JP3981521B2 - Method for producing dealkalized water glass aqueous solution - Google Patents

Method for producing dealkalized water glass aqueous solution Download PDF

Info

Publication number
JP3981521B2
JP3981521B2 JP2000271821A JP2000271821A JP3981521B2 JP 3981521 B2 JP3981521 B2 JP 3981521B2 JP 2000271821 A JP2000271821 A JP 2000271821A JP 2000271821 A JP2000271821 A JP 2000271821A JP 3981521 B2 JP3981521 B2 JP 3981521B2
Authority
JP
Japan
Prior art keywords
water glass
aqueous solution
glass aqueous
exchange membrane
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000271821A
Other languages
Japanese (ja)
Other versions
JP2002079257A (en
Inventor
貢 山本
裕 桶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2000271821A priority Critical patent/JP3981521B2/en
Publication of JP2002079257A publication Critical patent/JP2002079257A/en
Application granted granted Critical
Publication of JP3981521B2 publication Critical patent/JP3981521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は地盤注入用材として有用な脱アルカリ水ガラス水溶液の製造方法に関する。
【0002】
【従来の技術】
土木工事において、掘削等により崩壊のおそれのある地盤、湧水などにより掘削が困難な地盤などに対して、外部より地盤改良材を注入して地盤を改良する薬液注入工法が汎用されている。
【0003】
現在使用される地盤改良材は種々のものが知られているが水ガラスを主剤とする地盤注入剤が安価であり、ゲルタイムの調節も容易であることから主流を占めている。
【0004】
最近では注入による固化物の強度が高くその耐久性に優れること、注入液が一液でありゲルタイムの調節も容易で取り扱いに便利なこと、また改良すべき地盤の土質の応用範囲が広く、更に地盤改良後の固化物から溶出する異物の種類は限られ環境に与える影響が小さいといった特徴を有する、水ガラスを酸により処理して酸性にして硬化能力を付与させたものを主材とする非アルカリ系シリカゾル地盤改良注入材が多く用いられている。
【0005】
しかし、この非アルカリ系地盤改良注入材に用いられる水ガラス中にはアルカリあるいは塩が多く含まれており、該非アルカリ系地盤改良注入材を用いて得られる固結体の強度が低下したり、長期間のうちに固結体からアルカリあるいは塩が遊離ないし逸脱して固結体が収縮してその耐久性が低下するといった問題がある。
【0006】
このような欠点を改良するために水ガラスをイオン交換樹脂法によりアルカリ分を除去する方法が採用されている(特開平11−279552号公報)。
【0007】
しかしながらイオン交換樹脂法による脱アルカリ処理は樹脂の再生を必要とするため長期間の脱アルカリ処理は不可能であり、さらに再生廃液が排出されることやSiO2濃度の高い水ガラスは樹脂近傍でゲル化するため、使用する条件に制約が生じてしまう。
【0008】
そこで、最近ではイオン交換膜法電気透析装置により水ガラスを脱アルカリする方法が採用されている。この方法は電気透析槽内の両端各部に陽極および陰極を配置し、これらの間に陽イオン交換膜と陰イオン交換膜とを交互に位置させて、濃縮室と脱塩室を交互に形成し各電極に直流電流を通電させるとともに脱塩室に水ガラスを循環させ、もう一方の濃縮室に水酸化ナトリウム水溶液あるいは水酸化カリウム水溶液を循環することにより脱塩室の水ガラス水溶液を脱アルカリするものであり、脱アルカリされた水ガラス水溶液を効率よく得ることが出来、得られた脱アルカリ水ガラス水溶液は地盤改良材として使用することが出来るという特徴がある。
【0009】
【発明が解決しようとする課題】
さらに上記方法においては、前記電気透析槽の外部に水ガラス溶液貯槽を設置し、該貯槽から水ガラス水溶液が循環するようにして前記脱塩室に水ガラス溶液を供給する方法が採用されている。このような方法においては、循環液の電気伝導率をモニターすることにより、脱塩の程度を把握することができ、所期の性状に脱塩された溶液(生成脱塩溶液)を生成物として一部抜き出すと同時に抜き出した量に見合った量の原料水ガラス溶液を前記貯槽に供給することにより、連続運転を行なうことも可能である。
【0010】
ところが、本発明者等が実際に上記のような連続運転を試みたところ、原料水ガラス溶液として工業的に入手が容易な高SiO2濃度水ガラス水溶液と水とを別々に前記貯槽に補給した場合には、前記貯槽内で白濁、即ち固形分の析出が起こり、極端な場合には電気透析槽の膜面に堆積し、安定して連続運転が行なえないという問題があることが判明した。
【0011】
そこで、本発明は、電気透析装置を用いて水ガラス水溶液を脱アルカリ処理して安定して連続的に脱アルカリ水ガラス水溶液を製造できる方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、製造運転時に補給する原料水ガラス水溶液の濃度を特定の範囲とした場合には前記白濁が起こらず、安定して連続運転ができることを見出し、本発明を完成するに至った。
【0013】
即ち、本発明は、陽極と陰極の間に陽イオン交換膜と陰イオン交換膜を交互に配置して、陽極側の陽イオン交換膜と陰極側の陰イオン交換膜で仕切られた濃縮室と、陽極側の陰イオン交換膜と陰極側の陽イオン交換膜で仕切られた脱塩室とを交互に形成した電気透析槽、該電気透析槽の外部に配置された貯槽であって該貯槽に原料水ガラス水溶液供給するための原料供給ラインを有する貯槽、該貯槽から前記脱塩室へ水ガラス水溶液を供給するための脱塩室供給ライン、及び前記脱塩室から前記貯槽へ脱アルカリされた水ガラス水溶液を戻すための戻しラインを有する電気透析装置を用いて、前記脱塩室に水ガラス溶液を循環供給しながら電気透析を行ない、前記戻しラインからSiO2濃度が1wt%以上でSiO2/X2O(但し、Xはアルカリ金属原子を表す。)のモル比が6以上であり、かつpHが7〜12である脱アルカリ水ガラス水溶液を一部抜き出すと共に当該抜き出された脱アルカリ水ガラス水溶液と同量の原料水ガラス水溶液を前記原料供給ラインを介して前記貯槽に供給して前記脱アルカリ水ガラス水溶液を製造する方法であって、前記貯槽に供給する原料水ガラス水溶液としてSiO2濃度が1〜25wt%の水ガラス水溶液を用いることを特徴とする前記脱アルカリ水ガラス水溶液の製造方法である。
【0014】
上記本発明の製造方法に因れば、地盤改良材として使用できるSiO2濃度が1wt%以上でSiO2/X2O(但し、Xはアルカリ金属原子を表す。)のモル比が6以上であり、かつpHが7〜12である脱アルカリ水ガラス水溶液を安定して連続的に製造することができる。
【0015】
また、一般に、電気透析により得られる脱アルカリ水ガラス水溶液のSiO2濃度は、地盤注入用材として好適に使用するためには十分ではなく、SiO2濃度を高くするのが望ましいが、前記本発明の製造方法で得られた脱アルカリ水ガラス水溶液は、限外濾過をすることにより容易に濃縮でき、地盤注入用材に適した脱アルカリ水ガラス水溶液を得ることができる。
【0016】
【発明の実施の形態】
本発明の製造方法においては、陽極と陰極の間に陽イオン交換膜と陰イオン交換膜とを交互に配置して、陽極側及び陰極側のそれぞれ相対する陽イオン交換膜及び陰イオン交換膜で仕切られた濃縮室と、陽極側及び陰極側のそれぞれ陰イオン交換膜及び陽イオン交換膜で仕切られた脱塩室とを交互に形成した電気透析槽、該電気透析槽の外部に配置された貯槽であって該貯槽に原料水ガラス水溶液供給するための原料供給ランを有する貯槽、該貯槽から前記脱塩室へ水ガラス水溶液を供給するための塩室供給ライン、及び前記脱塩室から前記貯槽へ脱アルカリされた水ガラス水溶液を戻すための戻しラインを有する電気透析装置を使用する。
【0017】
上記電気透析装置における電気透析槽としては、例えば特開平11−61124号公報に開示されているような、陽極および陰極の間に陽イオン交換膜と陰イオン交換膜とが交互に複数配置されて、陽極側に位置する陽イオン交換膜と陰極側に位置する相対する陰イオン交換膜とで仕切られた濃縮室と、陽極側に位置する陰イオン交換膜と陰極側に位置する相対する陽イオン交換膜で仕切られた脱塩室とが交互に複数形成された公知の電気透析槽が何ら制限なく使用できる。
【0018】
また、該槽を構成する電極、イオン交換膜、そのほか必要な部材についても特に制限なく使用されるが、例えばイオン交換膜については、水ガラス水溶液がアルカリ性であるとともに濃縮室内には水酸化ナトリウムまたは水酸化カリウムを通液するため、耐アルカリ性のイオン交換膜を使用することが望ましい。一般に陽イオン交換膜の交換基がスルホン酸基、陰イオン交換膜が第四級アンモニウム塩基であり補強基材を用いてスチレン-ジビニルベンゼン共重合体からなる炭化水素系陽イオン交換膜および陰イオン交換膜が好適に用いられる。また、イオン交換膜の素材がフッ素系重合体からなる含フッ素系イオン交換膜を用いることもできる。
【0019】
また、本発明の電気透析装置は、連続運転を行なうために、前記電気透析槽の外部に配置された貯槽であって該貯槽に原料水ガラス水溶液ラインと希釈するための水供給ラインを有する調整槽、該調整槽から前記脱塩室へ水ガラス水溶液を循環供給するための脱塩液貯槽と電気透析槽供給ライン、及び前記脱塩室から脱アルカリされた水ガラス水溶液を送液するための生成脱塩液送液ラインを有する。
【0020】
このような構成を有することにより、例えば電気透析運転中の循環液の電気伝導率をモニターすることにより、脱塩の程度を把握することができ、所期の性状に脱塩された溶液(生成脱塩溶液)を生成物として抜き出すと同時に抜き出した量に見合った量の原料水ガラス溶液を前記脱塩液貯槽に供給することにより、連続運転を安定に行なうことが可能となる。
【0021】
すなわち、陽極室、陰極室、および濃縮室に水ガラス水溶液のアルカリ濃縮するために水酸化ナトリウム水溶液、水酸化カリウム水溶液を流通させながら、脱塩室水ガラス水溶液を連続的又は断続的にに供給すると、ナトリウムイオンは陽イオン膜を透過して減少し、水酸イオンは陰イオン交換膜を透過し濃縮室には水酸化ナトリウムが濃縮される、結果として脱アルカリされた水ガラス水溶液は戻しラインの循環液は入口側と比べてアルカリ濃度が低いものとなる。
