JP3982940B2 - Method for manufacturing optical semiconductor element - Google Patents

Method for manufacturing optical semiconductor element Download PDF

Info

Publication number
JP3982940B2
JP3982940B2 JP08278899A JP8278899A JP3982940B2 JP 3982940 B2 JP3982940 B2 JP 3982940B2 JP 08278899 A JP08278899 A JP 08278899A JP 8278899 A JP8278899 A JP 8278899A JP 3982940 B2 JP3982940 B2 JP 3982940B2
Authority
JP
Japan
Prior art keywords
layer
gaas
diffraction grating
optical semiconductor
algaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08278899A
Other languages
Japanese (ja)
Other versions
JP2000275418A (en
Inventor
岡田  知
毅 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP08278899A priority Critical patent/JP3982940B2/en
Publication of JP2000275418A publication Critical patent/JP2000275418A/en
Application granted granted Critical
Publication of JP3982940B2 publication Critical patent/JP3982940B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ある層の上に形成された凹凸を埋め込んで作製される回折格子、特にGaAs表面に作製される回折格子を有する光半導体素子に関するものである。
【0002】
【従来の技術】
半導体レーザにおいて動的単一縦モード発振を実現する構造として、分布帰還(DFB:Distributed Feedback)型半導体レーザあるいは分布ブラッグ反射器(DBR:Distributed Bragg Reflector)型半導体レーザなどがよく知られている。これらの構造の内部には、いずれも波長選択機能をもつ回折格子が作りこまれている。
【0003】
このような回折格子の作成法としては、GaAs/AlGaAs材料系半導体レーザにおけるDFB型半導体レーザを例として、Journal of Crystal Growth, Vol.77, p637-642, 1986. "AlGaAs/GaAs Distributed Feedback Laser Diodes Grown by MOCVD" T.Ohata et al.に開示されている。この例では、回折格子は第1のAlGaAs層と第2のAlGaAs層の界面に形成されており、まず第1のAlGaAs層の表面にエッチングにより周期的な凹凸を形成し、この上にAl組成比の異なる第2のAlGaAs層を成長させて、凹凸を第2のAlGaAs層で埋め込むことにより作製されている。同文献には、GaAs表面に形成された凹凸の上にMOCVD法によりAl組成0.3のAlGaAsを結晶再成長させるとGaAs/AlGaAs界面は平坦になり回折格子が形成できないこと、およびAl組成0.3のAlGaAs表面上では凹凸形状が保存されAl組成0.5のAlGaAsで埋め込むことにより回折格子が形成されることが開示されている。
【0004】
上記文献によると、GaAs表面での凹凸形状の消失は結晶再成長過程で表面に吸着したIII族原子あるいはIII族原料の分解生成物が表面でのマイグレーションを加速することによるものと推定されている。また、AlGaAs表面では凹凸形状が保存されることについては、下地となる結晶表面に存在するGaとAlのマイグレーション活性の違いで説明できるとしている。このような表面凹凸の消失を防ぐため、上記文献をはじめとする従来提案されている回折格子においては、回折格子を構成するための凹凸を形成する下地となる材料としてAlGaAsが広く採用されている。
【0005】
【発明が解決しようとする課題】
