flow rate at the inlet", the "hydrocarbon concentration in the inlet gas" of the adsorber obtained during the adsorption operation, and
「出口ガス中の所望の炭化水素濃度 (仮定値) 」 を数値データとしてチップに読 み込ませ、 該チップ内に組み込んだ制御を目的としたシミュレ一ションモデルを 用いて切り換え時間を予め設定することを特徴とする請求の範囲第 1項〜第 5項 のいずれかに記載の廃棄ガス中に含まれる希薄なガス状炭化水素の処理方法。 Read the "desired hydrocarbon concentration in the outlet gas (assumed value)" into the chip as numerical data, and set the switching time in advance using a simulation model for control incorporated in the chip. The method for treating a lean gaseous hydrocarbon contained in waste gas according to any one of claims 1 to 5, characterized in that:
8 . 前記吸着装置から大気に排出されるクリーンなガス中の炭化水素濃度を 1 0 0 p m以下にすることを特徴とする請求の範囲第 1項〜第 7項のいずれか に記載の廃棄ガス中に含まれる希薄なガス状炭化水素の処理方法。 8. The waste gas according to any one of claims 1 to 7, wherein the hydrocarbon concentration in the clean gas discharged to the atmosphere from the adsorption device is set to 100 pm or less. For treating rare gaseous hydrocarbons contained therein.
9 . 請求の範囲第 1項〜第 8項のいずれかに記載の処理方法を実施するための 装置であって、 該装置中の "吸着剤層を有する吸着装置" カ^ 吸着剤層を含むコ ンポ一ネン卜からなり、 該コンポーネン トが密閉し得るが閉鎖し得ない容器から なることを特徴とする廃棄ガス中に含まれる希薄なガス状炭化水素の処理装置。 9. An apparatus for carrying out the treatment method according to any one of claims 1 to 8, comprising an "adsorption apparatus having an adsorbent layer" in the apparatus. An apparatus for treating a dilute gaseous hydrocarbon contained in waste gas, comprising a component, wherein the component is a container that can be sealed but cannot be closed.
1 0 . 前記 "吸着剤層を有する吸着装置" 力 吸着剤層を囲い、 かつ廃棄ガス が円周方向に通気できる円筒を多重に内蔵する吸着装置であることを特徴とする 請求の範囲第 9項に記載の廃棄ガス中に含まれる希薄なガス状炭化水素の処理装 10. The "adsorbing device having an adsorbent layer" force The adsorbing device includes a plurality of cylinders that surround the adsorbent layer and are capable of circulating waste gas in the circumferential direction. Equipment for treating lean gaseous hydrocarbons contained in waste gas according to paragraph
1 1 . 前記吸着剤層の囲いが、 箱型コンポーネントないしはハニカム型コンポ ーネン卜であって、 該コンポーネン卜を多重に内蔵する吸着装置であることを特 徴とする請求の範囲第 1 0項に記載の廃棄ガス中に含まれる希薄なガス状炭化水 素の処理装置。 11. The enclosure according to claim 10, wherein the enclosure of the adsorbent layer is a box-type component or a honeycomb-type component, and is an adsorption device in which the components are multiplexed. An apparatus for treating lean gaseous hydrocarbons contained in the waste gas described in the item.
1 2 . 前記吸着剤層が、 径が 0 . 1〜 1 mmの微粒の吸着剤を充塡した層から なることを特徴とする請求の範囲第 9項〜第 1 1項のいずれかに記載の廃棄ガス 中に含まれる希薄なガス状炭化水素の処理装置。 12. The adsorbent layer according to any one of claims 9 to 11, wherein the adsorbent layer is a layer filled with fine adsorbent having a diameter of 0.1 to 1 mm. Equipment for treating lean gaseous hydrocarbons contained in waste gas.
PCT/JP2000/000513 1999-02-17 2000-01-31 Method for treating dilute gaseous hydrogen carbide contained in waste gas and device for performing the method WO2000048713A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU23233/00A AU2323300A (en) 1999-02-17 2000-01-31 Method for treating dilute gaseous hydrogen carbide contained in waste gas and device for performing the method
KR1020017010446A KR20010114209A (en) 1999-02-17 2000-01-31 Method for treating dilute gaseous hydrogen carbide contained in waste gas and device for performing the method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP3829499 1999-02-17
JP11/38294 1999-02-17
JP11077495A JP3133988B2 (en) 1999-02-17 1999-03-23 Equipment for treating lean gaseous hydrocarbons contained in waste gas
JP11/77495 1999-03-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/798,448 Continuation US6600862B2 (en) 1999-08-20 2001-03-02 Optical fiber and optical transmission line

Publications (1)

Publication Number Publication Date
WO2000048713A1 true WO2000048713A1 (en) 2000-08-24

Family

ID=26377513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000513 WO2000048713A1 (en) 1999-02-17 2000-01-31 Method for treating dilute gaseous hydrogen carbide contained in waste gas and device for performing the method

Country Status (4)

