JP3981758B2 - Processing methods for ash containing heavy metals - Google Patents
Processing methods for ash containing heavy metals Download PDFInfo
- Publication number
- JP3981758B2 JP3981758B2 JP2002046214A JP2002046214A JP3981758B2 JP 3981758 B2 JP3981758 B2 JP 3981758B2 JP 2002046214 A JP2002046214 A JP 2002046214A JP 2002046214 A JP2002046214 A JP 2002046214A JP 3981758 B2 JP3981758 B2 JP 3981758B2
- Authority
- JP
- Japan
- Prior art keywords
- heavy metal
- ash
- heavy metals
- lead
- heavy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910001385 heavy metal Inorganic materials 0.000 title claims description 113
- 238000003672 processing method Methods 0.000 title claims description 12
- 239000002956 ash Substances 0.000 claims description 73
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 36
- 238000000605 extraction Methods 0.000 claims description 30
- 239000000284 extract Substances 0.000 claims description 27
- 239000011651 chromium Substances 0.000 claims description 24
- 239000000706 filtrate Substances 0.000 claims description 20
- 239000000843 powder Substances 0.000 claims description 20
- 239000002245 particle Substances 0.000 claims description 17
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 16
- 229910017604 nitric acid Inorganic materials 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 239000007787 solid Substances 0.000 claims description 15
- 239000011572 manganese Substances 0.000 claims description 14
- 239000011347 resin Substances 0.000 claims description 13
- 229920005989 resin Polymers 0.000 claims description 13
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 12
- 229910052804 chromium Inorganic materials 0.000 claims description 12
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 claims description 10
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 8
- 239000003456 ion exchange resin Substances 0.000 claims description 8
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 8
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 7
- 229910052793 cadmium Inorganic materials 0.000 claims description 7
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000013522 chelant Substances 0.000 claims description 5
- 238000011282 treatment Methods 0.000 claims description 5
- 235000002918 Fraxinus excelsior Nutrition 0.000 claims description 2
- 238000010298 pulverizing process Methods 0.000 description 12
- 239000010881 fly ash Substances 0.000 description 11
- 238000011084 recovery Methods 0.000 description 10
- 238000001914 filtration Methods 0.000 description 8
- 239000011575 calcium Substances 0.000 description 7
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 6
- 238000000227 grinding Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 description 3
- 238000004056 waste incineration Methods 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000009991 scouring Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000002910 solid waste Substances 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- GRWVQDDAKZFPFI-UHFFFAOYSA-H chromium(III) sulfate Chemical compound [Cr+3].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRWVQDDAKZFPFI-UHFFFAOYSA-H 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Images
Landscapes
- Processing Of Solid Wastes (AREA)
- Extraction Or Liquid Replacement (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、都市ごみや産業廃棄物などの固形廃棄物の焼却あるいは溶融処理によって排出される焼却灰や、排ガス集塵灰等の重金属類を含有する灰の処理方法に関するものである。
【0002】
【従来の技術】
一般に、都市ごみの焼却処理設備の焼却炉から発生する灰、とくに飛灰は、鉛等の人体に有害な重金属類を含むため、そのまゝでは廃棄することができず、その処理方法の開発が急務となっている。そのためにこれまでに種々の方法が検討されてきた。
【0003】
従来、例えば特開平7−138630号公報に開示されている金属類含有灰の処理技術は、焼却炉からの灰を、一連の湿式処理により、金属種ごとに濃縮し、それぞれ非鉄精練用原料として使用できる程度の濃縮体として回収し、例えば山元の鉱山会社で金属として精練する方法であった。
【0004】
【発明が解決しようとする課題】
しかしながら、上記のような従来法によれば、処理工程が複雑であるだけでなく、抽出作業のために高価な薬品を多量に使用するため、処理コストが非常に高くつくという問題があった。しかも従来のように、焼却炉飛灰から薬品により化学的に重金属の回収を行なう場合、通常は、重金属だけでなく、Al、Ca等が相当量混在するために、純度が著しく低下し、回収物の再利用化を阻害する一因となっているという問題があった。
【0005】
本発明の目的は、上記の従来技術の問題を解決し、簡易な工程で、重金属類の回収を確実に行なうことができ、しかも処理コストが安くつくうえに、回収物の再利用化が可能である、重金属類含有灰の処理方法を提供することにある。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明の請求項1記載による重金属類含有灰の処理方法は、焼却灰等の重金属類を含有する灰に、水を重金属類含有灰100重量部に対して300〜700重量部、および3〜6N濃度の塩酸または硝酸を、使用する塩酸または硝酸が5Nの濃度である場合に、重金属類含有灰100重量部に対して150〜250重量部加え、これらの混合物をボールミル等粉砕機により機械的にかつ粒度1μm以下の粉末が50%以上となるように粉砕を行ないながら、重金属類の抽出を行ない、重金属類含有抽出液を得ることを特徴としている。
【0007】
また、本発明の請求項2記載による重金属類含有灰の処理方法は、上記請求項1の処理方法により得られた重金属類含有抽出液を濾過した後、濾液をイオン交換樹脂またはキレート樹脂に接触させることにより、重金属類を回収することを特徴としている。
【0008】
上記請求項1または2記載の重金属類含有灰の処理方法では、重金属類が、鉛(Pb)、亜鉛(Zn)、クロム(Cr)、マンガン(Mn)、およびカドミウム(Cd)よりなる群の中から選ばれた少なくとも1つの金属である。
【0009】
さらに、本発明の請求項4記載による重金属類含有灰の処理方法は、上記請求項1の処理方法により得られた重金属類含有抽出液を濾過した後、濾液に硫酸を滴下し、生じた重金属類含有固形物を回収することを特徴としている。
【0010】
この請求項4記載の重金属類含有灰の処理方法では、重金属類が鉛(Pb)である。
【0011】
【発明の実施の形態】
つぎに、本発明の実施の形態を、図面を参照して説明する。
【0012】
図1のフローシートは、本発明の請求項1記載による重金属類含有灰の処理方法を示すもので、同図を参照すると、本発明の重金属類含有灰の処理方法は、焼却灰等の重金属類を含有する灰に、水および塩酸または硝酸を加え、これらの混合物をボールミル等粉砕機により機械的にかつ粒度1μm以下の粉末が50%以上となるように粉砕を行ないながら、重金属類の抽出を行なうものである。
【0013】
ここで、焼却灰に含まれる抽出すべき重金属類は、鉛(Pb)、亜鉛(Zn)、クロム(Cr)、マンガン(Mn)、カドミウム(Cd)等である。
【0014】
上記本発明の方法において、水の使用量は、重金属類含有灰100重量部に対して300〜700重量部、好ましくは400〜600重量部である。
【0015】
また、本発明の方法において使用する塩酸または硝酸は、3〜6Nの濃度を有するものである。塩酸または硝酸の使用量は、使用する塩酸または硝酸が5Nの濃度を有するものである場合には、重金属類含有灰100重量部に対して、150〜250重量部であり、重金属類含有灰に対する塩酸または硝酸の滴下は、例えば重金属類含有灰、水および塩酸または硝酸の混合物のpHが1以下になるまで、滴下を行なうようにするのが、好ましい。
【0016】
そして、上記のように、重金属類含有灰、水、および塩酸または硝酸の混合物を、ボールミル等粉砕機により機械的に粉砕を行なうが、この時、焼却灰混合物の粉砕は、粒度1μm以下の粉末が50%以上となるまで行なうものである。
【0017】
ここで、焼却灰混合物の粉砕が、粒度1μm以下の粉末が50%未満の状態では、重金属類の抽出を充分に行なうことができない。また、粉砕時の温度は、室温程度で充分であるが、場合によって、粉砕・抽出時の温度が低すぎると、重金属類の抽出が少なく、逆に高過ぎると、水分の蒸発が激しくなり、作業性が悪いうえに、エネルギーコストが高くつくので、好ましくない。
【0018】
得られた抽出液は、つぎに濾過を行ない、重金属類含有抽出液と、残渣とに分離する。これにより、焼却灰等の重金属類含有灰中の90%以上の重金属類を抽出除去することができ、除去された抽出液中の重金属類は、回収して再利用化することができるとともに、残渣は有害物質である重金属類を含まないために、そのまま廃棄可能である。
【0019】
つぎに、図2のフローシートは、本発明の請求項2および請求項4記載による重金属類含有灰の処理方法を示すもので、同図のフローシートの回収方法−1を参照すると、本発明の請求項4記載による重金属類含有灰の処理方法は、上記図1のフローシートの請求項1記載による重金属類含有灰の処理方法によって生じた重金属類含有抽出液を濾過した後、濾液に硫酸を滴下し、生じた重金属類含有固形物を回収するものである。たゞし、この場合の焼却灰等に含まれる重金属類は、鉛(Pb)および第1クロム:Cr(II)等である。
【0020】
焼却灰等に含まれる鉛(Pb)、亜鉛(Zn)、クロム(Cr)、マンガン(Mn)、カドミウム(Cd)等の重金属類のうち、鉛(Pb)は、上記のように、硫酸鉛(PbSO4)の白色固形物として沈殿する。また第1クロム:Cr(II)も、硫酸第1クロム:CrSO4の白色固形物として沈殿するが、第2クロム:Cr(III)の硫酸塩、並びにその他亜鉛(Zn)、マンガン(Mn)、およびカドミウム(Cd)の硫酸塩は、水に可溶であるため、沈殿しない。
【0021】
そこで、図2のフローシートの回収方法−2では、本発明の請求項2記載による重金属類含有灰の処理方法を示すもので、上記図1のフローシートの請求項1記載による重金属類含有灰の処理方法によって生じた重金属類含有抽出液を濾過した後、濾液をイオン交換樹脂またはキレート樹脂に接触させることにより、重金属類を回収するものである。この請求項2記載による重金属類含有灰の処理方法によれば、鉛(Pb)、亜鉛(Zn)、マンガン(Mn)、カドミウム(Cd)、クロム(Cr)等のすべての重金属類を回収することができる。
【0022】
【実施例】
つぎに、本発明の実施例を説明するが、本発明は、これらの実施例に限定されるものではない。
【0023】
実施例1
本発明の第1実施例を、図1に示すフローシートを参照して行なった。
【0024】
まず、重金属として鉛(Pb)を灰1kgあたり10g含む焼却飛灰を用いた。そして、直径10mmのアルミナボールを収めたポリ瓶に、上記鉛含有灰30g、水100cc、および5Nの塩酸60ccを入れ、室温で4時間、ボールミルにより機械的にかつ粒度1μm以下の粉末が50%となるように粉砕を行ないながら、抽出を行なった。ついで、抽出液を濾過し、得られた濾液の鉛(Pb)濃度を原子吸光分析法によりJIS K 0121に準拠して測定した。鉛(Pb)の抽出率は、99%であった。得られた結果を表1に示した。
【0025】
実施例2
本発明の上記第1実施例の場合と、同様に実施するが、粉砕性能の優れたアトライタ型ボールミル(三井三池化工株式会社製)を用いて、室温で2時間、機械的にかつ粒度1μm以下の粉末が60%となるように粉砕を行ないながら、抽出を行なった。ついで、抽出液を濾過し、得られた濾液の鉛(Pb)濃度を、原子吸光分析法により同様に測定した。鉛(Pb)の抽出率は、99%であった。得られた結果を表1にあわせて示した。
【0026】
実施例3
本発明の上記第1実施例の場合と同様に実施するが、鉛含有灰30g、および水100cc、並びに塩酸に代えて、5Nの硝酸60ccをポリ瓶に入れ、室温で4時間、ボールミルにより機械的にかつ粒度1μm以下の粉末が50%となるように粉砕を行ないながら、抽出を行なった。ついで、抽出液を濾過し、得られた濾液の鉛(Pb)濃度を、原子吸光分析法により同様に測定した。鉛(Pb)の抽出率は、99%であった。得られた結果を表1にあわせて示した。
【0027】
比較例1
比較として、上記実施例1の場合と同様に、重金属として鉛(Pb)を灰1kgあたり10g含む焼却飛灰を用いた。そして、容器に、鉛含有灰30g、水100cc、および5Nの塩酸60ccを入れ、全く粉砕を行なわずに、室温で4時間抽出を行なった。抽出処理後、焼却飛灰中の粒度1μm以下の粉末は20%であった。ついで、抽出液を濾過し、得られた濾液の鉛(Pb)濃度を、原子吸光分析法により同様に測定した。鉛(Pb)の抽出率は、5%であった。
【0028】
比較例2
比較として、上記実施例1の場合と同様に実施するが、ボールミルによる機械的粉砕、および抽出を室温で1時間だけ行なったところ、粒度1μm以下の粉末は35%であった。ついで、抽出液を濾過し、得られた濾液の鉛(Pb)濃度を原子吸光分析法により同様に測定した。鉛(Pb)の抽出率は、20%であった。
【0029】
比較例3
比較として、上記実施例1の場合と同様に実施するが、ボールミルによる粉砕の代わりに、従来技術であるマグネティックスターラーを用いた攪拌による粉砕・抽出を、室温で5時間行なったところ、粒度1μm以下の粉末は30%であった。ついで、抽出液を濾過し、得られた濾液の鉛(Pb)濃度を原子吸光分析法により同様に測定した。鉛(Pb)の抽出率は、18%であった。
【0030】
【表1】
【0031】
表1の結果から明らかなように、重金属類含有焼却灰の機械的な粉砕と重金属類の抽出とが同時に起こるプロセスを用いた本発明の実施例1〜3の重金属類含有灰の処理方法によれば、鉛(Pb)の抽出率が非常に大きくなることが分かった。またこの場合、1μm以下の粒度が50%以上であれば、抽出率が大きくなることも分かった。
【0032】
なお、上記鉛含有焼却飛灰を、予め粉砕することにより作製した試料粉末を用いて、従来法により鉛(Pb)を抽出する作業を行なっても、鉛(Pb)の高い抽出率を得ることができなかった。従って、本発明の請求項1記載による重金属類含有灰の処理方法によれば、単一の工程で、鉛等重金属類含有焼却飛灰の粉砕と重金属類の抽出とを行なうことができるため、重金属類含有灰の処理工程を単純化することができる。
【0033】
実施例4
つぎに、本発明の第4実施例を、図2に示すフローシートを参照して行なった。上記第1実施例において、直径10mmのアルミナボールを収めたポリ瓶に、上記鉛含有灰30g、水100cc、および5Nの塩酸60ccを入れ、室温で4時間、ボールミルにより機械的にかつ粒度1μm以下の粉末が50%となるように粉砕を行ないながら抽出を行ない、ついで、抽出液を濾過して得られた濾液に、5Nの硫酸を滴下したところ、白色の固形物が沈殿した(回収法−1)。白色固形物を粉末X線回析により分析したところ、白色固形物は硫酸鉛(PbSO4)であることが確認できた。一方、固形物の分離後の液中には、分析の結果、鉛(Pb)は存在していなかった。
【0034】
実施例5