しかしながら、AlGaAs表面を空気中に取り出してエッチングなどの加工を行うと強固な表面酸化膜が速やかに形成されるため、その上に再成長される結晶の結晶性が損なわれたり、形成される界面に高濃度の不純物が蓄積される。上述したような従来技術では加工された表面全面にAlGaAsが露出しているため良好な結晶再成長を行うことは非常に困難であった。したがってこのような凹凸により構成される回折格子を有する光半導体素子の特性が十分に引き出せないという問題があった。特に半導体レーザの場合、注入電流の障害となったり素子の歩留まりや信頼性を低下させる原因となる恐れがあった。
【0006】
本発明の目的は、GaAs表面に形成されたサブミクロンオーダーの微細な凹凸形状を維持したまま別の半導体層で埋め込むことにより形成される回折格子を有する光半導体素子を高性能、高信頼性、高歩留まりで提供することである。
【0007】
【課題を解決するための手段】
本発明は、凹凸構造の凸部がGaAs層/ InGaAs中間層/GaAs層から成る積層構造で構成され、上記凹凸構造が半導体層により埋め込まれて成る回折格子を有することを特徴とする光半導体素子の製造方法であって、前記GaAs層/ InGaAs中間層/GaAs層で構成される積層構造において下側GaAs層に達する深さの凹部を持つ凹凸を形成する工程と、結晶再成長を行い凹凸形状を半導体材料からなる別の層で埋め込み回折格子を製造する工程とを有する回折格子の製造方法によって、上記回折格子を形成することを特徴とする、光半導体素子の製造方法である。
【0009】
本発明において上記InGaAs中間層のIn組成が0.2以下であることが望ましい。このような組成範囲にあることで、GaAsとInGaAsとの格子定数の違いに起因する歪みの影響を小さくして良好な結晶性の積層構造が得られる。
【0010】
また、本発明において上記中間層の厚さは2〜40nmの範囲にあることが望ましい。この範囲にあることで、凸部側面に露出する中間層が結晶再成長に与える影響を小さくして結晶性のよい埋込み層が得られる。
【0011】
また、本発明において上記凹凸構造を埋め込む半導体層はAlGaAsから成ることが望ましい。こうすることで、埋込み層の屈折率を正確に制御して所望の結合効率を有する回折格子が容易に得られる。
【0012】
またこのような回折格子を構成する積層構造および埋込み層を製造する方法としては、MOCVD(有機金属化学気相法)法やMBE法(分子線エピタキシャル法)などの気相成長法が望ましい。
【0013】
このような回折格子を備えた光半導体素子としては、半導体レーザ、光導波路、光結合器、光合分波器などが挙げられる。なかでも半導体レーザが好適である。
【0014】
【作用】
本発明者らの実験によると、GaAs表面に形成された凹凸は結晶成長温度に至るまでの熱サイクルおよびV族原料の供給に対しては安定であるものの、III族原料の供給により速やかに消失することが確認された。本発明者らは、AlGaAsあるいはInGaAs表面ではGaの平均マイグレーション長が顕著に小さくなるとの仮説、およびAlGaAsあるいはInGaAsが表面に露出している幅がGaの平均マイグレーション長よりも大きければGaのマイグレーションを効果的に抑制できるとの仮説に基づき、AlGaAsあるいはInGaAsの層厚に関する実験を行った結果、50nm以下の層厚で凹凸形状を保ったまま埋込み層を形成できることが明らかになった。この知見により本発明にいたった。
【0015】
本発明に従えば、中間層がInGaAsからなっていて、GaAs層/ InGaAs中間層/GaAs層で構成される積層構造において、下側GaAs層に達する深さの凹部を持つ凹凸を形成することにより、凹部の側壁には中間層の断面が露出する。これにより結晶再成長過程でのIII族原料を気相から供給する時に起こる表面原子のマイグレーションを抑制し、凹凸形状を保ったまま半導体材料からなる別の層で埋め込むことが可能になる。加工された凹部の側壁にごくわずかのInGaAsが露出するものの、ほぼ全面がGaAsであるため、従来のAlGaAs表面に作製される回折格子に比べて表面酸化膜の形成が大幅に抑制され、良好な品質の再成長結晶と不純物蓄積のない界面が得られる。従ってこのような方法で作製された光半導体素子では特性が安定し、素子の歩留まりや信頼性を向上させることができる。
【0016】
【発明の実施の形態】
本発明の第一の実施例を図1に示す。下地となる下側GaAs層1の上にIn 0.1 Ga 0.9 Asからなる中間層2(厚さ10nm)と上側GaAs層3(厚さ10nm)を積層する(図1(a))。この上にフォトレジスト4を塗布し(図1(b))、通常の二光束干渉露光工程により周期がおよそ0.28μmのレジストパターンを形成する(図1(c))。この場合、凹部となる部分の周期方向の長さは0.05〜0.2μmの範囲が適当である。次にウェットエッチング工程によってパターンを上記積層構造に転写する。この時にエッチングは下側GaAs層1が10nmの深さまでエッチングされるまで行い、したがってエッチングされてできる凹部の底は下側GaAs層1まで達している(図1 (d))。なお GaAs 層と In 0.1 Ga 0.9 As 中間層は周知のエッチャントで一度にエッチングできる。
【0017】
次にフォトレジストを剥離した後、MOCVD法によりAl0.2Ga0.8Asからなる半導体層5を結晶再成長して凹凸形状を埋め込む(図1(e))。このようにしてAl0.2Ga0.8As再成長層である半導体層5と上記積層構造の界面に凹凸形状が保存され、屈折率変調による回折格子が形成される。
【0019】
なお、上述した実施例ではAlGaAs再成長層のAl組成を0.2としたが、本発明の実施においてAlGaAs再成長層のAl組成は任意の値を採用することができ、上記の実施例に限定されない。また、回折格子の周期は導波モードの実効屈折率と所望のブラッグ波長から決定されるものである。また凹部の周期方向の長さは、実施例の数値範囲に限定されず回折格子の結合係数の選択により適宜決められる。
【0020】
次にこのような回折格子を内部に備えたDFB型半導体レーザの断面斜視図を図に示す。この半導体レーザは、n型GaAs基板6の上にn−AlGaAsクラッド層7/n-GaAs導波層8/InGaAs活性層9/p-GaAs導波層10/p-In 0.1Ga0.9As中間層(厚さ10nm)11/p-GaAsキャップ層12(厚さ10nm)/p-AlGaAsクラッド層13/p-GaAsコンタクト層14がこの順に形成され、n-GaAsからなる電流狭窄層15が埋め込まれた構造である。p-GaAsキャップ層12まで形成したところで表面にp-GaAs導波層10にまで達する凹凸を形成し、p-AlGaAsクラッド層13で凹凸形状を埋め込むことにより回折格子が形成されている。
【0021】
【発明の効果】
GaAs表面に形成されたサブミクロンオーダーの微細な凹凸形状の変形を防止し、形状を維持したまま結晶再成長により埋め込むことができるため、動的単一モード半導体レーザなど回折格子を有する光半導体素子を高い信頼性および高い歩留まりで作製できるようになった。
【図面の簡単な説明】
【図1】本発明の実施例を示す断面図である。
【図2】本発明による光半導体素子の一例であるDFB型半導体レーザの断面斜視図である。
【符号の説明】
1 ・・下側GaAs層、 2 ・・中間層、 3 ・・上側GaAs層、
4 ・・フォトレジスト、 5 ・・半導体層、 6 ・・GaAs基板、
7 ・・n-AlGaAsクラッド層、 8 ・・n-GaAs導波層、 9 ・・InGaAs活性層、
10 ・・p-GaAs導波層、 11 ・・p-In 0.1Ga0.9As中間層、
12 ・・p-GaAsキャップ層、 13 ・・p-AlGaAsクラッド層、
14 ・・p-GaAsコンタクト層、 15 ・・電流狭窄層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a diffraction grating produced by embedding irregularities formed on a certain layer, and more particularly to an optical semiconductor device having a diffraction grating produced on a GaAs surface.
[0002]
[Prior art]
As a structure for realizing dynamic single longitudinal mode oscillation in a semiconductor laser, a distributed feedback (DFB) type semiconductor laser or a distributed Bragg reflector (DBR) type semiconductor laser is well known. In each of these structures, a diffraction grating having a wavelength selection function is built.
[0003]
As a method for producing such a diffraction grating, Journal of Crystal Growth, Vol.77, p637-642, 1986. "AlGaAs / GaAs Distributed Feedback Laser Diodes" Grown by MOCVD "T.Ohata et al. In this example, the diffraction grating is formed at the interface between the first AlGaAs layer and the second AlGaAs layer. First, periodic irregularities are formed on the surface of the first AlGaAs layer by etching, and the Al composition is formed thereon. The second AlGaAs layer having a different ratio is grown, and the unevenness is embedded in the second AlGaAs layer. In this document, when AlGaAs with Al composition of 0.3 is regrown by MOCVD on the ruggedness formed on the GaAs surface, the GaAs / AlGaAs interface becomes flat and a diffraction grating cannot be formed, and AlGaAs with Al composition of 0.3 It is disclosed that a concavo-convex shape is preserved on the surface and a diffraction grating is formed by embedding with AlGaAs having an Al composition of 0.5.
[0004]
According to the above document, the disappearance of the irregular shape on the GaAs surface is presumed to be due to the accelerated migration of III-group atoms or group III source decomposition products adsorbed on the surface during the crystal regrowth process. . The fact that the uneven shape is preserved on the AlGaAs surface can be explained by the difference in the migration activity between Ga and Al present on the underlying crystal surface. In order to prevent the disappearance of such surface irregularities, AlGaAs is widely adopted as a base material for forming irregularities for constituting the diffraction grating in the conventionally proposed diffraction gratings including the above documents. .
[0005]
[Problems to be solved by the invention]
However, when the AlGaAs surface is taken out into the air and processed by etching or the like, a strong surface oxide film is quickly formed, so that the crystallinity of the regrowth crystal is impaired or the interface formed A high concentration of impurities is accumulated. In the prior art as described above, since AlGaAs is exposed on the entire processed surface, it is very difficult to perform good crystal regrowth. Therefore, there has been a problem that the characteristics of the optical semiconductor element having a diffraction grating constituted by such irregularities cannot be sufficiently extracted. In particular, in the case of a semiconductor laser, there is a possibility that it becomes a hindrance to the injection current and causes a reduction in device yield and reliability.
[0006]
An object of the present invention is to provide an optical semiconductor element having a diffraction grating formed by embedding with another semiconductor layer while maintaining a fine unevenness of submicron order formed on the GaAs surface, with high performance, high reliability, It is to provide at a high yield.
[0007]
[Means for Solving the Problems]
The optical semiconductor device according to the present invention has a diffraction grating in which the convex portion of the concavo-convex structure is composed of a laminated structure comprising a GaAs layer / InGaAs intermediate layer / GaAs layer, and the concavo-convex structure is embedded with a semiconductor layer. In the laminated structure composed of the GaAs layer / InGaAs intermediate layer / GaAs layer, and forming a concavo-convex portion having a depth reaching the lower GaAs layer, and performing crystal regrowth to form a concavo-convex shape. A method of manufacturing an optical semiconductor element, wherein the diffraction grating is formed by a method of manufacturing a diffraction grating having a step of manufacturing an embedded diffraction grating with another layer made of a semiconductor material.
[0009]
In the present invention, the InGaAs intermediate layer preferably has an In composition of 0.2 or less. By being in such a composition range, it is possible to reduce the influence of the strain caused by the difference in lattice constant between GaAs and InGaAs, and to obtain a good crystalline stacked structure.
[0010]
In the present invention, the thickness of the intermediate layer is preferably in the range of 2 to 40 nm. By being in this range, the influence of the intermediate layer exposed on the side surface of the convex portion on the crystal regrowth can be reduced, and a buried layer having good crystallinity can be obtained.
[0011]
In the present invention, it is desirable that the semiconductor layer embedded in the concavo-convex structure is made of AlGaAs. By doing so, it is possible to easily obtain a diffraction grating having a desired coupling efficiency by accurately controlling the refractive index of the buried layer.
[0012]
Further, as a method for producing such a laminated structure and a buried layer constituting the diffraction grating, a vapor phase growth method such as MOCVD (metal organic chemical vapor deposition) method or MBE (molecular beam epitaxial method) is desirable.
[0013]
Examples of the optical semiconductor element provided with such a diffraction grating include a semiconductor laser, an optical waveguide, an optical coupler, and an optical multiplexer / demultiplexer. Among these, a semiconductor laser is preferable.
[0014]
[Action]
According to the experiments by the present inventors, the unevenness formed on the GaAs surface is stable with respect to the thermal cycle up to the crystal growth temperature and the supply of the group V material, but quickly disappears with the supply of the group III material. Confirmed to do. The inventors hypothesized that the average migration length of Ga is remarkably reduced on the AlGaAs or InGaAs surface, and if the width of the AlGaAs or InGaAs exposed on the surface is larger than the average migration length of Ga, the migration of Ga is performed. Based on the hypothesis that it can be effectively suppressed, experiments on the layer thickness of AlGaAs or InGaAs have revealed that a buried layer can be formed with a concavo-convex shape with a layer thickness of 50 nm or less. This finding led to the present invention.
[0015]
According to the present invention, the intermediate layer is made of InGaAs, and in the stacked structure composed of GaAs layer / InGaAs intermediate layer / GaAs layer, the concave and convex portions having the depth reaching the lower GaAs layer are formed. The cross section of the intermediate layer is exposed on the side wall of the recess. This suppresses the migration of surface atoms that occurs when the Group III raw material is supplied from the gas phase during the crystal regrowth process, and enables embedding with another layer made of a semiconductor material while maintaining the uneven shape. Although a very small amount of InGaAs is exposed on the side wall of the processed recess, almost the entire surface is made of GaAs, so that the surface oxide film formation is greatly suppressed compared to the conventional diffraction grating fabricated on the AlGaAs surface, which is good. A quality regrown crystal and an interface without impurity accumulation are obtained. Therefore, the characteristics of the optical semiconductor device manufactured by such a method are stable, and the yield and reliability of the device can be improved.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention is shown in FIG. An intermediate layer 2 (thickness 10 nm) made of In 0.1 Ga 0.9 As and an upper GaAs layer 3 (thickness 10 nm) are stacked on the lower GaAs layer 1 serving as a base (FIG. 1A). A photoresist 4 is applied thereon (FIG. 1B), and a resist pattern having a period of about 0.28 μm is formed by a normal two-beam interference exposure process (FIG. 1C). In this case, the length in the period direction of the portion to be the recess is suitably in the range of 0.05 to 0.2 μm. Next, the pattern is transferred to the laminated structure by a wet etching process. At this time, the etching is performed until the lower GaAs layer 1 is etched to a depth of 10 nm. Therefore, the bottom of the recess formed by the etching reaches the lower GaAs layer 1 (FIG. 1 (d)). The GaAs layer and the In 0.1 Ga 0.9 As intermediate layer can be etched at once with a known etchant.
[0017]
Next, after removing the photoresist, the semiconductor layer 5 made of Al 0.2 Ga 0.8 As is regrown by MOCVD to fill the uneven shape (FIG. 1E). In this way, an uneven shape is preserved at the interface between the semiconductor layer 5 that is the Al 0.2 Ga 0.8 As regrowth layer and the laminated structure, and a diffraction grating by refractive index modulation is formed.
[0019]
In the above-described embodiment, the Al composition of the AlGaAs regrowth layer is set to 0.2. However, the Al composition of the AlGaAs regrowth layer can be any value in the practice of the present invention, and is not limited to the above embodiment. . The period of the diffraction grating is determined from the effective refractive index of the waveguide mode and the desired Bragg wavelength. Further, the length of the concave portion in the periodic direction is not limited to the numerical range of the embodiment, and can be appropriately determined by selecting the coupling coefficient of the diffraction grating.
[0020]
Next, a cross-sectional perspective view of a DFB type semiconductor laser having such a diffraction grating therein is shown. This semiconductor laser has an n-AlGaAs cladding layer 7 / n-GaAs waveguide layer 8 / InGaAs active layer 9 / p-GaAs waveguide layer 10 / p- In 0.1 Ga 0.9 As intermediate layer on an n-type GaAs substrate 6. (Thickness 10 nm) 11 / p-GaAs cap layer 12 (thickness 10 nm) / p-AlGaAs cladding layer 13 / p-GaAs contact layer 14 are formed in this order, and a current confinement layer 15 made of n-GaAs is buried. Structure. When the p-GaAs cap layer 12 is formed, irregularities reaching the p-GaAs waveguide layer 10 are formed on the surface, and the concave-convex shape is filled with the p-AlGaAs cladding layer 13 to form a diffraction grating.
[0021]
【The invention's effect】
An optical semiconductor device with a diffraction grating such as a dynamic single-mode semiconductor laser, which can be deformed by sub-micron-order fine irregularities formed on the GaAs surface and embedded by crystal regrowth while maintaining the shape. Can be manufactured with high reliability and high yield.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of the present invention.
FIG. 2 is a cross-sectional perspective view of a DFB type semiconductor laser which is an example of an optical semiconductor device according to the present invention.
[Explanation of symbols]
1 .. Lower GaAs layer 2. Intermediate layer 3 Upper GaAs layer
4 .. Photoresist, 5 .. Semiconductor layer, 6 .. GaAs substrate,
7 .. n-AlGaAs cladding layer, 8 .. n-GaAs waveguide layer, 9 .. InGaAs active layer,
10 .. p-GaAs waveguide layer, 11 .. p- In 0.1 Ga 0.9 As intermediate layer,
12 .. p-GaAs cap layer, 13 .. p-AlGaAs cladding layer,
14 .. p-GaAs contact layer, 15 .. Current confinement layer

Claims (4)

回折格子を備えた光半導体素子であって、回折格子を構成する凹凸構造の凸部がGaAs層/InGaAs中間層/GaAs層からなる積層構造であり、前記凹凸構造が半導体層により埋め込まれている光半導体素子の製造方法であって、前記GaAs層/ InGaAs中間層/GaAs層で構成される積層構造において下側GaAs層に達する深さの凹部を持つ凹凸を形成する工程と、結晶再成長を行い凹凸形状を半導体材料からなる別の層で埋め込み回折格子を製造する工程とを有する回折格子の製造方法によって、上記回折格子を形成することを特徴とする、光半導体素子の製造方法。An optical semiconductor element having a diffraction grating, wherein the convex part of the concave-convex structure constituting the diffraction grating is a laminated structure composed of a GaAs layer / InGaAs intermediate layer / GaAs layer, and the concave-convex structure is embedded by a semiconductor layer A method of manufacturing an optical semiconductor device, comprising: forming a concavo-convex portion having a recess reaching a lower GaAs layer in a laminated structure composed of the GaAs layer / InGaAs intermediate layer / GaAs layer; and crystal regrowth. A method for manufacturing an optical semiconductor element, characterized in that the diffraction grating is formed by a method for manufacturing a diffraction grating having a step of manufacturing an embedding diffraction grating with another layer made of a semiconductor material. 前記InGaAsからなる中間層のIn組成が0.2以下であることを特徴とする請求項1に記載の光半導体素子の製造方法。2. The method of manufacturing an optical semiconductor element according to claim 1, wherein the In composition of the intermediate layer made of InGaAs is 0.2 or less. 前記中間層の厚さが2〜40nmの範囲にあることを特徴とする請求項1乃至2に記載の光半導体素子の製造方法。3. The method of manufacturing an optical semiconductor element according to claim 1, wherein the intermediate layer has a thickness in a range of 2 to 40 nm. 前記凹凸構造を埋め込む半導体材料からなる別の層がAlGaAsからなることを特徴とする請求項1乃至3に記載の光半導体素子の製造方法。4. The method of manufacturing an optical semiconductor element according to claim 1, wherein another layer made of a semiconductor material for embedding the concavo-convex structure is made of AlGaAs.
JP08278899A 1999-03-26 1999-03-26 Method for manufacturing optical semiconductor element Expired - Lifetime JP3982940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08278899A JP3982940B2 (en) 1999-03-26 1999-03-26 Method for manufacturing optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08278899A JP3982940B2 (en) 1999-03-26 1999-03-26 Method for manufacturing optical semiconductor element

Publications (2)

Publication Number Publication Date
JP2000275418A JP2000275418A (en) 2000-10-06
JP3982940B2 true JP3982940B2 (en) 2007-09-26

Family

ID=13784157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08278899A Expired - Lifetime JP3982940B2 (en) 1999-03-26 1999-03-26 Method for manufacturing optical semiconductor element

Country Status (1)

Country Link
JP (1) JP3982940B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010778A (en) * 2004-06-22 2006-01-12 National Institute Of Advanced Industrial & Technology Method for manufacturing diffraction grating
JP5557648B2 (en) * 2010-01-25 2014-07-23 昭和電工株式会社 Light emitting diode, light emitting diode lamp, and lighting device
JP5854417B2 (en) * 2010-07-30 2016-02-09 国立大学法人京都大学 Two-dimensional photonic crystal laser
JP5874947B2 (en) * 2010-07-30 2016-03-02 国立大学法人京都大学 Manufacturing method of two-dimensional photonic crystal laser
US9130348B2 (en) 2010-07-30 2015-09-08 Kyoto University Two-dimensional photonic crystal laser
JP6031783B2 (en) * 2012-03-12 2016-11-24 富士通株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2000275418A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
JP5280614B2 (en) Embedded heterostructure devices incorporating waveguide gratings fabricated by single step MOCVD
CN101645481A (en) Method for fabricating a nitride semiconductor light-emitting device
JPH0878386A (en) Semiconductor etching method, manufacture of semiconductor device, semiconductor laser and its manufacture
JPH07221392A (en) Quantum thin wire and its manufacture, quantum thin wire laser and its manufacture, manufacture of diffraction grating, and distributed feedback semiconductor laser
US5260230A (en) Method of manufacturing buried heterostructure semiconductor laser
JP3710524B2 (en) Ridge waveguide type distributed feedback semiconductor laser device and manufacturing method thereof
JPH09139550A (en) Manufacture of semiconductor laser device, and semiconductor laser device
JP3977920B2 (en) Manufacturing method of semiconductor device
JP3204474B2 (en) Gain-coupled distributed feedback semiconductor laser and its fabrication method
US8962356B2 (en) Method of manufacturing photonic crystal and method of manufacturing surface-emitting laser
JP3982940B2 (en) Method for manufacturing optical semiconductor element
JP4751124B2 (en) Method for fabricating a semiconductor light emitting device
JP4375834B2 (en) Gain-coupled distributed feedback semiconductor laser device and manufacturing method thereof
JP5217767B2 (en) Semiconductor laser and method for manufacturing semiconductor laser
JP5217598B2 (en) Manufacturing method of semiconductor light emitting device
JPH0621570A (en) Manufacture of semiconductor light emitting device
JP2007103803A (en) Semiconductor optical component and its manufacturing method
JP2682414B2 (en) Method for forming semiconductor quantum fine structure
JP4927769B2 (en) Semiconductor laser manufacturing method and semiconductor laser
JP2500615B2 (en) Method for manufacturing embedded optical semiconductor device
JP4115593B2 (en) Gain-coupled distributed feedback semiconductor laser device and manufacturing method thereof
JP4121539B2 (en) Manufacturing method of semiconductor device
JP5108687B2 (en) Optical semiconductor device and manufacturing method thereof
JP2004055881A (en) Method for manufacturing optical semiconductor device
JPH1022572A (en) Semiconductor device where diffractive grating is made in light guide layer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term