Country Link
JP (1) JP3133988B2 (en)
KR (1) KR20010114209A (en)
AU (1) AU2323300A (en)
WO (1) WO2000048713A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190205A (en) * 2014-09-26 2014-12-10 江南大学 Exhaust gas recovery cycle working method and device
CN106039921A (en) * 2016-06-30 2016-10-26 清本环保工程(杭州)有限公司 Organic waste gas treatment method
CN114887448A (en) * 2022-04-29 2022-08-12 上海至纯系统集成有限公司 Dry-type adsorption tail gas processor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4786043B2 (en) * 2001-03-09 2011-10-05 三菱重工環境・化学エンジニアリング株式会社 Fixed bed activated carbon adsorption tower
JP4418313B2 (en) * 2004-07-07 2010-02-17 富士シリシア化学株式会社 Packed bed type heat exchange type adsorption apparatus and method for obtaining gas having a predetermined adsorbate concentration using the adsorption apparatus
KR100770180B1 (en) * 2006-05-19 2007-10-25 주식회사 포스코 Control system for absorbing column for exhaust gas
DE102006032609A1 (en) * 2006-07-11 2008-01-17 Zeosys Gmbh Recovering halogenated hydrocarbons, especially inhalation anaesthetics from sorption filters, involves passing hot water vapour through a hydrophobic active carbon bed and then a hydrophobic zeolite bed
JP5701063B2 (en) 2008-01-02 2015-04-15 ツェオシス ゲゼルシャフト ミット ベシュレンクテル ハフツングZeoSys GmbH Method for recovering halogenated hydrocarbons
CN107290205B (en) * 2016-04-11 2020-05-15 中国石油化工股份有限公司 Device for the analysis of hot dilute hydrocarbons
CN113577982B (en) * 2021-08-18 2022-05-31 如东深水环境科技有限公司 Intelligent waste gas treatment device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135675A (en) * 1974-09-20 1976-03-26 Hitachi Ltd KYUCHAKU SOCHI
JPH0957060A (en) * 1995-08-29 1997-03-04 Syst Enji Service:Kk Method for treating and recovering gaseous hydrocarbon contained in waste gas
WO1997020618A1 (en) * 1995-12-06 1997-06-12 Cosmo Engineering Co., Ltd. Method of treating or recovering gaseous hydrocarbon contained in waste gas
JPH10156127A (en) * 1996-11-29 1998-06-16 I H I Plantec:Kk Benzene vapor recovery device
JPH1171584A (en) * 1997-06-17 1999-03-16 Syst Enji Service Kk Recovery of hydrocarbon in liquid state from waste gas containing gaseous hydrocarbon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135675A (en) * 1974-09-20 1976-03-26 Hitachi Ltd KYUCHAKU SOCHI
JPH0957060A (en) * 1995-08-29 1997-03-04 Syst Enji Service:Kk Method for treating and recovering gaseous hydrocarbon contained in waste gas
WO1997020618A1 (en) * 1995-12-06 1997-06-12 Cosmo Engineering Co., Ltd. Method of treating or recovering gaseous hydrocarbon contained in waste gas
JPH10156127A (en) * 1996-11-29 1998-06-16 I H I Plantec:Kk Benzene vapor recovery device
JPH1171584A (en) * 1997-06-17 1999-03-16 Syst Enji Service Kk Recovery of hydrocarbon in liquid state from waste gas containing gaseous hydrocarbon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190205A (en) * 2014-09-26 2014-12-10 江南大学 Exhaust gas recovery cycle working method and device
CN106039921A (en) * 2016-06-30 2016-10-26 清本环保工程(杭州)有限公司 Organic waste gas treatment method
CN114887448A (en) * 2022-04-29 2022-08-12 上海至纯系统集成有限公司 Dry-type adsorption tail gas processor

Also Published As

Publication number Publication date
JP3133988B2 (en) 2001-02-13
JP2000300955A (en) 2000-10-31
KR20010114209A (en) 2001-12-31
AU2323300A (en) 2000-09-04

Similar Documents

Publication Publication Date Title
JP3492018B2 (en) Recovery method of volatile organic matter
US6106593A (en) Purification of air
KR100427676B1 (en) Process or recovery of gaseous hydrocarbons contained in waste gas
JP3416333B2 (en) Volatile organic matter recovery method
TW201347830A (en) Purification of air
TW201444609A (en) Purification of air
JPH10113529A (en) Circulation for separating first component of gas mixture from second component of gas mixture
JP2004042013A (en) Method of treating volatile hydrocarbon-containing exhaust gas, and equipment for implementing the method
WO2000048713A1 (en) Method for treating dilute gaseous hydrogen carbide contained in waste gas and device for performing the method
JPH04222614A (en) Method and device for purifying fluid by adsorption
KR20080021693A (en) Method of purifying large quantity of exhaust gas containing dilute volatile hydrocarbon
JP2925522B2 (en) Method for recovering hydrocarbons in liquid form from waste gas containing gaseous hydrocarbons
JP2004148315A (en) Process and device for removing nitrous oxide from feed gas stream
JP3011094B2 (en) Treatment and recovery of gaseous hydrocarbons contained in waste gas
JP5109028B2 (en) Method for purifying a large amount of exhaust gas containing lean volatile hydrocarbons
JPH0299113A (en) Gas separation method according to pressure variation type adsorption method
KR100266479B1 (en) Adsorptive collection and recovery of volatile petroleum compounds
KR100347720B1 (en) A Method for Recovery of Organic Solvents Using a Multiple Adsorption-desorption Reactor, An Appliance thereof, and Zeolite Adsorbent packed at the above appliance
JP2840563B2 (en) Method for treating and recovering rich gaseous hydrocarbons contained in emitted gas
JPH1157372A (en) Method of recovering hydrocarbon vapor using cooling condensation
JPH03135410A (en) Pressure swing method for separating and recovering volatile organic matter
JP3560004B2 (en) Method and apparatus for removing water and carbon dioxide
JP3068272B2 (en) Method for recovering flammable volatile organic compounds
JP2002200410A (en) Method for isolating and recovering inert gas, and device for performing the method
JP3421923B2 (en) Method for treating lean gaseous hydrocarbons contained in waste gas

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09926025

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020017010446

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020017010446

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWW Wipo information: withdrawn in national office

Ref document number: 1020017010446

Country of ref document: KR