本発明の上記第3実施例の場合と同様に実施し、鉛含有灰30g、および水100cc、並びに5Nの硝酸60ccをポリ瓶に入れ、室温で4時間、ボールミルにより機械的にかつ粒度1μm以下の粉末が50%となるように粉砕を行ないながら、抽出を行なった。ついで、抽出液を濾過し、得られた濾液に、5Nの硫酸を滴下したところ、白色の固形物が沈殿した(回収法−1)。白色固形物を粉末X線回析により分析したところ、白色固形物は硫酸鉛(PbSO4)であることが確認できた。一方、固形物の分離後の液中には、分析の結果、鉛(Pb)は存在していなかった。
【0035】
実施例6
つぎに、本発明の第6実施例を、図2に示すフローシートを参照して行なった。上記第1実施例において、直径10mmのアルミナボールを収めたポリ瓶に、重金属類を含有する都市ごみの焼却飛灰30g、水100cc、および5Nの塩酸60ccを入れ、室温で4時間、ボールミルにより機械的にかつ粒度1μm以下の粉末が50%となるように粉砕を行ないながら抽出を行ない、ついで、抽出液を濾過して得られた濾液を、イオン交換樹脂(三菱化学社製)の充填塔を通過させて、イオン交換により重金属類を樹脂に吸着させた(回収法−2)。イオン交換樹脂の充填塔を通過後の液体中には、重金属類は含まれていなかった。
【0036】
ついで、樹脂を洗浄して、洗浄液を分析したところ、アルミニウム(Al)やカルシウム(Ca)等は検出されず、鉛(Pb)、亜鉛(Zn)およびクロム(Cr)等の重金属類のみが検出された。これらの重金属類の回収率は99%であった。
【0037】
実施例7
つぎに、本発明の第7実施例を、図2に示すフローシートを参照して、上記第6実施例の場合と同様に行なった。そして、直径10mmのアルミナボールを収めたポリ瓶に、上記重金属類を含有する都市ごみの焼却飛灰30g、および水100cc、並びに塩酸に代えて、5Nの硝酸60ccを入れ、室温で4時間、ボールミルにより機械的にかつ粒度1μm以下の粉末が50%となるように粉砕を行ないながら抽出を行ない、ついで、抽出液を濾過して得られた濾液を、イオン交換樹脂(三菱化学社製)の充填塔を通過させて、イオン交換により重金属類を樹脂に吸着させた(回収法−2)。イオン交換樹脂の充填塔を通過後の液体中には、重金属類は含まれていなかった。
【0038】
ついで、樹脂を洗浄して、洗浄液を分析したところ、アルミニウム(Al)やカルシウム(Ca)等は検出されず、鉛(Pb)、亜鉛(Zn)およびクロム(Cr)等の重金属類のみが検出された。これらの重金属類の回収率は99%であった。
【0039】
実施例8
つぎに、本発明の第8実施例を、図2に示すフローシートを参照して行なった。上記第1実施例において、直径10mmのアルミナボールを収めたポリ瓶に、重金属類を含有する都市ごみの焼却飛灰30g、水100cc、および5Nの塩酸60ccを入れ、室温で4時間、ボールミルにより機械的にかつ粒度1μm以下の粉末が50%となるように粉砕を行ないながら抽出を行ない、ついで、抽出液を濾過して得られた濾液を、キレート樹脂(ユニチカ社製)の充填塔を通過させて、キレート樹脂に含まれる金属イオンとのイオン交換により重金属類を樹脂に吸着させた(回収法−2)。キレート樹脂の充填塔を通過後の液体中には、重金属類は含まれていなかった。
【0040】
ついで、樹脂を洗浄して、洗浄液を分析したところ、アルミニウム(Al)やカルシウム(Ca)等は検出されず、鉛(Pb)、亜鉛(Zn)およびクロム(Cr)等の重金属類のみが検出された。これらの重金属類の回収率は99%であった。
【0041】
上記実施例4〜8の結果から明らかなように、本発明の請求項2および請求項4記載による重金属類含有灰の処理方法によれば、いずれの場合も、都市ごみの焼却飛灰等の重金属類を含む粉末を原料とした抽出液より、純度の高い重金属類を簡易な工程で、回収できることが分かった。
【0042】
【発明の効果】
本発明の請求項1に記載の重金属類含有灰の処理方法は、上述のように、焼却灰等の重金属類を含有する灰に、水を重金属類含有灰100重量部に対して300〜700重量部、および3〜6N濃度の塩酸または硝酸を、使用する塩酸または硝酸が5Nの濃度である場合に、重金属類含有灰100重量部に対して150〜250重量部加え、これらの混合物をボールミル等粉砕機により機械的にかつ粒度1μm以下の粉末が50%以上となるように粉砕を行ないながら、重金属類の抽出を行ない、重金属類含有抽出液を得るもので、本発明の請求項1に記載の方法によれば、単一の工程で、重金属類含有焼却灰の粉砕と重金属類の抽出とを行なうことができるため、都市ごみや産業廃棄物などの固形廃棄物の焼却あるいは溶融処理によって排出される焼却灰や、排ガス集塵灰等の重金属類を含有する灰の処理工程を、大幅に単純化することができるという効果を奏する。
【0043】
また、本発明の請求項2に記載の重金属類含有灰の処理方法は、上記請求項1の処理方法により得られた重金属類含有抽出液を濾過した後、濾液をイオン交換樹脂またはキレート樹脂に接触させることにより、重金属類を回収するもので、本発明の請求項2に記載の方法によれば、焼却灰等に含まれる鉛(Pb)、亜鉛(Zn)、クロム(Cr)、マンガン(Mn)、カドミウム(Cd)等の重金属類のいずれをも、簡易な工程で、しかも高い回収率で回収できるとともに、残渣は有害物質である重金属類を含まないために、そのまま廃棄可能であるという効果を奏する。
【0044】
さらに、本発明の請求項4に記載の重金属類含有灰の処理方法は、上記請求項1の処理方法により得られた重金属類含有抽出液を濾過した後、濾液に硫酸を滴下し、生じた重金属類含有固形物を回収するもので、本発明の請求項4に記載の方法によれば、特に、重金属が鉛(Pb)である場合に有効で、焼却灰等の鉛を含む粉末を原料とした抽出液より、純度の高い鉛を、簡易な工程で回収できるとともに、残渣は有害物質である鉛を含まないために、そのまま廃棄可能であるという効果を奏する。
【図面の簡単な説明】
【図1】 本発明の第1の実施形態を示すフローシートである。
【図2】 本発明の第2および第3の実施形態を示すフローシートである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating incineration ash discharged by incineration or melting treatment of solid waste such as municipal waste and industrial waste, and ash containing heavy metals such as exhaust gas dust collection ash.
[0002]
[Prior art]
In general, ash generated from incinerators of municipal waste incineration equipment, especially fly ash, contains heavy metals that are harmful to the human body, such as lead, and therefore cannot be disposed of as it is. Is an urgent need. For this purpose, various methods have been studied so far.
[0003]
Conventionally, for example, the technology for treating metal-containing ash disclosed in Japanese Patent Application Laid-Open No. 7-138630 is a method for condensing ash from an incinerator for each metal species by a series of wet treatments, each as a raw material for non-ferrous scouring. It was a method of recovering as a usable concentrate and scouring it as metal at a mining company in Yamamoto, for example.
[0004]
[Problems to be solved by the invention]
However, according to the conventional method as described above, not only the processing steps are complicated, but also a large amount of expensive chemicals are used for the extraction operation, so that there is a problem that the processing cost is very high. Moreover, as in the conventional case, when heavy metals are chemically recovered from incinerator fly ash using chemicals, not only heavy metals but also a large amount of Al, Ca, etc. are usually mixed, so the purity is significantly reduced and recovered. There was a problem that it was one factor that hindered the reuse of things.
[0005]
The object of the present invention is to solve the above-mentioned problems of the prior art, reliably recover heavy metals with a simple process, reduce the processing cost, and recycle the recovered material. It is providing the processing method of heavy metal containing ash which is.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a method for treating heavy metal-containing ash according to claim 1 of the present invention is directed to ash containing heavy metals such as incinerated ash, and water is added to 100 parts by weight of heavy metal-containing ash. When 300 to 700 parts by weight of hydrochloric acid or nitric acid having a concentration of 3 to 6N is used and the concentration of hydrochloric acid or nitric acid to be used is 5N, 150 to 250 parts by weight with respect to 100 parts by weight of heavy metal-containing ash is added. while the mixture subjected to mechanical and pulverized to below the powder particle size 1μm is 50% or more by a ball mill pulverizer, the extraction of heavy metals row stomach is characterized by obtaining a heavy metals-containing extract .
[0007]
The processing method of heavy metals-containing ash according to claim 2, wherein the present invention, after filtration on Symbol claim 1 of processing by Ri obtained heavy metals containing extract to the method, the filtrate ion-exchange resin or a chelating It is characterized by recovering heavy metals by contacting with resin.
[0008]
In the method for treating heavy metal-containing ash according to claim 1 or 2, the heavy metal is selected from the group consisting of lead (Pb), zinc (Zn), chromium (Cr), manganese (Mn), and cadmium (Cd). At least one metal selected from among them.
[0009]
Further, the processing method of heavy metals-containing ash according to claim 4, wherein the present invention, after filtration of the claims 1 processing by Ri obtained heavy metals containing extract to methods, was added dropwise sulfuric acid to the filtrate, resulting It is characterized by recovering solid metal-containing solids.
[0010]
In the method for treating heavy metal-containing ash according to claim 4, the heavy metal is lead (Pb).
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
[0012]
The flow sheet of FIG. 1 shows the processing method for heavy metal-containing ash according to claim 1 of the present invention. Referring to FIG. 1, the processing method for heavy metal-containing ash of the present invention is a heavy metal such as incineration ash. Of water and hydrochloric acid or nitric acid to ash-containing ash, and extraction of heavy metals while grinding these mixtures mechanically with a pulverizer such as a ball mill so that the powder having a particle size of 1 μm or less is 50% or more Is to do.
[0013]
Here, the heavy metals to be extracted contained in the incinerated ash are lead (Pb), zinc (Zn), chromium (Cr), manganese (Mn), cadmium (Cd) and the like.
[0014]
In the method of the present invention, the amount of water is 300 to 700 parts by weight with respect to heavy metals-containing ash 100 parts by weight, preferably 400 to 600 parts by weight.
[0015]
The hydrochloric acid or nitric acid used in the method of the present invention has a concentration of 3 to 6N. The amount of hydrochloric acid or nitric acid, if hydrochloric acid or nitric acid used is one having a concentration of 5 N, to the heavy metals-containing ash 100 parts by weight, 1 50 to 250 parts by weight, heavy metals content The dropping of hydrochloric acid or nitric acid to the ash is preferably carried out until the pH of the mixture of heavy metal-containing ash, water and hydrochloric acid or nitric acid becomes 1 or less.
[0016]
As described above, a mixture of heavy metal-containing ash, water, and hydrochloric acid or nitric acid is mechanically pulverized by a pulverizer such as a ball mill. At this time, the incineration ash mixture is pulverized to a powder having a particle size of 1 μm or less. Is carried out until 50% or more.
[0017]
Here, when the incineration ash mixture is pulverized and the powder having a particle size of 1 μm or less is less than 50%, heavy metals cannot be sufficiently extracted. In addition, the temperature at the time of pulverization is sufficient at about room temperature, but in some cases, if the temperature at the time of pulverization / extraction is too low, there is little extraction of heavy metals, and conversely, if it is too high, the evaporation of moisture becomes intense, This is not preferable because workability is poor and energy costs are high.
[0018]
The obtained extract is then filtered to separate it into a heavy metal-containing extract and a residue. Thereby, 90% or more of heavy metals in the ash containing heavy metals such as incinerated ash can be extracted and removed, and the heavy metals in the extracted liquid can be recovered and reused, Since the residue does not contain heavy metals that are harmful substances, it can be discarded as it is.
[0019]
Next, the flow sheet of FIG. 2 shows a method for treating heavy metal-containing ash according to claims 2 and 4 of the present invention. Referring to the flow sheet recovery method-1 of FIG. The method for treating heavy metal-containing ash according to claim 4 of the present invention is such that after the heavy metal-containing extract produced by the method for treating heavy metal-containing ash according to claim 1 of the flow sheet of FIG. 1 is filtered, sulfuric acid is added to the filtrate. And the resulting heavy metal-containing solid is recovered. In this case, the heavy metals contained in the incineration ash and the like are lead (Pb) and first chromium: Cr (II).
[0020]
Among the heavy metals such as lead (Pb), zinc (Zn), chromium (Cr), manganese (Mn), and cadmium (Cd) contained in incineration ash, lead (Pb) is lead sulfate as described above. Precipitate as a white solid of (PbSO 4 ). The first chromium: Cr (II) also precipitates as a white solid of the first chromium sulfate: CrSO 4 , but the second chromium: Cr (III) sulfate, as well as other zinc (Zn) and manganese (Mn). , And cadmium (Cd) sulfate are not precipitated because they are soluble in water.
[0021]
2 shows a method for treating heavy metal-containing ash according to claim 2 of the present invention. The heavy metal-containing ash according to claim 1 of the flow sheet of FIG. After filtering the heavy metal-containing extract produced by this treatment method, the heavy metal is recovered by bringing the filtrate into contact with an ion exchange resin or a chelate resin. According to the method for treating heavy metal-containing ash according to claim 2, all heavy metals such as lead (Pb), zinc (Zn), manganese (Mn), cadmium (Cd), chromium (Cr) are recovered. be able to.
[0022]
【Example】
Next, examples of the present invention will be described, but the present invention is not limited to these examples.
[0023]
Example 1
The first embodiment of the present invention was performed with reference to the flow sheet shown in FIG.
[0024]
First, incinerated fly ash containing 10 g of lead (Pb) per 1 kg of ash was used as a heavy metal. Then, 30 g of the lead-containing ash, 100 cc of water, and 60 cc of 5N hydrochloric acid are placed in a plastic bottle containing an alumina ball having a diameter of 10 mm, and 50% of the powder having a particle size of 1 μm or less mechanically by a ball mill for 4 hours at room temperature. Extraction was carried out while pulverizing. Subsequently, the extract was filtered, and the lead (Pb) concentration of the obtained filtrate was measured according to JIS K 0121 by atomic absorption spectrometry. The extraction rate of lead (Pb) was 99%. The obtained results are shown in Table 1.
[0025]
Example 2
This is carried out in the same manner as in the case of the first embodiment of the present invention, but using an attritor-type ball mill (manufactured by Mitsui Miike Chemical Co., Ltd.) with excellent grinding performance, mechanically at room temperature for 2 hours and particle size of 1 μm or less Extraction was performed while pulverizing so that the amount of the powder became 60%. Subsequently, the extract was filtered, and the lead (Pb) concentration of the obtained filtrate was similarly measured by atomic absorption spectrometry. The extraction rate of lead (Pb) was 99%. The obtained results are shown in Table 1.
[0026]
Example 3
This is carried out in the same manner as in the first embodiment of the present invention, except that 30 g of lead-containing ash, 100 cc of water, and 60 cc of 5N nitric acid are placed in a plastic bottle instead of hydrochloric acid. Specifically, extraction was performed while pulverizing so that the powder having a particle size of 1 μm or less was 50%. Subsequently, the extract was filtered, and the lead (Pb) concentration of the obtained filtrate was similarly measured by atomic absorption spectrometry. The extraction rate of lead (Pb) was 99%. The obtained results are shown in Table 1.
[0027]
Comparative Example 1
As a comparison, in the same manner as in Example 1, incinerated fly ash containing 10 g of lead (Pb) per 1 kg of ash was used as a heavy metal. Then, 30 g of lead-containing ash, 100 cc of water, and 60 cc of 5N hydrochloric acid were placed in a container, and extraction was performed at room temperature for 4 hours without any pulverization. After the extraction treatment, the powder having a particle size of 1 μm or less in the incinerated fly ash was 20%. Subsequently, the extract was filtered, and the lead (Pb) concentration of the obtained filtrate was similarly measured by atomic absorption spectrometry. The extraction rate of lead (Pb) was 5%.
[0028]
Comparative Example 2
For comparison, the same procedure as in Example 1 was carried out. However, mechanical grinding with a ball mill and extraction were carried out only at room temperature for 1 hour. As a result, the powder having a particle size of 1 μm or less was 35%. Subsequently, the extract was filtered, and the lead (Pb) concentration of the obtained filtrate was similarly measured by atomic absorption spectrometry. The extraction rate of lead (Pb) was 20%.
[0029]
Comparative Example 3
For comparison, the same procedure as in Example 1 was carried out, but instead of ball milling, grinding and extraction by stirring using a magnetic stirrer as a conventional technique was carried out at room temperature for 5 hours. The powder was 30%. Subsequently, the extract was filtered, and the lead (Pb) concentration of the obtained filtrate was similarly measured by atomic absorption spectrometry. The extraction rate of lead (Pb) was 18%.
[0030]
[Table 1]
[0031]
As is clear from the results in Table 1, in the method for treating heavy metal-containing ash of Examples 1 to 3 of the present invention using a process in which mechanical pulverization of heavy metal-containing incinerated ash and extraction of heavy metals occur simultaneously. According to the results, it was found that the extraction rate of lead (Pb) becomes very large. In this case, it was also found that the extraction rate increases when the particle size of 1 μm or less is 50% or more.
[0032]
In addition, even if the work which extracts lead (Pb) by the conventional method is performed using the sample powder prepared by pulverizing the lead-containing incinerated fly ash, a high extraction rate of lead (Pb) can be obtained. I could not. Therefore, according to the method for treating heavy metal-containing ash according to claim 1 of the present invention, it is possible to pulverize incinerated fly ash containing heavy metals such as lead and extract heavy metals in a single step. The processing process of heavy metal containing ash can be simplified.
[0033]
Example 4
Next, a fourth embodiment of the present invention was performed with reference to the flow sheet shown in FIG. In the first embodiment, 30 g of the lead-containing ash, 100 cc of water, and 60 cc of 5N hydrochloric acid are placed in a plastic bottle containing an alumina ball having a diameter of 10 mm, mechanically by a ball mill for 4 hours at room temperature, and a particle size of 1 μm or less. Extraction was performed while pulverizing so that the amount of the powder became 50%, and then 5N sulfuric acid was added dropwise to the filtrate obtained by filtering the extract to precipitate a white solid (recovery method- 1). When the white solid was analyzed by powder X-ray diffraction, it was confirmed that the white solid was lead sulfate (PbSO 4 ). On the other hand, as a result of analysis, lead (Pb) was not present in the liquid after separation of the solid.
[0034]
Example 5
In the same manner as in the third embodiment of the present invention, 30 g of lead-containing ash, 100 cc of water, and 60 cc of 5N nitric acid are placed in a plastic bottle, mechanically at room temperature for 4 hours, and a particle size of 1 μm or less. Extraction was performed while pulverizing so that the amount of the powder became 50%. Subsequently, the extract was filtered, and 5N sulfuric acid was added dropwise to the obtained filtrate, whereby a white solid was precipitated (Recovery Method-1). When the white solid was analyzed by powder X-ray diffraction, it was confirmed that the white solid was lead sulfate (PbSO 4 ). On the other hand, as a result of analysis, lead (Pb) was not present in the liquid after separation of the solid.
[0035]
Example 6
Next, a sixth embodiment of the present invention was performed with reference to the flow sheet shown in FIG. In the first embodiment, 30 g of municipal waste incineration fly ash containing heavy metals, 100 cc of water, and 60 cc of 5N hydrochloric acid are placed in a plastic bottle containing alumina balls having a diameter of 10 mm. Extraction is performed while pulverizing so that the powder having a particle size of 1 μm or less is 50% mechanically, and then the filtrate obtained by filtering the extract is used as a packed tower of ion exchange resin (manufactured by Mitsubishi Chemical Corporation). Then, heavy metals were adsorbed on the resin by ion exchange (recovery method-2). The liquid after passing through the packed column of ion exchange resin did not contain heavy metals.
[0036]
Next, when the resin was washed and the cleaning solution was analyzed, aluminum (Al), calcium (Ca), etc. were not detected, but only heavy metals such as lead (Pb), zinc (Zn), and chromium (Cr) were detected. It was done. The recovery rate of these heavy metals was 99%.
[0037]
Example 7
Next, the seventh embodiment of the present invention was performed in the same manner as in the sixth embodiment with reference to the flow sheet shown in FIG. Then, in a plastic bottle containing alumina balls having a diameter of 10 mm, incineration fly ash 30 g of municipal waste containing the above heavy metals, 100 cc of water, and 60 cc of 5N nitric acid instead of hydrochloric acid, and 4 hours at room temperature, Extraction is carried out while grinding with a ball mill so that the powder with a particle size of 1 μm or less is 50%, and then the filtrate is filtered to obtain a filtrate obtained from an ion exchange resin (manufactured by Mitsubishi Chemical Corporation). Passing through the packed tower, heavy metals were adsorbed on the resin by ion exchange (recovery method-2). The liquid after passing through the packed column of ion exchange resin did not contain heavy metals.
[0038]
Next, when the resin was washed and the cleaning solution was analyzed, aluminum (Al), calcium (Ca), etc. were not detected, but only heavy metals such as lead (Pb), zinc (Zn), and chromium (Cr) were detected. It was done. The recovery rate of these heavy metals was 99%.
[0039]
Example 8
Next, an eighth embodiment of the present invention was performed with reference to the flow sheet shown in FIG. In the first embodiment, 30 g of municipal waste incineration fly ash containing heavy metals, 100 cc of water, and 60 cc of 5N hydrochloric acid are placed in a plastic bottle containing alumina balls having a diameter of 10 mm. Extraction is performed while pulverizing so that the powder having a particle size of 1 μm or less is 50% mechanically, and then the filtrate obtained by filtering the extract is passed through a packed column of chelate resin (manufactured by Unitika). Thus, heavy metals were adsorbed on the resin by ion exchange with metal ions contained in the chelate resin (Recovery Method-2). The liquid after passing through the packed column of chelate resin did not contain heavy metals.
[0040]
Next, when the resin was washed and the cleaning solution was analyzed, aluminum (Al), calcium (Ca), etc. were not detected, but only heavy metals such as lead (Pb), zinc (Zn), and chromium (Cr) were detected. It was done. The recovery rate of these heavy metals was 99%.
[0041]
As is apparent from the results of Examples 4 to 8 above, according to the method for treating heavy metal-containing ash according to claims 2 and 4 of the present invention, in any case, the incineration fly ash of municipal waste, etc. It was found that high-purity heavy metals can be recovered by a simple process from an extract obtained from powder containing heavy metals.
[0042]
【The invention's effect】
Processing method of heavy metals-containing ash according to claim 1 of the present invention, as described above, the ashes containing heavy metals, such as incineration ash, water per 100 parts by weight of heavy metal-containing ash 300-700 150 to 250 parts by weight of 100 parts by weight of heavy metal containing ash when hydrochloric acid or nitric acid having a concentration of 3 to 6N and 5 to 6N of hydrochloric acid or nitric acid to be used is added to the ball mill. while performing grinding by equal pulverizer as follows powder mechanically and particle size 1μm is 50% or more, the extraction of heavy metals row stomach, so as to obtain a heavy metals-containing extract, the claims of the present invention According to the method described in 1 , since incineration ash containing heavy metals and extraction of heavy metals can be performed in a single process, solid waste such as municipal waste and industrial waste is incinerated or melted. Waste by processing Ash or being, an effect that the processing steps of the ash containing heavy metals, such as exhaust gas dust collection ash can be significantly simplified.
[0043]
The processing method of heavy metal-containing ash according to claim 2 of the present invention, after filtration of the claims 1 processing by Ri obtained heavy metals containing extract to the method, the filtrate ion-exchange resin or a chelating by contacting the resin, but to recover the heavy metals, according to the method of claim 2 of the present invention, lead contained in incineration ash (Pb), zinc (Zn), chromium (Cr), Both heavy metals such as manganese (Mn) and cadmium (Cd) can be recovered in a simple process and at a high recovery rate, and the residue can be discarded as it is because it does not contain hazardous heavy metals. There is an effect that there is.
[0044]
Further, the processing method of the heavy metal-containing ash according to claim 4 of this invention, after filtering the claim 1 of processing by Ri obtained heavy metals containing extract to methods, it was added dropwise sulfuric acid to the filtrate, intended to collect the resulting heavy metals-containing solids, according to the method of claim 4 of this invention, in particular, heavy metals effective when a lead (Pb), powders containing lead incineration ash As a result, it is possible to recover high-purity lead from the extract obtained from the raw material in a simple process, and the residue does not contain lead, which is a harmful substance, and can be discarded as it is.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing a first embodiment of the present invention.
FIG. 2 is a flow sheet showing second and third embodiments of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002046214A JP3981758B2 (en) | 2002-02-22 | 2002-02-22 | Processing methods for ash containing heavy metals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002046214A JP3981758B2 (en) | 2002-02-22 | 2002-02-22 | Processing methods for ash containing heavy metals |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003245625A JP2003245625A (en) | 2003-09-02 |
JP3981758B2 true JP3981758B2 (en) | 2007-09-26 |
Family
ID=28659699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002046214A Expired - Fee Related JP3981758B2 (en) | 2002-02-22 | 2002-02-22 | Processing methods for ash containing heavy metals |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3981758B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8905242B2 (en) | 2012-05-25 | 2014-12-09 | John VanDeMierden | Ash processing and metals recovery systems and methods |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51133957A (en) * | 1975-05-15 | 1976-11-20 | Stanley Electric Co Ltd | Treatment met hod of sewage containing heavy metals |
JP3178252B2 (en) * | 1994-07-19 | 2001-06-18 | 三菱マテリアル株式会社 | Metal recovery from fly ash |
US5709730A (en) * | 1995-01-23 | 1998-01-20 | Cashman; Joseph B. | Hydrometallurgical processing of flue dust |
JP3590266B2 (en) * | 1998-06-19 | 2004-11-17 | 株式会社タクマ | Ash treatment method |
JP4484993B2 (en) * | 1999-12-24 | 2010-06-16 | キレスト株式会社 | Treatment of boron-containing water |
-
2002
- 2002-02-22 JP JP2002046214A patent/JP3981758B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003245625A (en) | 2003-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006035630A1 (en) | System and method for treating dust in gas extracted from cement kiln combustion gas | |
Drobíková et al. | Bioleaching of hazardous waste | |
HUT70991A (en) | Process for decontamination of metal-polluted earth | |
JPH1046266A (en) | Method for recovering cobalt from spent secondary battery | |
Weibel et al. | Optimized metal recovery from fly ash from municipal solid waste incineration | |
JP3981758B2 (en) | Processing methods for ash containing heavy metals | |
JP5219063B2 (en) | Waste incineration ash detoxification, artificial zeolite production system | |
JP2003236497A (en) | Waste treatment method | |
JP2003010634A (en) | Method and installation for treating waste treatment exhaust gas and dust | |
US5458990A (en) | Method of processing used batteries | |
JP2000281398A (en) | Treatment for converting waste into cement raw material | |
RU2680767C1 (en) | Iron-containing sludge processing method | |
JP3536901B2 (en) | Method of recovering valuable metals from fly ash | |
JPH10109077A (en) | Method for recovering heavy metal from molten fry ash | |
JP2003340465A (en) | Method for cleaning waste water, groundwater or soil leachate | |
JPH03169384A (en) | Method of disposing of used cell | |
JP3564625B2 (en) | Method for treating dust in exhaust gas | |
JP5028740B2 (en) | Dust disposal method | |
EP2732887B1 (en) | Process for treating heavy ash or slag in general | |
US6436358B1 (en) | Metals removal from spent salts | |
JP3524601B2 (en) | Method for treating fly ash from incinerators and melting furnaces | |
JP2001347278A (en) | Fly ash and method for effectively utilizing the same | |
JP4182477B2 (en) | Arsenic removal method | |
US7157064B2 (en) | Method for treatment of flue gas cleaning products | |
JP4907284B2 (en) | Method for processing ferrous waste materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060725 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070522 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070618 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100713 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110713 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120713 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130713 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |