JP2000275418A - Optical semiconductor element - Google Patents

Optical semiconductor element

Info

Publication number
JP2000275418A
JP2000275418A JP11082788A JP8278899A JP2000275418A JP 2000275418 A JP2000275418 A JP 2000275418A JP 11082788 A JP11082788 A JP 11082788A JP 8278899 A JP8278899 A JP 8278899A JP 2000275418 A JP2000275418 A JP 2000275418A
Authority
JP
Japan
Prior art keywords
layer
gaas
optical semiconductor
algaas
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11082788A
Other languages
Japanese (ja)
Other versions
JP3982940B2 (en
Inventor
Satoru Okada
岡田  知
Takeshi Fujimoto
毅 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP08278899A priority Critical patent/JP3982940B2/en
Publication of JP2000275418A publication Critical patent/JP2000275418A/en
Application granted granted Critical
Publication of JP3982940B2 publication Critical patent/JP3982940B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical semiconductor element having high performance, high reliability, and high yield, by constituting a projecting part of a recessed/ projecting structure with a lamination structure comprising a GaAs layer, an intermediate layer, and a GaAs layer, and providing a diffraction grating having a semiconductor layer embedded in the recessed/projecting structure. SOLUTION: In a lamination structure comprising a downside GaAs layer 1, an intermediate layer 2, and an upside GaAs layer 3, a recess/projection having a recessed part with depth reaching the downside GaAs layer 1 is formed. A section of the intermediate layer 2 is exposed on a sidewall of the recessed part. Thus, migration of surface atoms occurring when a group III material in a crystal regrowth process is supplied from a gas phase is suppressed, and another semiconductor material can be embedded while keeping the recess/projection configuration. Deformation of the micro recess/projection configuration in a sub-micron order formed on the GaAs layer is prevented, the semiconductor can be embedded by regrowth while keeping the configuration, thus enabling the manufacture of the optical semiconductor element in high reliability and in high yield.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ある層の上に形成
された凹凸を埋め込んで作製される回折格子、特にGaAs
表面に作製される回折格子を有する光半導体素子に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diffraction grating formed by embedding irregularities formed on a certain layer, in particular, GaAs.
The present invention relates to an optical semiconductor device having a diffraction grating formed on a surface.

【0002】[0002]

【従来の技術】半導体レーザにおいて動的単一縦モード
発振を実現する構造として、分布帰還(DFB:Distri
buted Feedback)型半導体レーザあるいは分布ブラッグ
反射器(DBR:Distributed Bragg Reflector)型半
導体レーザなどがよく知られている。これらの構造の内
部には、いずれも波長選択機能をもつ回折格子が作りこ
まれている。
2. Description of the Related Art As a structure for realizing dynamic single longitudinal mode oscillation in a semiconductor laser, distributed feedback (DFB: Distrib
A well-known semiconductor laser or a distributed Bragg reflector (DBR) type semiconductor laser is well known. Inside these structures, diffraction gratings each having a wavelength selection function are formed.

【0003】このような回折格子の作成法としては、Ga
As/AlGaAs材料系半導体レーザにおけるDFB型半導体
レーザを例として、Journal of Crystal Growth, Vol.7
7, p637-642, 1986. "AlGaAs/GaAs Distributed Feedba
ck Laser Diodes Grown by MOCVD" T.Ohata et al.に開
示されている。この例では、回折格子は第1のAlGaAs層
と第2のAlGaAs層の界面に形成されており、まず第1の
AlGaAs層の表面にエッチングにより周期的な凹凸を形成
し、この上にAl組成比の異なる第2のAlGaAs層を成長さ
せて、凹凸を第2のAlGaAs層で埋め込むことにより作製
されている。同文献には、GaAs表面に形成された凹凸の
上にMOCVD法によりAl組成0.3のAlGaAsを結晶再成
長させるとGaAs/AlGaAs界面は平坦になり回折格子が形
成できないこと、およびAl組成0.3のAlGaAs表面上では
凹凸形状が保存されAl組成0.5のAlGaAsで埋め込むこと
により回折格子が形成されることが開示されている。
As a method for producing such a diffraction grating, Ga
Journal of Crystal Growth, Vol.7, using a DFB semiconductor laser as an example of an As / AlGaAs material semiconductor laser.
7, p637-642, 1986. "AlGaAs / GaAs Distributed Feedba
ck Laser Diodes Grown by MOCVD "T. Ohhata et al. In this example, the diffraction grating is formed at the interface between the first AlGaAs layer and the second AlGaAs layer.
It is manufactured by forming periodic irregularities on the surface of the AlGaAs layer by etching, growing a second AlGaAs layer having a different Al composition ratio thereon, and filling the irregularities with the second AlGaAs layer. According to the same document, when AlGaAs having an Al composition of 0.3 is recrystallized by MOCVD on irregularities formed on the GaAs surface, the GaAs / AlGaAs interface becomes flat and a diffraction grating cannot be formed. It is disclosed that the diffraction grating is formed by embedding AlGaAs with an Al composition of 0.5 on the surface while retaining the uneven shape.

【0004】上記文献によると、GaAs表面での凹凸形状
の消失は結晶再成長過程で表面に吸着したIII族原子あ
るいはIII族原料の分解生成物が表面でのマイグレーシ
ョンを加速することによるものと推定されている。ま
た、AlGaAs表面では凹凸形状が保存されることについて
は、下地となる結晶表面に存在するGaとAlのマイグレー
ション活性の違いで説明できるとしている。このような
表面凹凸の消失を防ぐため、上記文献をはじめとする従
来提案されている回折格子においては、回折格子を構成
するための凹凸を形成する下地となる材料としてAlGaAs
が広く採用されている。
According to the above-mentioned literature, it is estimated that the disappearance of the irregular shape on the GaAs surface is caused by accelerated migration on the surface by the group III atoms or decomposition products of the group III raw material adsorbed on the surface during the crystal regrowth process. Have been. In addition, the fact that the uneven shape is preserved on the AlGaAs surface can be explained by the difference in migration activity between Ga and Al existing on the underlying crystal surface. In order to prevent the disappearance of such surface irregularities, in the conventional diffraction gratings including the above-mentioned documents, AlGaAs is used as a base material for forming the irregularities for forming the diffraction grating.
Has been widely adopted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、AlGaAs
表面を空気中に取り出してエッチングなどの加工を行う
と強固な表面酸化膜が速やかに形成されるため、その上
に再成長される結晶の結晶性が損なわれたり、形成され
る界面に高濃度の不純物が蓄積される。上述したような
従来技術では加工された表面全面にAlGaAsが露出してい
るため良好な結晶再成長を行うことは非常に困難であっ
た。したがってこのような凹凸により構成される回折格
子を有する光半導体素子の特性が十分に引き出せないと
いう問題があった。特に半導体レーザの場合、注入電流
の障害となったり素子の歩留まりや信頼性を低下させる
原因となる恐れがあった。
SUMMARY OF THE INVENTION However, AlGaAs
When the surface is taken out into the air and subjected to processing such as etching, a strong surface oxide film is quickly formed, and the crystallinity of the regrown crystal is impaired, or a high concentration of Impurities are accumulated. In the prior art described above, it is very difficult to perform good crystal regrowth because AlGaAs is exposed on the entire processed surface. Therefore, there is a problem that the characteristics of the optical semiconductor device having the diffraction grating constituted by such irregularities cannot be sufficiently brought out. In particular, in the case of a semiconductor laser, there is a possibility that it may cause an obstacle to an injection current or reduce the yield and reliability of the device.

【0006】本発明の目的は、GaAs表面に形成されたサ
ブミクロンオーダーの微細な凹凸形状を維持したまま別
の半導体層で埋め込むことにより形成される回折格子を
有する光半導体素子を高性能、高信頼性、高歩留まりで
提供することである。
An object of the present invention is to provide an optical semiconductor device having a diffraction grating formed by embedding another semiconductor layer while maintaining the fine irregularities on the sub-micron order formed on the GaAs surface. It is to provide reliability and high yield.

【0007】[0007]

【課題を解決するための手段】本発明は、凹凸構造の凸
部がGaAs層/中間層/GaAs層から成る積層構造で構成さ
れ、上記凹凸構造が半導体層により埋め込まれて成る回
折格子を有することを特徴とする光半導体素子である。
According to the present invention, there is provided a diffraction grating having a convex / concave structure having a stacked structure composed of a GaAs layer / intermediate layer / GaAs layer, wherein the convex / concave structure is embedded with a semiconductor layer. An optical semiconductor element characterized by the above-mentioned.

【0008】本発明において上記中間層はAlGaAsから成
ることが望ましく、さらには上記AlGaAs中間層のAl組成
が0.2以下であることが望ましい。このような組成範囲
にあることで、凸部側面に露出するAlGaAsが結晶再成長
に与える影響を小さくして結晶性のよい埋込み層が得ら
れる。
In the present invention, the intermediate layer is desirably made of AlGaAs, and the Al composition of the AlGaAs intermediate layer is desirably 0.2 or less. With such a composition range, the influence of AlGaAs exposed on the side surface of the convex portion on the crystal regrowth is reduced, and a buried layer having good crystallinity can be obtained.

【0009】また、本発明において上記中間層はInGaAs
から成ることが望ましく、さらには上記InGaAs中間層の
In組成が0.2以下であることが望ましい。このような組
成範囲にあることで、GaAsとInGaAsとの格子定数の違い
に起因する歪みの影響を小さくして良好な結晶性の積層
構造が得られる。
In the present invention, the intermediate layer is made of InGaAs.
It is preferable that the InGaAs intermediate layer
It is desirable that the In composition be 0.2 or less. By being in such a composition range, the influence of the strain caused by the difference in the lattice constant between GaAs and InGaAs can be reduced and a good crystalline laminated structure can be obtained.

【0010】また、本発明において上記中間層の厚さは
2〜40nmの範囲にあることが望ましい。この範囲にあ
ることで、凸部側面に露出する中間層が結晶再成長に与
える影響を小さくして結晶性のよい埋込み層が得られ
る。
In the present invention, the thickness of the intermediate layer is
It is desirable to be in the range of 2 to 40 nm. By being in this range, the influence of the intermediate layer exposed on the side surface of the convex portion on crystal regrowth is reduced, and a buried layer having good crystallinity can be obtained.

【0011】また、本発明において上記凹凸構造を埋め
込む半導体層はAlGaAsから成ることが望ましい。こうす
ることで、埋込み層の屈折率を正確に制御して所望の結
合効率を有する回折格子が容易に得られる。
In the present invention, it is preferable that the semiconductor layer for embedding the uneven structure is made of AlGaAs. By doing so, a diffraction grating having a desired coupling efficiency can be easily obtained by accurately controlling the refractive index of the buried layer.

【0012】またこのような回折格子を構成する積層構
造および埋込み層を製造する方法としては、MOCVD
(有機金属化学気相法)法やMBE法(分子線エピタキ
シャル法)などの気相成長法が望ましい。
As a method of manufacturing a laminated structure and a buried layer constituting such a diffraction grating, MOCVD is used.
A vapor phase growth method such as a (organic metal chemical vapor deposition) method or an MBE method (molecular beam epitaxial method) is desirable.

【0013】このような回折格子を備えた光半導体素子
としては、半導体レーザ、光導波路、光結合器、光合分
波器などが挙げられる。なかでも半導体レーザが好適で
ある。
Examples of the optical semiconductor device having such a diffraction grating include a semiconductor laser, an optical waveguide, an optical coupler, and an optical multiplexer / demultiplexer. Among them, a semiconductor laser is preferable.

【0014】[0014]

【作用】本発明者らの実験によると、GaAs表面に形成さ
れた凹凸は結晶成長温度に至るまでの熱サイクルおよび
V族原料の供給に対しては安定であるものの、III族原料
の供給により速やかに消失することが確認された。本発
明者らは、AlGaAsあるいはInGaAs表面ではGaの平均マイ
グレーション長が顕著に小さくなるとの仮説、およびAl
GaAsあるいはInGaAsが表面に露出している幅がGaの平均
マイグレーション長よりも大きければGaのマイグレーシ
ョンを効果的に抑制できるとの仮説に基づき、AlGaAsあ
るいはInGaAsの層厚に関する実験を行った結果、50nm以
下の層厚で凹凸形状を保ったまま埋込み層を形成できる
ことが明らかになった。この知見により本発明にいたっ
た。
According to the experiments performed by the present inventors, the irregularities formed on the GaAs surface are affected by the thermal cycle up to the crystal growth temperature and
It was confirmed that it was stable with respect to the supply of the group V raw material, but disappeared quickly with the supply of the group III raw material. The present inventors hypothesized that the average migration length of Ga would be significantly reduced on the AlGaAs or InGaAs surface, and
Based on the hypothesis that if the width of GaAs or InGaAs exposed on the surface is larger than the average migration length of Ga, it is possible to effectively suppress the migration of Ga, we conducted an experiment on the thickness of AlGaAs or InGaAs and found that the thickness was 50 nm. It has been clarified that the buried layer can be formed with the following layer thickness while maintaining the uneven shape. This finding led to the present invention.

【0015】本発明に従えば、例えば中間層がAlGaAsま
たはInGaAsからなっていて、GaAs層/中間層/GaAs層で構
成される積層構造において、下側GaAs層に達する深さの
凹部を持つ凹凸を形成することにより、凹部の側壁には
中間層の断面が露出する。これにより結晶再成長過程で
のIII族原料を気相から供給する時に起こる表面原子の
マイグレーションを抑制し、凹凸形状を保ったまま別の
半導体材料からなる層で埋め込むことが可能になる。加
工された凹部の側壁にごくわずかのAlGaAsあるいはInGa
Asが露出するものの、ほぼ全面がGaAsであるため、従来
のAlGaAs表面に作製される回折格子に比べて表面酸化膜
の形成が大幅に抑制され、良好な品質の再成長結晶と不
純物蓄積のない界面が得られる。従ってこのような方法
で作製された光半導体素子では特性が安定し、素子の歩
留まりや信頼性を向上させることができる。
According to the present invention, for example, in a laminated structure composed of GaAs layer / intermediate layer / GaAs layer in which the intermediate layer is made of AlGaAs or InGaAs, the concave / convex portion having a depth reaching the lower GaAs layer is provided. Is formed, the cross section of the intermediate layer is exposed on the side wall of the concave portion. This suppresses migration of surface atoms that occurs when the group III raw material is supplied from the gas phase during the crystal regrowth process, and makes it possible to embed the layer with another semiconductor material while maintaining the uneven shape. Very little AlGaAs or InGa on the sidewalls of the machined recess
Although As is exposed, almost the entire surface is made of GaAs, so the formation of a surface oxide film is significantly suppressed compared to a diffraction grating fabricated on the conventional AlGaAs surface, and good quality regrown crystals and no impurity accumulation An interface is obtained. Therefore, the characteristics of the optical semiconductor device manufactured by such a method are stable, and the yield and reliability of the device can be improved.

【0016】[0016]

【発明の実施の形態】本発明の第一の実施例を図1に示
す。下地となる下側GaAs層1の上にAl0.1Ga0 .9Asからな
る中間層2(厚さ10nm)と上側GaAs層3(厚さ10nm)を
積層する(図1(a))。この上にフォトレジスト4を塗布
し(図1(b))、通常の二光束干渉露光工程により周期
がおよそ0.28μmのレジストパターンを形成する(図1
(c))。この場合、凹部となる部分の周期方向の長さは0.
05〜0.2μmの範囲が適当である。次にウェットエッチ
ング工程によってパターンを上記積層構造に転写する。
この時にエッチングは下側GaAs層1が10nmの深さまでエ
ッチングされるまで行い、したがってエッチングされて
できる凹部の底は下側GaAs層1まで達している(図1
(d))。
FIG. 1 shows a first embodiment of the present invention. Laminating the lower intermediate layer 2 made of Al 0.1 Ga 0 .9 As on the GaAs layer 1 (thickness 10 nm) upper GaAs layer 3 (thickness 10 nm) serving as a base (Figure 1 (a)). A photoresist 4 is applied thereon (FIG. 1 (b)), and a resist pattern having a period of about 0.28 μm is formed by a normal two-beam interference exposure process (FIG. 1).
(c)). In this case, the length of the concave portion in the periodic direction is 0.
The range of 05 to 0.2 μm is appropriate. Next, the pattern is transferred to the laminated structure by a wet etching process.
At this time, the etching is performed until the lower GaAs layer 1 is etched to a depth of 10 nm, so that the bottom of the recess formed by the etching reaches the lower GaAs layer 1 (FIG. 1).
(d)).

【0017】次にフォトレジストを剥離した後、MOC
VD法によりAl0.2Ga0.8Asからなる半導体層5を結晶再
成長して凹凸形状を埋め込む(図1(e))。このように
してAl0.2Ga0.8As再成長層である半導体層5と上記積層
構造の界面に凹凸形状が保存され、屈折率変調による回
折格子が形成される。
Next, after removing the photoresist, the MOC
The semiconductor layer 5 made of Al 0.2 Ga 0.8 As is crystal-regrown by the VD method to bury the irregularities (FIG. 1E). In this manner, the uneven shape is preserved at the interface between the semiconductor layer 5 which is the Al 0.2 Ga 0.8 As regrown layer and the above-mentioned laminated structure, and a diffraction grating is formed by refractive index modulation.

【0018】本発明の第二の実施例は、中間層を構成す
る材質が上記第一の実施例におけるAl0.1Ga0.9AsからIn
0.1Ga0.9Asに変更されたものであり、その他の構成要素
は上記第一の実施例と同様である。第一の実施例と同様
にAl0.2Ga0.8As再成長層と上記積層構造の界面に凹凸形
状が保存され、屈折率変調あるいは利得変調による回折
格子が形成される。なおGaAs層とIn0.1Ga0.9As中間層は
周知のエッチャントで一度にエッチングできる。
In the second embodiment of the present invention, the material constituting the intermediate layer is changed from Al 0.1 Ga 0.9 As to In in the first embodiment.
It is changed to 0.1 Ga 0.9 As, and the other components are the same as those in the first embodiment. As in the first embodiment, the concavo-convex shape is preserved at the interface between the Al 0.2 Ga 0.8 As regrown layer and the laminated structure, and a diffraction grating is formed by refractive index modulation or gain modulation. Note that the GaAs layer and the In 0.1 Ga 0.9 As intermediate layer can be etched at once with a known etchant.

【0019】なお、上述した実施例ではAlGaAs再成長層
のAl組成を0.2としたが、本発明の実施においてAlGaAs
再成長層のAl組成は任意の値を採用することができ、上
記の実施例に限定されない。また、回折格子の周期は導
波モードの実効屈折率と所望のブラッグ波長から決定さ
れるものである。また凹部の周期方向の長さは、実施例
の数値範囲に限定されず回折格子の結合係数の選択によ
り適宜決められる。
In the above-described embodiment, the Al composition of the AlGaAs regrown layer is 0.2.
The Al composition of the regrown layer can adopt any value, and is not limited to the above embodiment. The period of the diffraction grating is determined from the effective refractive index of the guided mode and the desired Bragg wavelength. Further, the length of the concave portion in the periodic direction is not limited to the numerical range of the embodiment, and is appropriately determined by selecting the coupling coefficient of the diffraction grating.

【0020】次にこのような回折格子を内部に備えたD
FB型半導体レーザの断面斜視図を図2に示す。この半
導体レーザは、n型GaAs基板6の上にn−AlGaAsクラッ
ド層7/n-GaAs導波層8/InGaAs活性層9/p-GaAs導
波層10/p-Al0.1Ga0.9As中間層(厚さ10nm)11/
p-GaAsキャップ層12(厚さ10nm)/p-AlGaAsクラッ
ド層13/p-GaAsコンタクト層14がこの順に形成さ
れ、n-GaAsからなる電流狭窄層15が埋め込まれた構造
である。p-GaAsキャップ層12まで形成したところで
表面にp-GaAs導波層10にまで達する凹凸を形成し、
p-AlGaAsクラッド層13で凹凸形状を埋め込むことに
より回折格子が形成されている。
Next, a D having such a diffraction grating inside
FIG. 2 shows a cross-sectional perspective view of the FB type semiconductor laser. This semiconductor laser comprises an n-AlGaAs cladding layer 7 / n-GaAs waveguide layer 8 / InGaAs active layer 9 / p-GaAs waveguide layer 10 / p-Al 0.1 Ga 0.9 As intermediate layer on an n-type GaAs substrate 6. (Thickness 10nm) 11 /
The structure is such that a p-GaAs cap layer 12 (10 nm thick) / p-AlGaAs cladding layer 13 / p-GaAs contact layer 14 are formed in this order, and a current confinement layer 15 made of n-GaAs is embedded. When the p-GaAs cap layer 12 is formed, irregularities reaching the p-GaAs waveguide layer 10 are formed on the surface,
The diffraction grating is formed by embedding the unevenness in the p-AlGaAs cladding layer 13.

【0021】[0021]

【発明の効果】GaAs表面に形成されたサブミクロンオー
ダーの微細な凹凸形状の変形を防止し、形状を維持した
まま結晶再成長により埋め込むことができるため、動的
単一モード半導体レーザなど回折格子を有する光半導体
素子を高い信頼性および高い歩留まりで作製できるよう
になった。
According to the present invention, it is possible to prevent the deformation of sub-micron irregularities formed on the GaAs surface and to bury them by crystal regrowth while maintaining the shape. Can be manufactured with high reliability and high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】本発明による光半導体素子の一例であるDFB
型半導体レーザの断面斜視図である。
FIG. 2 is a diagram illustrating an example of an optical semiconductor device according to the present invention;
1 is a cross-sectional perspective view of a type semiconductor laser.

【符号の説明】[Explanation of symbols]

1 ・・下側GaAs層、 2 ・・中間層、 3 ・
・上側GaAs層、4 ・・フォトレジスト、 5 ・・半
導体層、 6 ・・GaAs基板、7 ・・n-AlGaAsクラ
ッド層、 8 ・・n-GaAs導波層、9 ・・InGaAs活性
層、 10 ・・p-GaAs導波層、11 ・・p-Al0.1
Ga0.9As中間層、 12 ・・p-GaAsキャップ層、1
3 ・・p-AlGaAsクラッド層、 14 ・・p-GaAs
コンタクト層、15 ・・電流狭窄層
1... Lower GaAs layer, 2 .. Intermediate layer, 3.
· Upper GaAs layer, 4 · · · photoresist, 5 · · · semiconductor layer, 6 · · · GaAs substrate, 7 · · · n-AlGaAs cladding layer, 8 · · · n-GaAs waveguide layer, 9 · · · InGaAs active layer, 10 ..P-GaAs waveguide layer, 11 ..p-Al0.1
Ga0.9As intermediate layer, 12 ··· p-GaAs cap layer, 1
3 ··· p-AlGaAs cladding layer, 14 ··· p-GaAs
Contact layer, 15 ··· Current confinement layer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】回折格子を備えた光半導体素子であって、
回折格子を構成する凹凸構造の凸部がGaAs層/中間層/Ga
As層からなる積層構造であり、前記凹凸構造が半導体層
により埋め込まれていることを特徴とする光半導体素
子。
1. An optical semiconductor device having a diffraction grating,
The convex part of the concavo-convex structure that constitutes the diffraction grating is GaAs
An optical semiconductor device having a stacked structure including an As layer, wherein the uneven structure is embedded in a semiconductor layer.
【請求項2】前記中間層がAlGaAsからなることを特徴と
する請求項1に記載の光半導体素子。
2. The optical semiconductor device according to claim 1, wherein said intermediate layer is made of AlGaAs.
【請求項3】前記AlGaAsからなる中間層のAl組成が0.2
以下であることを特徴とする請求項2に記載の光半導体
素子。
3. An Al layer having an Al composition of 0.2.
The optical semiconductor device according to claim 2, wherein:
【請求項4】前記中間層がInGaAsからなることを特徴と
する請求項1に記載の光半導体素子。
4. The optical semiconductor device according to claim 1, wherein said intermediate layer is made of InGaAs.
【請求項5】前記InGaAsからなる中間層のIn組成が0.2
以下であることを特徴とする請求項4に記載の光半導体
素子
5. The InGaAs intermediate layer having an In composition of 0.2
The optical semiconductor device according to claim 4, wherein:
【請求項6】前記中間層の厚さが2〜40nmの範囲にあ
ることを特徴とする請求項1から5のいずれかに記載の
光半導体素子
6. The optical semiconductor device according to claim 1, wherein said intermediate layer has a thickness in a range of 2 to 40 nm.
【請求項7】前記凹凸構造を埋め込む半導体層がAlGaAs
からなることを特徴とする請求項1から6のいずれかに
記載の光半導体素子
7. The semiconductor layer for embedding the uneven structure is AlGaAs.
The optical semiconductor device according to any one of claims 1 to 6, comprising:
JP08278899A 1999-03-26 1999-03-26 Method for manufacturing optical semiconductor element Expired - Lifetime JP3982940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08278899A JP3982940B2 (en) 1999-03-26 1999-03-26 Method for manufacturing optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08278899A JP3982940B2 (en) 1999-03-26 1999-03-26 Method for manufacturing optical semiconductor element

Publications (2)

Publication Number Publication Date
JP2000275418A true JP2000275418A (en) 2000-10-06
JP3982940B2 JP3982940B2 (en) 2007-09-26

Family

ID=13784157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08278899A Expired - Lifetime JP3982940B2 (en) 1999-03-26 1999-03-26 Method for manufacturing optical semiconductor element

Country Status (1)

Country Link
JP (1) JP3982940B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010778A (en) * 2004-06-22 2006-01-12 National Institute Of Advanced Industrial & Technology Method for manufacturing diffraction grating
JP2011171694A (en) * 2010-01-25 2011-09-01 Showa Denko Kk Light-emitting diode, light-emitting diode lamp, and lighting device
JP2012033706A (en) * 2010-07-30 2012-02-16 Kyoto Univ Method of manufacturing two-dimensional photonic crystal laser
JP2012033705A (en) * 2010-07-30 2012-02-16 Kyoto Univ Two-dimensional photonic crystal laser
JP2013191589A (en) * 2012-03-12 2013-09-26 Fujitsu Ltd Semiconductor device and manufacturing method of the same
US9130348B2 (en) 2010-07-30 2015-09-08 Kyoto University Two-dimensional photonic crystal laser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010778A (en) * 2004-06-22 2006-01-12 National Institute Of Advanced Industrial & Technology Method for manufacturing diffraction grating
JP2011171694A (en) * 2010-01-25 2011-09-01 Showa Denko Kk Light-emitting diode, light-emitting diode lamp, and lighting device
JP2012033706A (en) * 2010-07-30 2012-02-16 Kyoto Univ Method of manufacturing two-dimensional photonic crystal laser
JP2012033705A (en) * 2010-07-30 2012-02-16 Kyoto Univ Two-dimensional photonic crystal laser
US9130348B2 (en) 2010-07-30 2015-09-08 Kyoto University Two-dimensional photonic crystal laser
JP2013191589A (en) * 2012-03-12 2013-09-26 Fujitsu Ltd Semiconductor device and manufacturing method of the same

Also Published As

Publication number Publication date
JP3982940B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
KR100413792B1 (en) Short wavelength surface emitting laser device including dbr having stacked structure of gan layer and air layer and fabricating method thereof
US7724793B2 (en) Nitride semiconductor laser element and fabrication method thereof
JP4259709B2 (en) Quantum well active layer
JPH07221392A (en) Quantum thin wire and its manufacture, quantum thin wire laser and its manufacture, manufacture of diffraction grating, and distributed feedback semiconductor laser
US5292685A (en) Method for producing a distributed feedback semiconductor laser device
US5260230A (en) Method of manufacturing buried heterostructure semiconductor laser
JP2002533941A (en) Mechanical stability of lattice-mismatched quantum sources
US11670910B2 (en) Surface-emitting laser device and method for manufacturing surface-emitting laser device
JPH08242034A (en) Distribution feedback type semiconductor laser device
US5703899A (en) Gain-coupling distributed feedback semiconductor and method of producing the same
US8962356B2 (en) Method of manufacturing photonic crystal and method of manufacturing surface-emitting laser
JP2007035784A (en) Distributed feedback semiconductor laser
JP3234799B2 (en) Method for manufacturing semiconductor laser device
JP2000275418A (en) Optical semiconductor element
JP4751124B2 (en) Method for fabricating a semiconductor light emitting device
EP1198043A2 (en) Method of fabricating a III-V compound semiconductor device with an Aluminium-compound layer
JP5217767B2 (en) Semiconductor laser and method for manufacturing semiconductor laser
JP5880370B2 (en) Semiconductor optical device and manufacturing method thereof
US20060109884A1 (en) Distributed feedback semiconductor laser and method for manufacturing the same
EP0525971B1 (en) A semiconductor device and a method for producing the same
EP1289084B1 (en) Semiconductor laser device
JP4826019B2 (en) Manufacturing method of semiconductor laser device
JPH1022572A (en) Semiconductor device where diffractive grating is made in light guide layer
JP2630273B2 (en) Distributed feedback semiconductor laser
JPH04229679A (en) Semiconductor laser

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term