【0022】
循環を繰り返す内に性状の循環液を一定量連続的にまたは断続的に供給することにより一定の幅の定常状態がえられ、連続運転が可能となる。
【0023】
本発明の製造方法においては、上記電気透析装置を用いて、水ガラス水溶液の電気透析を行ない、「SiO2濃度が1wt%以上でSiO2/X2O(但し、Xはアルカリ金属原子を表す。)のモル比が6以上であり、かつpHが7〜12である脱アルカリ水ガラス水溶液」(生成脱塩溶液ともいう。)を製造するが、該生成脱塩溶液は、地盤改良注入剤としての利用価値が特に高いものである。
【0024】
本発明の製造方法で使用する水ガラス溶液は、二酸化珪素とアルカリ(一般に水酸化ナトリウム、または水酸化カリウムが用いられる。)とを融解して得られた珪酸アルカリ塩の水溶液であれば特に限定されないが、SiO2濃度1〜10重量%、SiO2/X2Oモル比1.5〜5、PH12以上の水溶液を用いるのが一般的である。ここで、Xはアルカリ金属原子を意味する。工業的に容易に入手できるという観点からJIS規格3号水ガラス水溶液等を水で希釈して上記性状にした水溶液が好適に使用される。
【0025】
なお、ここで仕込み時の原料とは、連続運転中に補給する原料と異なり、電気透析開始時に前記貯槽に供給される水ガラス溶液を意味する。
【0026】
また、本発明の製造方法においては、連続運転の方法および各種条件は、補給する原料水ガラス水溶液の濃度を特定の範囲とする他は特に限定されない。
【0027】
たとえば、液の循環は、例えば塩室供給ラインに送液ポンプを設置することにより行なうことができる。循環流量は装置によって異なるため一概に特定できないが、通常は陰イオン交換膜と陽イオン交換膜の膜間隔における線速度で表して一般的には1〜10cm/secの範囲である。
【0028】
本発明の製造方法においては、運転中に供給(補給)する原料水ガラス水溶液(補給溶液ともいう。)のSiO2濃度を1〜25重量%に制御することを最大の特徴とする。補給溶液のSiO2濃度が上記範囲外のときには、前記貯槽内で固体の析出が起こり、安定した連続運転を行なうことができない。例えば、前記したJIS規格3号の水ガラス水溶液(SiO2濃度約30重量%)は工業的に入手が容易であるため、装置上はこれをそのまま貯槽に供給し、さらに別途水を加えるのが最も簡便であるが、このような方法を採用したときには、上記問題が発生してしまう。運転の安定性の観点から、補給溶液のSiO2濃度は、5〜20重量%、特に5〜15重量%であるのが好適である。
【0029】
補給溶液のSiO2濃度を制御する方法は特に限定されず、例えば原料供給ランの上流に濃度調整槽を設け、そこでJIS規格3号水ガラス水溶液のような濃厚な水溶液を水と混合することにより濃度調節をし、濃度調整された溶液を原料供給ラインを介して前記貯槽に供給(補給)すればよい。
【0030】
供給(補給)する補給溶液の量は、抜き出した生成脱塩溶液の量に見合った量とする必要があるが、変動があっても生成脱塩溶液の品質に悪影響を与えず、長いスパンで見て見合った量であれば、両者に差があってもかまわない。
【0031】
なお、本発明の製造方法を含めて、電気透析装置を用いて脱塩して得られる脱アルカリ水ガラス水溶液中のSiO2濃度は3〜10wt%程度であることが多く、地盤注入用材として使用した場合に高い改良効果を得るためには濃縮を行ない、SiO2濃度を高くするのが望ましい。本発明の製造方法で得られた上記脱アルカリ水ガラス水溶液については、限外濾過をすることにより容易に濃縮でき、SiO2濃度が例えば6〜40wt%と高い脱アルカリ水ガラス水溶液を容易に得ることができる。
【0032】
この時の限外濾過方法は特に限定されず、例えば分画分子量5000〜50000の限外濾過膜を用い、濾過圧力0〜0.4MPa、好ましくは0〜0.2MPaで濾過するればよい。
【0033】
このような方法で得られた高SiO2濃度の脱アルカリ水ガラス水溶液を地盤改良材として用いた場合には、強度の高い地盤を得ることができる。
【0034】
【実施例】
以下、実施例を挙げて本発明をより詳しく説明するが、本発明はこれら実施例に限られるものではない。
【0035】
なお、以下の実施例及び比較例においては、図1に示されるような電気透析装置を用いて脱塩処理を行なった。該装置は、陽極1および陰極2の間に陽イオン交換膜3と陰イオン交換膜4を交互に配置して、陽極側及び陰極側がそれぞれ陽イオン交換膜及び陰イオン交換膜で仕切られた濃縮室5と陽極側及び陰極側がそれぞれ陰イオン交換膜及び陽イオン交換膜で仕切られた脱塩室6とを交互に形成した電気透析槽7、該電気透析槽の外部に配置された貯槽であって該貯槽に原料水ガラス水溶液を液循環ポンプ13で供給するための原料供給ライン8を有する貯槽12、該貯槽12から前記脱塩室6へ水ガラス水溶液を供給するための脱塩室供給ライン16、及び前記脱塩室6から前記貯槽へ脱アルカリされた水ガラス水溶液を戻すための戻しライン20を有し、前記原料供給ラインの上流にJIS規格3号水ガラス水溶液のような高シリカ濃度の水ガラス水溶液を供給するためのライン9と希釈水を供給するためのライン10が接続した濃度調整槽11を有し、ここで濃度調節された水ガラス水溶液がポンプ19によって前記貯槽に供給できるようになっている。また、前記濃縮室には、濃縮液貯槽14にためられた水酸化ナトリウム水溶液がポンプ15によって濃縮室供給ライン17を通って供給できるようになっている。
【0036】
なお、図1における電気透析槽としては下記表1に示す仕様のトクヤマ社製の電気透析槽(TS2-10型)を用いた。
【0037】
【表1】

Figure 0003981521
【0038】
実施例1
JIS3号水ガラス水溶液をSiO2濃度5%になるように希釈した2Lの水ガラス水溶液を循環し、濃縮室・陽極室、陰極室にそれぞれ0.5mol/l NaOHを循環した。電流密度2A/dm2で脱アルカリを行ない液の電気伝導度が6mS/cmになるまで脱アルカリして、脱アルカリ液1Lを抜き出した。続いて同循環タンクにSiO2濃度5%の液を1L補給し脱アルカリをおこない液の電気伝導度が6mS/cmになるまで繰り返し運転をおこなった。この繰り返しを30回おこない、合計30Lの脱アルカリ液を製造した。なお、得られた脱アルカリ液のシリカ濃度は6.5重量%であり、Na2O濃度は0.33重量%であり、シリカ/Na2Oモル比は20であり、pHは11であった。
【0039】
さらに、得られた水溶液を、分画分子量10、000の限外ろ過膜を用いて、濾過圧力0.2MPaという条件下で限外濾過を行なった。得られた濾液のSiO2濃度を測定したところ、20重量%であった。
【0040】
比較例1
実施例1と同様にJIS3号水ガラス水溶液をSiO2濃度5%になるように希釈した2Lを脱アルカリ液を循環し、濃縮室・陽極室、陰極室にそれぞれ0.5mol/ l NaOHを循環した。電流密度2A/dm2で脱アルカリをおこない液の電気伝導度が6mS/cmになるまで脱アルカリして、脱アルカリ液を1L抜き出した。続いて同循環タンクにSiO2濃度27%の液を1L補給するとタンク内の液が白濁をおこすと同時に液循環が停止した。電流密度が低下し脱アルカリが継続できなくなり、運転を停止した。
【0041】
【発明の効果】
本発明によれば、電気透析装置を用いて水ガラス水溶液を安定して連続的に製造することができる。したがって、脱塩された水ガラス水溶液を地盤改良材としてそのまま使用する工法、特に、長期間の工期を有する場合に本発明の製造方法を適用するメリットは大きい。
【図面の簡単な説明】
【図1】 本図は、実施例1で使用した電気透析装置の該略図である。
【符号の簡単な説明】
1・・・陽極
2・・・陰極
3・・・陽イオン交換膜
4・・・陰イオン交換膜
5・・・濃縮室
6・・・脱塩室
7・・・電気透析槽
8・・・原料供給ライン
9・・・高濃度水ガラス供給ライン
10・・・希釈水供給ライン
11・・・濃度調整槽
12・・・貯槽
13・・・液循環ポンプ
14・・・濃縮液貯槽
15・・・液循環ポンプ
16・・・脱塩室供給ライン
17・・・濃縮室供給ライン
18・・・脱塩液抜き出しライン
19・・・原料水ガラス水溶液供給ポンプ
20・・・戻しライン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a dealkalized water glass aqueous solution useful as a material for ground injection.
[0002]
[Prior art]
In civil engineering work, a chemical injection method is generally used to improve the ground by injecting a ground improvement material from the outside to the ground that may be collapsed by excavation or the like, or the ground that is difficult to excavate by spring water or the like.
[0003]
Various types of ground improvement materials currently used are known, but ground injections mainly composed of water glass are inexpensive, and the gel time can be easily adjusted.
[0004]
Recently, the strength of the solidified material by injection is high and its durability is excellent, the injection solution is one solution, the gel time can be easily adjusted, and it is convenient to handle, and the application range of soil soil to be improved is wide. The type of foreign matter that elutes from the solidified material after ground improvement is limited and has a small impact on the environment. The main material is water glass treated with acid to make it hardened. Alkaline-based silica sol ground improved injection materials are often used.
[0005]
However, the water glass used for this non-alkali-based ground improvement injection material contains a lot of alkali or salt, and the strength of the solidified body obtained using the non-alkali-based ground improvement injection material decreases, There is a problem in that the alkali or salt is liberated or deviated from the solidified body over a long period of time, and the solidified body contracts to reduce its durability.
[0006]
In order to improve such a defect, a method of removing alkali from water glass by an ion exchange resin method is employed (Japanese Patent Laid-Open No. 11-279552).
[0007]
However, dealkalization treatment by the ion exchange resin method requires regeneration of the resin, so long-term dealkalization treatment is impossible. Further, waste of regeneration wastewater and water glass with high SiO 2 concentration are near the resin. Since it gels, the conditions to be used are restricted.
[0008]
Therefore, recently, a method of dealkalizing water glass with an ion exchange membrane electrodialyzer has been adopted. In this method, an anode and a cathode are arranged at both ends in the electrodialysis tank, and a cation exchange membrane and an anion exchange membrane are alternately placed between them, thereby alternately forming a concentration chamber and a desalting chamber. A direct current is applied to each electrode, water glass is circulated in the desalting chamber, and a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution is circulated in the other concentration chamber to dealkali the water glass aqueous solution in the desalting chamber. Therefore, a dealkalized water glass aqueous solution can be efficiently obtained, and the obtained dealkalized water glass aqueous solution can be used as a ground improvement material.
[0009]
[Problems to be solved by the invention]
Further, in the above method, a method is adopted in which a water glass solution storage tank is installed outside the electrodialysis tank, and the water glass solution is supplied to the desalting chamber so that the water glass aqueous solution circulates from the storage tank. . In such a method, the degree of desalting can be grasped by monitoring the electrical conductivity of the circulating fluid, and the solution desalted to the desired properties (the product desalting solution) is used as the product. It is also possible to perform a continuous operation by supplying a raw water glass solution in an amount corresponding to the extracted amount simultaneously to the storage tank.
[0010]
However, when the inventors actually tried continuous operation as described above, a high SiO 2 concentration water glass aqueous solution and water, which are industrially easily available as a raw water glass solution, were separately supplied to the storage tank. In such a case, it became clear that white turbidity, that is, precipitation of solids occurred in the storage tank, and in the extreme case, it was deposited on the membrane surface of the electrodialysis tank and the continuous operation could not be performed stably.
[0011]
Then, an object of this invention is to provide the method which can manufacture a de-alkaline water glass aqueous solution stably continuously by dealkalizing a water glass aqueous solution using an electrodialyzer.
[0012]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that the white turbidity does not occur when the concentration of the raw water glass aqueous solution to be replenished during the production operation is in a specific range, and is stably continuous. The present inventors have found that it can be operated and have completed the present invention.
[0013]
That is, the present invention provides a concentrating chamber in which a cation exchange membrane and an anion exchange membrane are alternately arranged between an anode and a cathode, and is partitioned by a cation exchange membrane on the anode side and an anion exchange membrane on the cathode side. An electrodialysis tank in which a desalting chamber partitioned by an anion exchange membrane on the anode side and a cation exchange membrane on the cathode side are alternately formed, and a storage tank arranged outside the electrodialysis tank, A storage tank having a raw material supply line for supplying a raw water glass aqueous solution, a demineralization chamber supply line for supplying a water glass aqueous solution from the storage tank to the desalting chamber, and a desalinization chamber from the desalting chamber to the storage tank. using electrodialysis apparatus having a return line for returning the water glass solution, the desalination chamber subjected to electrodialysis while circulating supplying water glass solution, SiO 2 from the return line at a SiO 2 concentration of not less than 1 wt% / X 2 O (however, X is And a part of the dealkalized water glass aqueous solution having a molar ratio of 6 or more and a pH of 7 to 12 and the same amount of raw water as the dealkalized water glass aqueous solution extracted. A method of producing the dealkalized water glass aqueous solution by supplying an aqueous glass solution to the storage tank via the raw material supply line, wherein the raw water glass aqueous solution supplied to the storage tank has a SiO 2 concentration of 1 to 25 wt%. A method for producing the dealkalized water glass aqueous solution, wherein a glass aqueous solution is used.
[0014]
According to the production method of the present invention, the SiO 2 concentration that can be used as a ground improvement material is 1 wt% or more, and the SiO 2 / X 2 O (where X represents an alkali metal atom) molar ratio is 6 or more. And a dealkalized water glass aqueous solution having a pH of 7 to 12 can be stably and continuously produced.
[0015]
In general, the SiO 2 concentration of the dealkalized water glass aqueous solution obtained by electrodialysis is not sufficient to be suitably used as a material for ground injection, and it is desirable to increase the SiO 2 concentration. The dealkalized water glass aqueous solution obtained by the production method can be easily concentrated by ultrafiltration, and a dealkalized water glass aqueous solution suitable for the material for ground injection can be obtained.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
In the production method of the present invention, the cation exchange membrane and the anion exchange membrane are alternately arranged between the anode and the cathode, and the anode side and the cathode side are respectively opposed to the cation exchange membrane and the anion exchange membrane. An electrodialysis tank in which partitioned concentration chambers and desalting chambers partitioned by an anion exchange membrane and a cation exchange membrane on the anode side and the cathode side, respectively, are alternately formed, and arranged outside the electrodialysis tank A storage tank having a raw material supply run for supplying a raw water glass aqueous solution to the storage tank, a salt chamber supply line for supplying a water glass aqueous solution from the storage tank to the demineralization chamber, and the demineralization chamber from the above An electrodialyzer having a return line for returning the dealkalized water glass aqueous solution to the storage tank is used.
[0017]
As an electrodialysis tank in the electrodialysis apparatus, a plurality of cation exchange membranes and anion exchange membranes are alternately arranged between an anode and a cathode as disclosed in, for example, JP-A-11-61124. A concentration chamber partitioned by a cation exchange membrane located on the anode side and a counter anion exchange membrane located on the cathode side, and an anion exchange membrane located on the anode side and a counter cation located on the cathode side A known electrodialysis tank in which a plurality of desalting chambers partitioned by an exchange membrane are alternately formed can be used without any limitation.
[0018]
The electrode, ion exchange membrane, and other necessary members constituting the tank are also used without particular limitation. For example, for an ion exchange membrane, a water glass aqueous solution is alkaline and sodium hydroxide or In order to pass potassium hydroxide, it is desirable to use an alkali-resistant ion exchange membrane. In general, the cation exchange membrane is a sulfonic acid group, the anion exchange membrane is a quaternary ammonium base, and a hydrocarbon-based cation exchange membrane and anion made of a styrene-divinylbenzene copolymer using a reinforcing substrate. An exchange membrane is preferably used. Further, a fluorine-containing ion exchange membrane in which the material of the ion exchange membrane is a fluorine-based polymer can also be used.
[0019]
Further, the electrodialysis apparatus of the present invention is a storage tank disposed outside the electrodialysis tank for continuous operation, and the storage tank has a water supply line for diluting with a raw water glass aqueous solution line. A tank, a desalting solution storage tank for circulating and supplying a water glass aqueous solution from the adjustment tank to the desalting chamber, an electrodialysis tank supply line, and a solution for sending the water glass aqueous solution dealkalized from the desalting chamber The product has a desalted liquid feed line.
[0020]
By having such a configuration, for example, by monitoring the electrical conductivity of the circulating fluid during the electrodialysis operation, the degree of desalting can be grasped, and the desalted solution (formation) By supplying the raw water glass solution in an amount corresponding to the extracted amount to the desalted solution storage tank at the same time as extracting the (desalted solution) as a product, it is possible to stably perform the continuous operation.
[0021]
In other words, the desalination chamber water glass aqueous solution is supplied continuously or intermittently while the sodium hydroxide aqueous solution and the potassium hydroxide aqueous solution are circulated in the anode chamber, the cathode chamber, and the concentration chamber for alkali concentration of the water glass aqueous solution. Then, sodium ions permeate through the cation membrane and decrease, hydroxide ions permeate through the anion exchange membrane, and sodium hydroxide is concentrated in the concentrating chamber. As a result, the dealkalized water glass aqueous solution is returned to the return line. This circulating fluid has a lower alkali concentration than the inlet side.
[0022]
By supplying a certain amount of circulating fluid in a certain amount continuously or intermittently while repeating the circulation, a steady state with a certain width can be obtained, and continuous operation becomes possible.
[0023]
In the production method of the present invention, electrodialysis of a water glass aqueous solution is performed using the above electrodialyzer, and “SiO 2 concentration is 1 wt% or more and SiO 2 / X 2 O (where X represents an alkali metal atom). )) Is 6 or more and the pH is 7 to 12 ”(also referred to as a generated desalted solution). The utility value is particularly high.
[0024]
The water glass solution used in the production method of the present invention is particularly limited as long as it is an aqueous solution of an alkali silicate obtained by melting silicon dioxide and alkali (generally sodium hydroxide or potassium hydroxide is used). However, it is common to use an aqueous solution having a SiO 2 concentration of 1 to 10% by weight, a SiO 2 / X 2 O molar ratio of 1.5 to 5 and a pH of 12 or more. Here, X means an alkali metal atom. From the viewpoint that it can be easily obtained industrially, an aqueous solution obtained by diluting a JIS standard No. 3 water glass aqueous solution or the like with water to have the above properties is preferably used.
[0025]
In addition, the raw material at the time of preparation means the water glass solution supplied to the said storage tank at the time of the start of electrodialysis unlike the raw material replenished during a continuous operation.
[0026]
Moreover, in the manufacturing method of this invention, the method and various conditions of a continuous operation are not specifically limited except the density | concentration of the raw material water glass aqueous solution to supplement is made into a specific range.
[0027]
For example, the liquid can be circulated, for example, by installing a liquid feed pump in the salt chamber supply line. Although the circulation flow rate differs depending on the apparatus, it cannot be specified unconditionally, but it is generally in the range of 1 to 10 cm / sec in terms of the linear velocity at the interval between the anion exchange membrane and the cation exchange membrane.
[0028]
The production method of the present invention is characterized by controlling the SiO 2 concentration of a raw water glass aqueous solution (also referred to as a replenishing solution) to be supplied (supplemented) during operation to 1 to 25% by weight. When the SiO 2 concentration of the replenishing solution is outside the above range, solid deposition occurs in the storage tank, and stable continuous operation cannot be performed. For example, the above-mentioned JIS standard 3 water glass aqueous solution (SiO 2 concentration of about 30% by weight) is easy to obtain industrially, so that it is supplied to the storage tank as it is on the apparatus and water is added separately. Although it is the simplest, the above problem occurs when such a method is adopted. From the viewpoint of operational stability, the SiO 2 concentration of the replenishing solution is preferably 5 to 20% by weight, particularly 5 to 15% by weight.
[0029]
The method for controlling the SiO 2 concentration of the replenishing solution is not particularly limited. For example, a concentration adjusting tank is provided upstream of the raw material supply run, and a concentrated aqueous solution such as a JIS standard No. 3 water glass aqueous solution is mixed with water. The concentration may be adjusted, and the adjusted solution may be supplied (supplemented) to the storage tank via the raw material supply line.
[0030]
The amount of replenishment solution to be supplied (supplemented) must be commensurate with the amount of the generated desalted solution that has been withdrawn. There may be a difference between the two as long as they are appropriate.
[0031]
Incidentally, including the production method of the present invention, SiO 2 concentration of de-alkali water glass aqueous solution obtained desalted using electrodialysis device often at about 3~10Wt%, used as a ground injection timber In this case, in order to obtain a high improvement effect, it is desirable to perform concentration and increase the SiO 2 concentration. The dealkalized water glass aqueous solution obtained by the production method of the present invention can be easily concentrated by ultrafiltration, and a dealkalized water glass aqueous solution having a high SiO 2 concentration of, for example, 6 to 40 wt% can be easily obtained. be able to.
[0032]
The ultrafiltration method at this time is not particularly limited. For example, an ultrafiltration membrane having a molecular weight cut off of 5000 to 50000 may be used, and filtration may be performed at a filtration pressure of 0 to 0.4 MPa, preferably 0 to 0.2 MPa.
[0033]
When a high-SiO 2 concentration dealkalized water glass aqueous solution obtained by such a method is used as a ground improvement material, a ground with high strength can be obtained.
[0034]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these Examples.
[0035]
In the following Examples and Comparative Examples, desalting was performed using an electrodialysis apparatus as shown in FIG. In this apparatus, the cation exchange membrane 3 and the anion exchange membrane 4 are alternately arranged between the anode 1 and the cathode 2, and the anode side and the cathode side are partitioned by the cation exchange membrane and the anion exchange membrane, respectively. An electrodialysis tank 7 in which a chamber 5 and a desalting chamber 6 in which the anode side and the cathode side are partitioned by an anion exchange membrane and a cation exchange membrane are alternately formed, and a storage tank disposed outside the electrodialysis tank. A storage tank 12 having a raw material supply line 8 for supplying a raw water glass aqueous solution to the storage tank by a liquid circulation pump 13, and a desalination chamber supply line for supplying a water glass aqueous solution from the storage tank 12 to the desalting chamber 6. 16 and a return line 20 for returning the dewatered water glass aqueous solution from the desalting chamber 6 to the storage tank, and a high silica concentration such as a JIS standard No. 3 water glass aqueous solution upstream of the raw material supply line. Water A concentration adjusting tank 11 connected to a line 9 for supplying an aqueous solution and a line 10 for supplying dilution water so that the water glass aqueous solution whose concentration is adjusted can be supplied to the storage tank by a pump 19. It has become. Further, the sodium hydroxide aqueous solution stored in the concentrate storage tank 14 can be supplied to the concentration chamber through the concentration chamber supply line 17 by the pump 15.
[0036]
As the electrodialysis tank in FIG. 1, an electrodialysis tank (TS2-10 type) manufactured by Tokuyama Corporation having the specifications shown in Table 1 below was used.
[0037]
[Table 1]
Figure 0003981521
[0038]
Example 1
A 2 L water glass aqueous solution obtained by diluting a JIS No. 3 water glass aqueous solution to a SiO2 concentration of 5% was circulated, and 0.5 mol / l NaOH was circulated in each of the concentration chamber, the anode chamber, and the cathode chamber. Dealkalization was performed at a current density of 2 A / dm 2 , dealkalization was performed until the electrical conductivity of the liquid reached 6 mS / cm, and 1 L of dealkalization liquid was extracted. Subsequently, 1 L of a 5% SiO 2 solution was replenished to the same circulation tank, dealkalized, and repeated until the electric conductivity of the solution reached 6 mS / cm. This was repeated 30 times to produce a total of 30 L of a dealkalized solution. The obtained dealkalized solution had a silica concentration of 6.5% by weight, a Na 2 O concentration of 0.33% by weight, a silica / Na 2 O molar ratio of 20, and a pH of 11. It was.
[0039]
Furthermore, the obtained aqueous solution was subjected to ultrafiltration under the condition of a filtration pressure of 0.2 MPa using an ultrafiltration membrane having a fractional molecular weight of 10,000. The SiO 2 concentration of the obtained filtrate was measured and found to be 20% by weight.
[0040]
Comparative Example 1
In the same manner as in Example 1, 2 L of a JIS No. 3 water glass aqueous solution diluted to a SiO 2 concentration of 5% was circulated in the dealkalized solution, and 0.5 mol / l NaOH was circulated in the concentration chamber, the anode chamber, and the cathode chamber, respectively. . Dealkalization was performed at a current density of 2 A / dm 2, dealkalization was performed until the electrical conductivity of the liquid reached 6 mS / cm, and 1 L of the dealkalized liquid was extracted. Subsequently, when 1 L of a liquid having a SiO2 concentration of 27% was replenished to the same circulation tank, the liquid in the tank became cloudy and at the same time the liquid circulation was stopped. The current density was lowered and dealkalization could not be continued, and the operation was stopped.
[0041]
【The invention's effect】
According to the present invention, an aqueous water glass solution can be stably and continuously produced using an electrodialysis apparatus. Therefore, the method of using the desalted water glass aqueous solution as a ground improvement material as it is, especially when the manufacturing method of the present invention has a long construction period, has a great merit.
[Brief description of the drawings]
FIG. 1 is a schematic view of an electrodialysis apparatus used in Example 1. FIG.
[Brief description of symbols]
DESCRIPTION OF SYMBOLS 1 ... Anode 2 ... Cathode 3 ... Cation exchange membrane 4 ... Anion exchange membrane 5 ... Concentration chamber 6 ... Desalination chamber 7 ... Electrodialysis tank 8 ... Raw material supply line 9 ... High-concentration water glass supply line 10 ... Dilution water supply line 11 ... Concentration adjustment tank 12 ... Storage tank 13 ... Liquid circulation pump 14 ... Concentrated liquid storage tank 15 -Liquid circulation pump 16 ... Desalination chamber supply line 17 ... Concentration chamber supply line 18 ... Desalination solution extraction line 19 ... Raw water glass aqueous solution supply pump 20 ... Return line

Claims (2)

陽極と陰極の間に陽イオン交換膜と陰イオン交換膜を交互に配置して、陽極側の陽イオン交換膜と陰極側の陰イオン交換膜で仕切られた濃縮室と、陽極側の陰イオン交換膜と陰極側の陽イオン交換膜で仕切られた脱塩室とを交互に形成した電気透析槽、該電気透析槽の外部に配置された貯槽であって該貯槽に原料水ガラス水溶液供給するための原料供給ラインを有する貯槽、該貯槽から前記脱塩室へ水ガラス水溶液を供給するための脱塩室供給ライン、及び前記脱塩室から前記貯槽へ脱アルカリされた水ガラス水溶液を戻すための戻しラインを有する電気透析装置を用いて、前記脱塩室に水ガラス溶液を循環供給しながら電気透析を行ない、前記戻しラインからSiO2濃度が1wt%以上でSiO2/X2O(但し、Xはアルカリ金属原子を表す。)のモル比が6以上であり、かつpHが7〜12である脱アルカリ水ガラス水溶液を一部抜き出すとともに当該抜き出された脱アルカリ水ガラス水溶液と同量の原料水ガラス水溶液を前記原料供給ラインを介して前記貯槽に供給して前記脱アルカリ水ガラス水溶液を製造する方法であって、前記貯槽に供給する原料水ガラス水溶液としてSiO2濃度が1〜25wt%の水ガラス水溶液を用いることを特徴とする前記脱アルカリ水ガラス水溶液の製造方法。An anion on the anode side and an anion on the anode side, in which a cation exchange membrane and an anion exchange membrane are alternately arranged between the anode and the cathode and partitioned by the cation exchange membrane on the anode side and the anion exchange membrane on the cathode side An electrodialysis tank in which an exchange membrane and a desalting chamber partitioned by a cation exchange membrane on the cathode side are alternately formed, and a storage tank disposed outside the electrodialysis tank, and supplying a raw water glass aqueous solution to the storage tank A storage tank having a raw material supply line, a demineralization chamber supply line for supplying a water glass aqueous solution from the storage tank to the desalting chamber, and a desalted water glass aqueous solution returned from the desalting chamber to the storage tank An electrodialysis apparatus having a return line is used to perform electrodialysis while circulating and supplying a water glass solution to the desalting chamber. When the SiO 2 concentration is 1 wt% or more from the return line, SiO 2 / X 2 O (however, , X is an alkali metal atom And a part of the dealkalized water glass aqueous solution having a pH of 7 to 12 and a raw water glass aqueous solution of the same amount as the dealked dealkalized water glass aqueous solution. A method of producing the dealkalized water glass aqueous solution supplied to the storage tank via a raw material supply line, wherein a water glass aqueous solution having a SiO 2 concentration of 1 to 25 wt% is used as the raw water glass aqueous solution supplied to the storage tank A method for producing the above-mentioned dealkalized water glass aqueous solution. 請求項1に記載の製造方法によって得られた脱アルカリ水ガラス水溶液を限外濾過により濃縮して高SiO2濃度の脱アルカリ水ガラス水溶液を製造することを特徴とする脱アルカリ水ガラス水溶液の製造方法。A dealkalized water glass aqueous solution having a high SiO 2 concentration is produced by concentrating the dealkalized water glass aqueous solution obtained by the production method according to claim 1 by ultrafiltration. Method.
JP2000271821A 2000-09-07 2000-09-07 Method for producing dealkalized water glass aqueous solution Expired - Fee Related JP3981521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000271821A JP3981521B2 (en) 2000-09-07 2000-09-07 Method for producing dealkalized water glass aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000271821A JP3981521B2 (en) 2000-09-07 2000-09-07 Method for producing dealkalized water glass aqueous solution

Publications (2)

Publication Number Publication Date
JP2002079257A JP2002079257A (en) 2002-03-19
JP3981521B2 true JP3981521B2 (en) 2007-09-26

Family

ID=18758051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000271821A Expired - Fee Related JP3981521B2 (en) 2000-09-07 2000-09-07 Method for producing dealkalized water glass aqueous solution

Country Status (1)

Country Link
JP (1) JP3981521B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346306A (en) * 2003-04-28 2004-12-09 Raito Kogyo Co Ltd Method for producing foundation-improving injection material
JP2006008422A (en) * 2004-06-22 2006-01-12 Raito Kogyo Co Ltd Method for producing low alkali water glass, and low alkali water glass
JP4868489B2 (en) * 2004-09-14 2012-02-01 ライト工業株式会社 Method for producing low alkaline water glass and method for producing ground improved injection material
CN109502709B (en) * 2019-01-16 2022-04-15 天津碧水源膜材料有限公司 Water purifier capable of producing alkalescent electrodialysis water and method for manufacturing alkalescent water

Also Published As

Publication number Publication date
JP2002079257A (en) 2002-03-19

Similar Documents

Publication Publication Date Title
Strathmann Electrodialysis and related processes
KR101432045B1 (en) Method for purifying lithium-containing wastewater during the continuous production of lithium transition metal phosphates
US5376250A (en) Method of producing water having a reduced salt content
JP4799260B2 (en) Equipment for extending the life of electroless nickel plating solution
JP3981521B2 (en) Method for producing dealkalized water glass aqueous solution
CN114849478A (en) Asymmetric bipolar membrane electrodialysis device and method for preparing acid and alkali
CN104909503B (en) A kind of integrated membrane process method for desalting seawater
JPH06269777A (en) Fresh water producing process
JP4146649B2 (en) Process for producing dealkalized water glass and apparatus for producing the same
JP5188454B2 (en) Method for producing organic acid
JP3952127B2 (en) Electrodeionization treatment method
JP2008036473A (en) Electric deionizer
JP3695338B2 (en) Method for producing deionized water
JP3154613B2 (en) Method and apparatus for producing reduced salt soy sauce
JP4480903B2 (en) Method for producing dealkalized water glass solution
Audinos et al. Electrodialysis
JP3967585B2 (en) Method for producing aqueous alkali metal silicate solution
JP2002079256A (en) Method for manufacturing alkali removed water glass aqueous solution
CN108341527B (en) High-recovery removal bitter and fishiness
WO2002074688A1 (en) Aqueous active alkali silicate solution having high molar ratio, method for production thereof and method for use thereof
JP4093714B2 (en) Method for producing acidic silica sol
JPH06198141A (en) Production of water having low content of salt
JP2004323326A (en) Method of preparing low alkali water glass solution and material for civil engineering
JP3967586B2 (en) Method for producing dealkalized water glass
JPH07213869A (en) Production of water having small salt content

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3981521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160706

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees