JP3154613B2 - Method and apparatus for producing reduced salt soy sauce - Google Patents

Method and apparatus for producing reduced salt soy sauce

Info

Publication number
JP3154613B2
JP3154613B2 JP11004494A JP11004494A JP3154613B2 JP 3154613 B2 JP3154613 B2 JP 3154613B2 JP 11004494 A JP11004494 A JP 11004494A JP 11004494 A JP11004494 A JP 11004494A JP 3154613 B2 JP3154613 B2 JP 3154613B2
Authority
JP
Japan
Prior art keywords
exchange membrane
soy sauce
chamber
membrane
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11004494A
Other languages
Japanese (ja)
Other versions
JPH07313098A (en
Inventor
貢 山本
宣契 山本
俊夫 古川
宗徳 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikkoman Corp
Tokuyama Corp
Original Assignee
Kikkoman Corp
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikkoman Corp, Tokuyama Corp filed Critical Kikkoman Corp
Priority to JP11004494A priority Critical patent/JP3154613B2/en
Publication of JPH07313098A publication Critical patent/JPH07313098A/en
Application granted granted Critical
Publication of JP3154613B2 publication Critical patent/JP3154613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soy Sauces And Products Related Thereto (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、減塩醤油の製造方法な
らびに製造装置に関するものであって、より詳しくは、
電気透析装置を用いて、醤油のpH変化を小さくできる
とともに、醤油中のアミノ酸組成を変化させることな
く、塩分を減少させることを特徴とする減塩醤油の製造
方法ならびにその製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing reduced salt soy sauce.
The present invention relates to a method and an apparatus for producing reduced salt soy sauce, characterized in that the change in pH of soy sauce can be reduced by using an electrodialysis device, and the salt content is reduced without changing the amino acid composition in the soy sauce.

【0002】[0002]

【従来の技術】電気透析装置を用いて醤油の脱塩を行う
方法として、従来、「無塩醤油の製造方法」(特公昭4
7−46360号公報)、「減塩醤油の製造方法」(特
公昭61−20263号公報)などが知られている。こ
れらの方法は、陰陽両極間に陰陽イオン交換膜を配列し
た電気透析槽に醤油を供給し、直流電流の作用により醤
油中の食塩をイオン交換膜を介して隣室に移動脱塩さ
せ、エキス分を該室に残留させてなる醤油の製造方法で
ある。
2. Description of the Related Art Conventionally, as a method for desalting soy sauce using an electrodialysis apparatus, there has been known a method for producing salt-free soy sauce (Japanese Patent Publication No. Sho 4).
No. 7-46360) and "Method for producing reduced salt soy sauce" (Japanese Patent Publication No. 61-20263). In these methods, soy sauce is supplied to an electrodialysis tank in which an anion and cation exchange membrane is arranged between the anion and the cathode, and the salt in the soy sauce is moved to an adjacent chamber through an ion exchange membrane by the action of a direct current, and desalted. Is a method for producing soy sauce, wherein the soy sauce is left in the chamber.

【0003】これらの従来の陰陽イオン交換膜を用いた
電気透析法では、醤油中の食塩濃度を所定濃度まで低下
させることのみを目的としており、陽イオン交換膜およ
び陰イオン交換膜を介してそれぞれ移動したNaイオン、
Clイオンは濃縮室に移動し、食塩水溶液として系外に廃
棄している。しかし、このような陰陽イオン交換膜を用
いた電気透析法による減塩醤油の製造方法にあっては、
交換膜の性能によって所定の通電電圧に達すると、それ
以上の効果が得られず、電流効率が悪くなり、また醤油
の呈味をなすアミノ酸組成のバランスが崩れたり、pH
が上昇することによって減塩醤油の品質が悪化するとい
う問題があった。
[0003] In these conventional electrodialysis methods using an anion-cation exchange membrane, the purpose is only to reduce the salt concentration in soy sauce to a predetermined concentration. Transferred Na ion,
Cl ions move to the concentration room and are discarded out of the system as a saline solution. However, in the method for producing reduced salt soy sauce by the electrodialysis method using such an anion and cation exchange membrane,
When the current reaches a predetermined energizing voltage due to the performance of the exchange membrane, no further effect can be obtained, the current efficiency becomes poor, and the amino acid composition that makes soy sauce taste unbalanced,
There is a problem that the quality of reduced salt soy sauce is deteriorated due to the rise in the amount of soy sauce.

【0004】このような従来技術の認識の元に、本出願
人らは既にバイポーラ膜を配した三室式電気透析装置を
用いて醤油中の塩分を減少させる方法として、陰陽両電
極間に陽イオン交換膜と陰イオン交換膜、およびバイポ
ーラ膜を順次配列して陰イオン交換膜と陽イオン交換膜
との間に醤油を、バイポーラ膜と陽イオン交換膜との間
にアルカリ性液、バイポーラ膜と陰イオン交換膜との間
に酸性液をそれぞれ通液しながら陰陽両電極間に直流電
流を通じて、アミノ酸のバランスを崩すことなく醤油中
の塩分を減少させる方法について特許出願をしている。
[0004] Based on the recognition of the prior art, the present applicant has proposed a method of reducing the salt content in soy sauce using a three-chamber electrodialyzer equipped with a bipolar membrane. An exchange membrane, an anion exchange membrane, and a bipolar membrane are sequentially arranged, soy sauce is provided between the anion exchange membrane and the cation exchange membrane, an alkaline liquid is provided between the bipolar membrane and the cation exchange membrane, and the bipolar membrane and the anion are disposed. A patent application has been filed for a method for reducing the salt content in soy sauce without breaking the balance of amino acids by passing a direct current between the positive and negative electrodes while passing an acidic solution between the ion exchange membrane and the acidic solution, respectively.

【0005】この方法によれば、脱塩室は陰イオン交換
膜を介して酸性液と接触し、他方は陽イオン交換膜を介
してアルカリ性液と接触しているため、膜内のpH挙動
からアミノ酸の等電点付近で脱塩するためにアミノ酸が
膜を透過し難く、脱塩室の醤油中のアミノ酸のロスが低
減されると考えられるとともに醤油中のpH変化を抑制
でき、しかも電流効率よく、酸およびアルカリを生成し
て脱塩することができる。
According to this method, the desalting chamber is in contact with an acidic solution via an anion exchange membrane, and the other is in contact with an alkaline solution via a cation exchange membrane. Amino acids are desalinated near the isoelectric point, making it difficult for the amino acids to penetrate the membrane, reducing the loss of amino acids in the soy sauce in the desalting chamber, reducing pH changes in the soy sauce, and improving current efficiency. Often, acid and alkali can be produced and desalted.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは、前記発
明を追試し、さらなる研究を継続する過程において、前
記の三室式電気透析法で脱塩を行う場合、脱塩室は陰イ
オン交換膜を介して酸性液と接触し、他方は陽イオン交
換膜を介してアルカリ性液と接触しているため、陰陽イ
オン交換膜は電気泳動によるイオンの移動の他、通電量
と無関係にそれぞれ酸およびアルカリの濃度差が駆動源
となる拡散をともなう、即ち、酸液は陰イオン交換膜を
介し脱塩室に拡散移動し、アルカリ液は陽イオン交換膜
を拡散移動する現象を呈することを見いだした。
SUMMARY OF THE INVENTION The inventors of the present invention have repeated the above-mentioned invention and, in the course of continuing further research, when desalting is carried out by the above-mentioned three-chamber electrodialysis method, the desalting chamber is anion-exchanged. Since it is in contact with the acidic solution through the membrane and the other is in contact with the alkaline solution through the cation exchange membrane, the anion and cation exchange membrane can transfer the acid and It was found that the difference in alkali concentration was accompanied by diffusion as a driving source, that is, the acid solution diffused and moved to the desalting chamber through the anion exchange membrane, and the alkali solution exhibited the phenomenon of diffusion and movement through the cation exchange membrane. .

【0007】したがって、このような三室式電気透析槽
により醤油を脱塩する場合、脱塩室に拡散移動する酸お
よびアルカリ量は、イオン交換面積、透析時間、酸およ
びアルカリの濃度に比例して増大するため、脱塩室にあ
る醤油のpHの変化が起こり易く、得られる脱塩醤油の
品質が安定しないという結果を招くおそれがある。ま
た、三室式電気透析槽では、醤油の脱塩室1室に対して
酸とアルカリが生成する、すなわち、減塩する醤油の塩
分を、全て酸およびアルカリとして生成する構造を有す
るため、必要以上に酸とアルカリを生成すると貯蔵する
タンク容量が大きくなり、設備費が増大する。
Therefore, when soy sauce is desalted by such a three-chamber electrodialysis tank, the amount of acid and alkali diffused and transferred to the desalting chamber is proportional to the ion exchange area, dialysis time, and the concentration of acid and alkali. Due to the increase, the pH of the soy sauce in the desalting chamber tends to change, which may result in unstable quality of the obtained desalted soy sauce. In addition, the three-chamber electrodialysis tank has a structure in which acid and alkali are generated in one soy sauce desalting chamber, that is, all salts of soy sauce to be reduced in salt are generated as acid and alkali. When acid and alkali are generated, the capacity of the storage tank increases, and equipment costs increase.

【0008】そこで、本発明者らは前記課題の解決にむ
けて鋭意研究の結果、陰イオン交換膜、陽イオン交換膜
およびバイポーラ膜を配列した特定の構成を有する本発
明による電気透析槽を用いることにより、上記の問題が
解決し得るという知見を得、本発明を完成するに至っ
た。
Accordingly, the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have used an electrodialysis tank according to the present invention having a specific configuration in which an anion exchange membrane, a cation exchange membrane, and a bipolar membrane are arranged. As a result, the inventor has found that the above problem can be solved, and has completed the present invention.

【0009】[0009]

【課題を解決するための手段】本発明は、前記の課題を
解決するために提案されたものであって、次の構成を特
徴とする。すなわち、本発明によれば、陰陽両極間に陽
極側から陽イオン交換膜、バイポーラ膜、陰イオン交換
膜の順に設置した1個以上の繰り返し単位と陽イオン交
換膜、陰イオン交換膜の順に設置した1個以上の繰り返
し単位とにより構成した電気透析装置において、陽極側
から陰イオン交換膜と陽イオン交換膜との間に形成され
る室に醤油を送液し、該醤油中の塩分を減少させること
を特徴とする減塩醤油の製造方法が提供される。
The present invention has been proposed to solve the above-mentioned problems, and has the following features. That is, according to the present invention, one or more repetition units provided in the order of a cation exchange membrane, a bipolar membrane, and an anion exchange membrane from the anode side between the anion and the cathode, and a cation exchange membrane and an anion exchange membrane are installed in this order. In an electrodialysis apparatus comprising one or more repeating units, soy sauce is sent from the anode side to a chamber formed between the anion exchange membrane and the cation exchange membrane to reduce the salt content in the soy sauce. A method for producing reduced salt soy sauce is provided.

【0010】また本発明によれば、陰陽両極間に陽極側
から陽イオン交換膜、バイポーラ膜、陰イオン交換膜の
順に設置した1個以上の繰り返し単位と陽イオン交換
膜、陰イオン交換膜の順に設置した1個以上の繰り返し
単位とにより構成した透析槽、すなわち、酸、アルカリ
室の片側が、脱塩室と接触しない濃縮室を1室以上設け
る電気透析槽を有することを特徴とする減塩醤油の製造
装置が提供される。
Further, according to the present invention, one or more repeating units provided in the order of a cation exchange membrane, a bipolar membrane, and an anion exchange membrane between the anion and the cathode and from the anode side and a cation exchange membrane and an anion exchange membrane A dialysis tank comprising at least one repeating unit installed in order, that is, an electrodialysis tank provided with at least one concentrating chamber in which one side of the acid and alkali chambers does not contact the desalting chamber. An apparatus for producing salt soy sauce is provided.

【0011】上記構成から成ることにより、減塩醤油を
製造するに当たって、脱塩室と接触する酸室、アルカリ
室の面積割合を減らすことにより、拡散移動する酸、ア
ルカリ室および膜内のpHの影響によりアミノ酸が膜を
透過し難い効果を発現することができる。
[0011] With the above-mentioned constitution, in producing reduced salt soy sauce, by reducing the area ratio of the acid chamber and the alkali chamber which are in contact with the desalting chamber, the acid which diffuses and moves, the pH of the alkali chamber and the pH in the membrane are reduced. Due to the influence, an effect that amino acids are hardly permeated through the membrane can be exhibited.

【0012】[0012]

【作用】本発明の電気透析槽においては、バイポーラ膜
と陽イオン交換膜との間に形成されるアルカリ室にアル
カリ性液、バイポーラ膜と陰イオン交換膜との間に形成
される酸室に、酸性液、陰イオン交換膜と陽イオン交換
膜との間に形成される脱塩室に脱塩される醤油、および
該陽イオン交換膜と他の陰イオン交換膜との間に形成さ
れる濃縮室に塩水溶液をそれぞれ通液しながら、陰陽両
電極間に直流電流を通じることにより、脱塩液のpHの
変化をなくし、またバイポーラ膜の両側の酸、アルカリ
室および膜内のpHの効果によりアミノ酸が膜を透過し
ない効果、すなわち、アミノ酸が他の室に移動し醤油中
のアミノ酸をロスすることなく塩分を減少させることが
できる。
In the electrodialysis tank of the present invention, an alkaline liquid is formed in an alkaline chamber formed between the bipolar membrane and the cation exchange membrane, and an acid chamber formed between the bipolar membrane and the anion exchange membrane is formed in the alkaline chamber. Acid solution, soy sauce desalted in a desalination chamber formed between the anion exchange membrane and the cation exchange membrane, and concentration formed between the cation exchange membrane and another anion exchange membrane By passing a direct current between the negative and positive electrodes while passing the salt solution through the chamber, the pH of the desalted solution is not changed, and the effects of the acid and alkali chambers on both sides of the bipolar membrane and the pH in the membrane are eliminated. Accordingly, the amino acid does not permeate the membrane, that is, the amino acid moves to another chamber and the salt content can be reduced without losing the amino acid in the soy sauce.

【0013】[0013]

【発明の具体的説明】以下に、本発明を添付図面に基づ
いて説明する。ここで、図1は、本発明に係る減塩醤油
の製造方法を適用した代表的な製造装置の模式図であ
る。透析槽1は電気透析槽であって、陽電極2から陽イ
オン交換膜、バイポーラ膜、陰イオン交換膜の順に設置
した1個の繰り返し単位と、陽イオン交換膜、陰イオン
交換膜の順に設置した1個の繰り返し単位とにより構成
した膜が所定の間隔を置いて配列された電気透析装置に
おいて、バイポーラ膜と陽イオン交換膜の間にアルカリ
室4、バイポーラ膜と陰イオン交換膜との間に酸室5、
陰イオン交換膜と陽イオン交換膜との間に脱塩室6、お
よび該陽イオン交換膜と他の陰イオン交換膜との間に濃
縮室7を有する。なお、本発明の電気透析槽において、
電極と膜との基本的な構成は、陽極−(C−B−A)n
−(C−A)n−(C−B−A)n−(C−A)n−C
−陰極である。(ただし、nは()内の繰り返しを意味
する。)
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a schematic diagram of a typical production apparatus to which the method for producing reduced salt soy sauce according to the present invention is applied. The dialysis tank 1 is an electrodialysis tank. One repeating unit is installed in the order of the cation electrode 2, a cation exchange membrane, a bipolar membrane, and an anion exchange membrane, and a cation exchange membrane and an anion exchange membrane are installed in this order. In an electrodialysis apparatus in which a membrane composed of a single repeating unit is arranged at a predetermined interval, an alkali chamber 4 is provided between the bipolar membrane and the cation exchange membrane, and between the bipolar membrane and the anion exchange membrane. Acid chamber 5,
A desalting chamber 6 is provided between the anion exchange membrane and the cation exchange membrane, and a concentration chamber 7 is provided between the cation exchange membrane and another anion exchange membrane. In the electrodialysis tank of the present invention,
The basic configuration of the electrode and the film is anode- (CBA) n
-(CA) n- (CBA) n- (CA) nC
-The cathode. (However, n means repetition in parentheses.)

【0014】ここで、バイポーラ膜Bは従来公知のもの
をなんら制限なく使用することができ、例えばイオン交
換基導入可能な高分子フィルムの片面を部分的に被覆
し、カバーフィルムの接触していない方の表面をスルホ
ン化して陽イオン交換基を導入した後、カバーフィルム
を剥離し、剥離した表面に陰イオン交換基を導入したバ
イポーラ膜(特開昭55−86821号公報、特開昭5
5−99927号公報)、陰イオン交換膜と陽イオン交
換膜との界面を無機化合物で処理し、両膜を接合したバ
イポーラ膜(特開昭59−47235号公報)などを使
用することができる。
Here, as the bipolar membrane B, a conventionally known one can be used without any limitation. For example, the bipolar membrane B partially covers one surface of a polymer film into which an ion exchange group can be introduced, and is not in contact with the cover film. After the other surface is sulfonated to introduce a cation exchange group, the cover film is peeled off, and a bipolar membrane having an anion exchange group introduced into the peeled surface (JP-A-55-86821, JP-A-55-86821)
No. 5-99927), and a bipolar membrane obtained by treating the interface between an anion exchange membrane and a cation exchange membrane with an inorganic compound and bonding both membranes (Japanese Patent Laid-Open No. 59-47235) can be used. .

【0015】陰イオン交換膜Aは、特に限定されず、公
知の陰イオン交換膜を用いることができる。例えば、4
級アンモニウム基、1級アミノ基、2級アミノ基、3級
アミノ基、更にこれらのイオン交換基の複数種類が混在
したような陰イオン交換膜を使用することができる。ま
た、該陰イオン交換基は重合型、縮合型、均一型、不均
一型の別なく、また、補強芯材の有無や炭化水素系のも
の、弗素系のもの、材料・製造方法に由来する陰イオン
交換膜の種類、型式などの別なく如何なるものであって
も良い。さらに、2規定食塩水溶液を5A/dm2 の電
流密度で電気透析し、電流効率が70%以上の実質的に
陰イオン交換膜として機能するものであれば、一般に両
性イオン交換膜と称されるものであっても本発明の陰イ
オン交換膜として使用することができる。陰イオン交換
膜は、酸を透過させ易い傾向があるので酸を透過させに
くい陰イオン交換膜を使用するのが好ましい。
The anion exchange membrane A is not particularly limited, and a known anion exchange membrane can be used. For example, 4
An anion exchange membrane in which a quaternary ammonium group, a primary amino group, a secondary amino group, a tertiary amino group, and a mixture of a plurality of these ion exchange groups can be used. In addition, the anion exchange group can be any of a polymerization type, a condensation type, a uniform type, and a heterogeneous type, and can be derived from the presence or absence of a reinforcing core material, a hydrocarbon type, a fluorine type, and a material / production method. The type and the type of the anion exchange membrane may be of any type. Furthermore, a 2N saline solution is electrodialyzed at a current density of 5 A / dm 2 , and is generally called an amphoteric ion exchange membrane if it has a current efficiency of 70% or more and functions substantially as an anion exchange membrane. Any of them can be used as the anion exchange membrane of the present invention. It is preferable to use an anion exchange membrane which does not easily transmit an acid since the anion exchange membrane tends to easily transmit an acid.

【0016】陽イオン交換膜Cは、特に限定されず、公
知の陽イオン交換膜を用いることができる。例えば、ス
ルホン酸基、カルボン酸基、ホスホン酸基、硫酸エステ
ル基、リン酸エステル基を有するもの、更にこれらのイ
オン交換基の複数種類が混在したような陽イオン交換膜
を使用することができる。また、陽イオン交換基は重合
型、縮合型、均一型、不均一型の別なく、また、補強心
材の有無や炭化水素系のもの、弗素系のもの、材料・製
造方法に由来する陽イオン交換膜の種類、型式などの別
なく如何なるものであっても良い。さらに、2規定食塩
水溶液を5A/dm2 の電流密度で電気透析し、電流効
率が70%以上の実質的に陽イオン交換膜として機能す
るものであれば、一般に両性イオン交換膜と称されるも
のであっても本発明の陽イオン交換膜として使用するこ
とができる。高い水酸イオン濃度中でも安定で電流効率
が高く、電気抵抗が低い陽イオン交換膜を使用するのが
好ましい。
The cation exchange membrane C is not particularly limited, and a known cation exchange membrane can be used. For example, those having a sulfonic acid group, a carboxylic acid group, a phosphonic acid group, a sulfate ester group, a phosphate ester group, and a cation exchange membrane in which a plurality of these ion exchange groups are mixed can be used. . The cation-exchange groups can be polymerized, condensed, homogeneous or heterogeneous, and can be derived from the presence or absence of a reinforcing core, hydrocarbon-based, fluorine-based, or cations derived from materials and production methods. Any type and type of exchange membrane may be used. Furthermore, a 2N saline solution is electrodialyzed at a current density of 5 A / dm 2 , and is generally called an amphoteric ion exchange membrane if it has a current efficiency of 70% or more and functions substantially as a cation exchange membrane. Any of them can be used as the cation exchange membrane of the present invention. It is preferable to use a cation exchange membrane which is stable even at a high hydroxyl ion concentration, has a high current efficiency, and has a low electric resistance.

【0017】そして、この透析槽1には、タンク10内
の醤油11をポンプ12によって陽極側の陰イオン交換
膜Aと陰極側の陽イオン交換膜Cとの間の脱塩室6に醤
油を供給して脱塩室6からタンク10に回収し、タンク
13内の水酸化ナトリウム水溶液(NaOH)などのア
ルカリ性液14をポンプ15によってバイポーラ膜Bと
陽イオン交換膜Cとの間のアルカリ室4に供給して、ア
ルカリ室4からタンク13に回収し、タンク16内の塩
酸水溶液(HCl)などの酸性液17をポンプ18によ
ってバイポーラ膜Bと陰イオン交換膜Aとの間の酸室5
に供給し、酸室5からタンク16に回収し、タンク19
内の塩化ナトリウム水溶液(NaCl)などの塩濃縮液
20をポンプ21によって陽極側の陽イオン交換膜Cと
陰極側の陰イオン交換膜Aとの間の塩濃縮室7に供給
し、塩濃縮室7からタンク19に回収して、これら醤
油、アルカリ性液、酸性液、塩濃縮液を循環させる。
In the dialysis tank 1, soy sauce 11 in a tank 10 is pumped by a pump 12 into a desalting chamber 6 between an anion exchange membrane A on the anode side and a cation exchange membrane C on the cathode side. The water is supplied from the desalting chamber 6 and collected in the tank 10, and the alkaline liquid 14 such as an aqueous solution of sodium hydroxide (NaOH) in the tank 13 is pumped by the pump 15 into the alkaline chamber 4 between the bipolar membrane B and the cation exchange membrane C. To the tank 13 from the alkaline chamber 4, and an acidic solution 17 such as an aqueous hydrochloric acid solution (HCl) in the tank 16 is pumped by the pump 18 into the acid chamber 5 between the bipolar membrane B and the anion exchange membrane A.
To the tank 16 from the acid chamber 5 and to the tank 19
A salt concentrate 20 such as an aqueous sodium chloride solution (NaCl) is supplied by a pump 21 to a salt concentrate chamber 7 between the cation exchange membrane C on the anode side and the anion exchange membrane A on the cathode side, and the salt concentrate chamber The soy sauce, the alkaline liquid, the acidic liquid and the salt concentrate are circulated from the tank 7 and collected in the tank 19.

【0018】ここで、この製造装置によって製造される
醤油としては、生醤油及び火入れ醤油があり、種類とし
ては、濃口、淡口、たまり醤油、白醤油、酵素分解によ
る化学醤油などを挙げることができる。醤油の生成過程
は、先ず、熟成されたもろ味が圧搾機によって圧搾され
て、そのろ過液が生醤油となる。そして、この生醤油を
ろ過して芽胞子、バクテリアなどの夾雑物を除去した
後、プレートヒーターで加熱殺菌、すなわち火入れをす
る。この工程後、醤油をタンクに静置して、火入れオリ
をタンクの低部に沈降させた所謂オリ工程を行い上部の
清澄液を回収して火入れ醤油、すなわち製品とする。
Here, the soy sauce produced by this production apparatus includes raw soy sauce and hot soy sauce, and the types thereof include dark mouth, light mouth, tamari soy sauce, white soy sauce, and chemical soy sauce by enzymatic decomposition. . In the process of producing soy sauce, first, the aged moromi is pressed by a pressing machine, and the filtrate becomes raw soy sauce. Then, the raw soy sauce is filtered to remove contaminants such as spores and bacteria, and then sterilized by heating with a plate heater, that is, fired. After this step, the soy sauce is allowed to stand in the tank, and a so-called sizing step is performed in which the burning pot is settled to the lower part of the tank, and the upper clarified liquid is collected to obtain a burning soy sauce, that is, a product.

【0019】また、アルカリ室4及び酸室5に供給する
アルカリ液および酸液の仕込濃度は、通常0.05規定
から3規定のもの、好ましくは0.1規定から2規定の
ものを使用する。また、生成してきた酸またはアルカリ
を抜き出す方法としては、次の方法を好適に採用するこ
とができる。 酸室及びアルカリ室に初めに薄い酸またはアルカリ
水溶液をそれぞれ仕込み、酸またはアルカリを生成させ
所定の濃度になったとき、所定量を抜き出し、次に水を
補充して薄め、初めの酸またはアルカリ濃度にするバッ
チ式方法。 酸室及びアルカリ室に予め所定の酸またはアルカリ
水溶液を仕込んでおき、通電時に通電電気量に応じて連
続的に水を添加することにより所定濃度の酸またはアル
カリ水溶液をオーバーフローさせる連続方法。
The concentration of the alkali solution and the acid solution supplied to the alkali chamber 4 and the acid chamber 5 is usually from 0.05 to 3N, preferably from 0.1 to 2N. . Further, as a method for extracting the generated acid or alkali, the following method can be suitably adopted. Initially, a thin acid or alkali aqueous solution is charged into the acid chamber and the alkali chamber, respectively, and when the acid or alkali is generated and reaches a predetermined concentration, a predetermined amount is withdrawn, then replenished with water to dilute, and the first acid or alkali is diluted. Batch method to make the concentration. A continuous method in which a predetermined acid or alkali aqueous solution is previously charged in an acid chamber and an alkali chamber, and water is continuously added at the time of energization in accordance with the amount of electricity supplied to overflow an acid or alkali aqueous solution of a predetermined concentration.

【0020】本発明において、電気透析を行う時の各種
液の温度は、通常、5ないし50℃、好ましくは、10
ないし40℃の範囲で行う。また、電流密度は、特に制
限を受けないが、一般には1ないし30A/dm2 、好
ましくは2ないし20A/dm2 で行う。
In the present invention, the temperature of various liquids during electrodialysis is usually 5 to 50 ° C., preferably 10 to 50 ° C.
To 40 ° C. The current density is not particularly limited, but is generally 1 to 30 A / dm 2 , preferably 2 to 20 A / dm 2 .

【0021】以上のように構成した本発明の電気透析槽
で減塩醤油を製造するには、醤油11を陰イオン交換膜
Aと陽イオン交換膜Cとの間の脱塩室6に供給して、水
酸化ナトリウム水溶液(NaOH)などのアルカリ性液
14ををバイポーラ膜Bと陽イオン交換膜Cとの間のア
ルカリ室4に、塩酸水溶液(HCl)などの酸性液17
をバイポーラ膜Bと陰イオン交換膜Aとの間の酸室5に
供給し、塩化ナトリウム水溶液(NaCl)などの塩濃
縮液20を陽極側の陽イオン交換膜Cと陰極側の陰イオ
ン交換膜Aとの間の塩濃縮室7に供給し、これら醤油、
アルカリ性液、酸性液および塩濃縮液を循環させる。
In order to produce reduced salt soy sauce with the electrodialysis tank of the present invention constructed as described above, soy sauce 11 is supplied to the desalting chamber 6 between the anion exchange membrane A and the cation exchange membrane C. Then, an alkaline solution 14 such as an aqueous sodium hydroxide solution (NaOH) is placed in an alkaline chamber 4 between the bipolar membrane B and the cation exchange membrane C, and an acidic solution 17 such as an aqueous hydrochloric acid solution (HCl) is added.
Is supplied to the acid chamber 5 between the bipolar membrane B and the anion exchange membrane A, and a salt concentrate 20 such as an aqueous solution of sodium chloride (NaCl) is supplied to the cation exchange membrane C on the anode side and the anion exchange membrane on the cathode side. A and supply it to the salt concentration room 7 between these soy sauces,
Circulate the alkaline, acidic and salt concentrates.

【0022】ここで、図2および3に陰陽両電極間に陽
イオン交換膜Cと陰イオン交換膜Aおよびバイポーラ膜
Bを用いた本発明の電気透析槽の他の例を、また、図4
に三室式電気透析槽の膜配列、脱塩室の室数を、図2、
3と同数、たとえば6室にした模式図を示す。本発明の
電気透析槽(図1)において、脱塩室6の片面はイオン
交換膜を介してアルカリ室4または酸室5と隣接する
が、他面はイオン交換膜を介して濃縮室7と隣接してい
る。
FIGS. 2 and 3 show another example of the electrodialysis tank of the present invention using a cation exchange membrane C, an anion exchange membrane A and a bipolar membrane B between the anion and cathode electrodes, and FIGS.
Fig. 2 shows the membrane arrangement of the three-chamber electrodialysis tank and the number of desalination chambers.
A schematic diagram showing the same number as 3, for example, 6 rooms is shown. In the electrodialysis tank of the present invention (FIG. 1), one side of the desalting chamber 6 is adjacent to the alkali chamber 4 or the acid chamber 5 via the ion exchange membrane, while the other side is connected to the concentration chamber 7 via the ion exchange membrane. Adjacent.

【0023】電気透析槽(図2)は、陽極から(C−B
−A)の繰り返し単位が1個、(C−A)の繰り返しが
3個、(C−B−A)の繰り返し単位が1個、(C−
A)の単位が1個、−C−陰極の模式図である。この脱
塩室6の片面は酸室5に2か所、アルカリ室4に1か所
が隣接し、他面は濃縮室7に隣接している。電気透析槽
(図3)では、陽極から(C−A)の繰り返し単位が3
個、(C−B−A)の繰り返しが1個、(C−A)の繰
り返しが2個、−C−陰極で構成されている。
The electrodialysis tank (FIG. 2) is connected from the anode (CB)
One repeating unit of -A), three repeating units of (CA), one repeating unit of (CBA), and (C-
It is a schematic diagram of one unit of A) and -C- cathode. One side of the desalting chamber 6 is adjacent to the acid chamber 5 at two places and the alkali chamber 4 at one place, and the other side is adjacent to the concentration chamber 7. In the electrodialysis tank (FIG. 3), the repeating unit of (CA) from the anode is 3
, One (CBA) repetition, two (CA) repetitions, and a -C- cathode.

【0024】これに対して、三室式電気透析槽(図4)
においては、すべての脱塩室6が、両面ともに、イオン
交換膜を介してアルカリ室4または酸室5のいずれかと
隣接している。そのため、本発明の電気透析槽では、三
室式電気透析槽に比べて、脱塩室6にイオン交換膜を介
してアルカリ液または酸液と接触する面積が約1/5と
小さい。したがって、本発明の実施においては、脱塩室
6に拡散するアルカリ液および酸液の量が少なく、脱塩
される醤油のpH変化が小さいという結果を得ることが
できる。
On the other hand, a three-chamber electrodialysis tank (FIG. 4)
In the above, all the desalting chambers 6 are adjacent to either the alkali chamber 4 or the acid chamber 5 via the ion exchange membrane on both sides. Therefore, in the electrodialysis tank of the present invention, the area of contact with the alkali solution or the acid solution via the ion exchange membrane in the desalting chamber 6 is as small as about 1/5 as compared with the three-chamber electrodialysis tank. Therefore, in the practice of the present invention, it is possible to obtain a result that the amounts of the alkaline solution and the acid solution that diffuse into the desalting chamber 6 are small and the pH change of soy sauce to be desalted is small.

【0025】このことは、従来の陰イオン交換膜、陽イ
オン交換膜、バイポーラ膜を使用した三室式電気透析法
に比べて、醤油のpH変化を小さくできるとともに、こ
れら陰イオン交換膜、陽イオン交換膜、バイポーラ膜を
使用した三室式電気透析法の特徴であるアミノ酸を損失
せず、その組成バランスを崩すことなく、塩分を減少さ
せることができるという利点を意味するものである。ま
た、副生産物である塩酸および水酸化ナトリウムにより
電気透析膜を洗浄することができる。
This means that the change in pH of soy sauce can be reduced as compared with the conventional three-chamber electrodialysis method using an anion exchange membrane, a cation exchange membrane, and a bipolar membrane. This means that the salinity can be reduced without losing amino acids, which is a feature of the three-chamber electrodialysis method using an exchange membrane or a bipolar membrane, and without reducing the composition balance. Further, the electrodialysis membrane can be washed with by-products hydrochloric acid and sodium hydroxide.

【0026】[0026]

【発明の効果】本発明によれば、陰陽両極間に陽極側か
ら陽イオン交換膜、バイポーラ膜、陰イオン交換膜の順
に設置した1個以上の繰り返し単位と、陽イオン交換
膜、陰イオン交換膜の順に設置した1個以上の繰り返し
単位とにより構成した電気透析装置において、バイポー
ラ膜と陽イオン交換膜の間にアルカリ性液、バイポーラ
膜と陰イオン交換膜との間に酸性液、陽極側から陰イオ
ン交換膜と陽イオン交換膜との間に形成される室に醤
油、および該陽イオン交換膜との間に濃縮液をそれぞれ
通液できる電気透析槽を用いることにより、前記陰陽両
電極間に直流電流を通じて脱塩液のpHの変化をなく
し、醤油の塩分を減少させることができる。また、陽イ
オン交換膜、バイポーラ膜、陰イオン交換膜の順に設置
した1個以上の繰り返し単位を任意の数にすることで、
副生物である塩酸、苛性ソーダの生成量を制御すること
ができる。
According to the present invention, one or more repeating units installed in the order of a cation exchange membrane, a bipolar membrane, and an anion exchange membrane between an anion and a cathode and from an anode side, a cation exchange membrane, and an anion exchange membrane In an electrodialysis apparatus composed of one or more repeating units installed in the order of a membrane, an alkaline solution is provided between the bipolar membrane and the cation exchange membrane, an acidic solution is provided between the bipolar membrane and the anion exchange membrane, and from the anode side. By using soy sauce in a chamber formed between the anion exchange membrane and the cation exchange membrane and an electrodialysis tank capable of passing a concentrated solution between the anion exchange membrane and the cation exchange membrane, the In addition, it is possible to eliminate the change in the pH of the desalted liquid by passing a direct current and reduce the salt content of the soy sauce. Also, by making any number of one or more repeating units installed in the order of cation exchange membrane, bipolar membrane, anion exchange membrane,
The amount of by-product hydrochloric acid and caustic soda generated can be controlled.

【0027】[0027]

【実施例】本発明をさらに具体的に説明するために下記
に実施例及び比較例を挙げて説明するが、本発明はこれ
らの実施例に限定されるものではない。
EXAMPLES The present invention will be described more specifically with reference to examples and comparative examples below, but the present invention is not limited to these examples.

【0028】<実施例1>バイポーラ膜電気透析槽(株
式会社トクヤマ製TS3B−2−5型)を用い、図1に
示すように一対の陰陽極間に陽イオン交換膜(株式会社
トクヤマ製ネオセプタCMS)と陰イオン交換膜(株式
会社トクヤマ製ネオセプタACS)、およびバイポーラ
膜(株式会社トクヤマ製ネオセプタBP−1)を配列し
た。通常の製造方法により醸造された濃口生醤油4Lを
脱塩室に、酸室に0.1規定の塩酸4L、アルカリ室に
0.1規定の水酸化ナトリウム水溶液4L、塩濃縮室に
塩化ナトリウム溶液4Lをそれぞれ透析室内の線速度が
6cm/sec.になるように循環供給し、また、両極
室に1規定の炭酸ナトリウム溶液を循環供給した。各液
温度は、熱交換器により20ないし30℃に制御した。
電流密度は10A/dm2 で120分間、バッチ式電気
透析を行った。
<Example 1> Using a bipolar membrane electrodialysis tank (TS3B-2-5, manufactured by Tokuyama Corporation), a cation exchange membrane (Neosepta manufactured by Tokuyama Corporation) was placed between a pair of negative electrodes as shown in FIG. CMS), an anion exchange membrane (Neosceptor ACS manufactured by Tokuyama Corporation), and a bipolar membrane (Neosceptor BP-1 manufactured by Tokuyama Corporation) were arranged. 4L of concentrated raw soy sauce brewed by a normal production method is placed in a desalting room, 4L of 0.1N hydrochloric acid in an acid room, 4L of 0.1N aqueous sodium hydroxide in an alkali room, and a sodium chloride solution in a salt concentration room. 4 L each having a linear velocity of 6 cm / sec. And a 1 N sodium carbonate solution was circulated and supplied to both electrode chambers. Each liquid temperature was controlled at 20 to 30 ° C. by a heat exchanger.
The batch type electrodialysis was performed at a current density of 10 A / dm 2 for 120 minutes.

【0029】<実施例2>バイポーラ膜電気透析槽(株
式会社トクヤマ製TSB−2−5型)を用い、図1に示
す様に一対の陰陽極間に陽イオン交換膜(株式会社トク
ヤマ製ネオセプタCMS)と陰イオン交換膜(株式会社
トクヤマ製ネオセプタACS)、およびバイポーラ膜
(株式会社トクヤマ製ネオセプタBP−1)を配列し
た。通常の製造方法により醸造された濃口生醤油4Lを
脱塩室に、酸室に0.1規定の塩酸4L、アルカリ室に
0.1規定の水酸化ナトリウム水溶液4L、塩濃縮室に
塩化ナトリウム溶液4Lをそれぞれ透析室内の線速度が
6cm/sec.になるように循環供給し、また、両極
室に1規定の炭酸ナトリウム溶液を循環供給した。各液
温度は、熱交換器により20ないし30℃に制御した。
電流密度は6A/dm2 で200分間、バッチ式電気透
析を行った。
<Example 2> Using a bipolar membrane electrodialysis tank (TSB-2-5, manufactured by Tokuyama Corporation), a cation exchange membrane (Neosepta manufactured by Tokuyama Corporation) was placed between a pair of negative electrodes as shown in FIG. CMS), an anion exchange membrane (Neosceptor ACS manufactured by Tokuyama Corporation), and a bipolar membrane (Neosceptor BP-1 manufactured by Tokuyama Corporation) were arranged. 4L of concentrated raw soy sauce brewed by a normal production method is placed in a desalting room, 4L of 0.1N hydrochloric acid in an acid room, 4L of 0.1N aqueous sodium hydroxide in an alkali room, and a sodium chloride solution in a salt concentration room. 4 L each having a linear velocity of 6 cm / sec. And a 1 N sodium carbonate solution was circulated and supplied to both electrode chambers. Each liquid temperature was controlled at 20 to 30 ° C. by a heat exchanger.
The batch type electrodialysis was performed at a current density of 6 A / dm 2 for 200 minutes.

【0030】<比較例1>脱塩室、酸室、アルカリ室か
らなる三室式バイポーラ膜電気透析槽(株式会社トクヤ
マ製TS3B−2−5型)を用い一対の陰陽極間に陽イ
オン交換膜(株式会社トクヤマ製ネオセプタCMS)と
陰イオン交換膜(株式会社トクヤマ製ネオセプタAC
S)およびバイポーラ膜(株式会社トクヤマ製ネオセプ
タBP−1)を配列し、実施例1と同数の脱塩室とし
た。通常の製造方法により醸造された濃口生醤油4Lを
脱塩室に、酸室に0.1規定の塩酸4L、アルカリ室に
0.2規定の水酸化ナトリウム水溶液をそれぞれ透析室
内の線速度が6cm/sec.になるように循環供給
し、また、両極室に1規定炭酸ナトリウム溶液を循環供
給した。各液温度は、熱交換器により20ないし25℃
に制御した。電流密度は10A/dm2 120分間、バ
ッチ式電気透析を行った。
Comparative Example 1 A cation exchange membrane was used between a pair of negative and positive electrodes using a three-chamber bipolar membrane electrodialysis tank (TS3B-2-5, manufactured by Tokuyama Corporation) comprising a desalting chamber, an acid chamber, and an alkali chamber. (Tokuyama Neosepta CMS) and anion exchange membrane (Tokuyama Neosepta AC
S) and a bipolar membrane (Neoceptor BP-1 manufactured by Tokuyama Corporation) were arranged, and the same number of desalting chambers as in Example 1 were obtained. 4 L of concentrated raw soy sauce brewed by a normal production method was placed in a desalting chamber, 4 L of 0.1 N hydrochloric acid in an acid chamber, and a 0.2 N aqueous solution of sodium hydroxide in an alkali chamber. The linear velocity in the dialysis chamber was 6 cm. / Sec. And a 1 N sodium carbonate solution was circulated and supplied to both electrode chambers. The temperature of each liquid is 20 ~ 25 ℃ by heat exchanger
Was controlled. The current density was 10 A / dm 2 for 120 minutes, and batch electrodialysis was performed.

【0031】<比較例2>脱塩室、酸室、アルカリ室か
らなる三室式バイポーラ膜電気透析槽(株式会社トクヤ
マ製TS3B−2−5型)を用い、一対の陰陽極間に陽
イオン交換膜(株式会社トクヤマ製ネオセプタCMS)
と陰イオン交換膜(株式会社トクヤマ製ネオセプタAC
S)およびバイポーラ膜(株式会社トクヤマ製ネオセプ
タBP−1)を配列し、実施例1と同数の脱塩室とし
た。通常の製造方法により醸造された濃口生醤油4Lを
脱塩室に、酸室に0.1規定の塩酸4L、アルカリ室に
0.1規定の水酸化ナトリウム水溶液をそれぞれ透析室
内の線速度が6cm/sec.になるように循環供給
し、また、両極室に1規定の炭酸ナトリウム溶液を循環
供給した。各液温度は、熱交換器により20ないし25
℃に制御した。電流密度は6A/dm2 で200分間、
バッチ式電気透析を行った。
Comparative Example 2 Cation exchange between a pair of negative and positive electrodes using a three-chamber bipolar membrane electrodialysis tank (TS3B-2-5, manufactured by Tokuyama Corporation) comprising a desalination chamber, an acid chamber, and an alkali chamber. Membrane (Neoceptor CMS manufactured by Tokuyama Corporation)
And anion exchange membrane (Neoceptor AC manufactured by Tokuyama Corporation)
S) and a bipolar membrane (Neoceptor BP-1 manufactured by Tokuyama Corporation) were arranged, and the same number of desalting chambers as in Example 1 were obtained. 4L of concentrated raw soy sauce brewed by a normal production method is placed in a desalting chamber, 4L of 0.1N hydrochloric acid in an acid chamber, and 0.1N aqueous sodium hydroxide solution in an alkali chamber. The linear velocity in the dialysis chamber is 6cm. / Sec. And a 1 N sodium carbonate solution was circulated and supplied to both electrode chambers. The temperature of each liquid is 20 to 25 depending on the heat exchanger.
C. was controlled. The current density is 6 A / dm 2 for 200 minutes,
Batch electrodialysis was performed.

【0032】<比較例3>脱塩室、濃縮室からなる二室
式電気透析槽(株式会社トクヤマ製TS−2−5型)を
用い1対の陰陽極間に陽イオン交換膜(株式会社トクヤ
マ製ネオセプタCMS)と陰イオン交換膜(株式会社ト
クヤマ製ネオセプタACS)を配列し、実施例1と同数
の脱塩室とした。通常の製造方法により醸造された濃口
生醤油4Lを脱塩室に、濃縮室に0.1規定の食塩水溶
液4L、をそれぞれ透析室内の線濃度が6cm/se
c.になるように循環供給し、また両極室に1規定の炭
酸ナトリウムを循環供給した。各液温度は、熱交換器に
より20ないし25℃に制御した。電流密度は6A/d
2 で20分間、バッチ式電気透析を行った。
<Comparative Example 3> A cation exchange membrane (manufactured by Tokuyama Co., Ltd.) was used between a pair of negative and positive electrodes using a two-chamber electrodialyzer (TS-2-5, manufactured by Tokuyama Corporation) comprising a desalting chamber and a concentrating chamber. A Tokuyama Neosepta CMS) and an anion exchange membrane (Tokuyama Neosepta ACS) were arranged to form the same number of desalting chambers as in Example 1. 4 L of concentrated soy sauce brewed by a normal production method was placed in a desalting chamber, and 4 L of a 0.1 N saline solution was placed in a concentrating chamber.
c. And 1 N sodium carbonate was circulated and supplied to both electrode rooms. Each liquid temperature was controlled at 20 to 25 ° C. by a heat exchanger. Current density is 6 A / d
Batch electrodialysis was performed at m 2 for 20 minutes.

【0033】上記した具体的実施例と比較例による方法
について、醤油の減塩処理を行い、通電時間に対する醤
油中の食塩濃度とpHについて比較した。実施例ならび
に比較例の結果を表1に示す。また、脱塩醤油中のアミ
ノ酸組成の面から比較した結果を表2に示す。表2は原
液を100とした場合のアミノ酸の残存率を示す。
In the methods according to the specific examples and the comparative examples described above, the soy sauce was subjected to a salt reduction treatment, and the salt concentration and the pH in the soy sauce with respect to the energization time were compared. Table 1 shows the results of Examples and Comparative Examples. Table 2 shows the results of comparison from the viewpoint of amino acid composition in desalted soy sauce. Table 2 shows the residual ratio of amino acids when the stock solution is 100.

【表1】 [Table 1]

【表2】 [Table 2]

【0034】表1より、比較例1および比較例2におい
ては、脱塩が進行するとともにpHが低下し、比較例3
においてはpHが上昇するが、実施例1および実施例2
においては、脱塩が進行してもpHは変化しないことが
わかる。表2より、バイポーラ膜を使用して醤油の脱塩
をした実施例1、2および比較例1、2のアミノ酸の減
少率に比べ、比較例3のバイポーラ膜を使用しない2室
式電気透析槽による脱塩は、終了時の醤油中のアミノ酸
が減少していることがわかる。
From Table 1, it can be seen that in Comparative Examples 1 and 2, as the desalting progresses, the pH decreases and that in Comparative Example 3
In Examples 1 and 2, the pH increases.
Shows that the pH does not change even if the desalting proceeds. As shown in Table 2, the two-chamber electrodialysis tank without the bipolar membrane of Comparative Example 3 was compared with the amino acid reduction rates of Examples 1 and 2 and Comparative Examples 1 and 2 in which the soy sauce was desalted using the bipolar membrane. It can be seen that the desalination by the method reduces the amino acids in the soy sauce at the end.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る減塩醤油の製造方法を適用した製
造装置の模式図である。
FIG. 1 is a schematic diagram of a manufacturing apparatus to which a method for manufacturing reduced salt soy sauce according to the present invention is applied.

【図2】本発明に係る減塩醤油の製造方法を適用した製
造装置の他の模式図である。
FIG. 2 is another schematic diagram of a production apparatus to which the method for producing reduced salt soy sauce according to the present invention is applied.

【図3】本発明に係る減塩醤油の製造方法を適用した製
造装置の他の模式図である。
FIG. 3 is another schematic diagram of a production apparatus to which the method for producing reduced salt soy sauce according to the present invention is applied.

【図4】従来法による減塩醤油の製造方法を適用した製
造装置の模式図である。
FIG. 4 is a schematic view of a manufacturing apparatus to which a method for manufacturing reduced salt soy sauce according to a conventional method is applied.

【符号の説明】[Explanation of symbols]

A 陰イオン交換膜 B バイポーラ膜 C 陽イオン交換膜 1 透析槽 2 陽電極 3 陰電極 4 アルカリ液室 5 酸性液室 6 脱塩室 7 塩濃縮液室 8 醤油タンク 10 醤油タンク 11 醤油 12 醤油循環ポンプ 13 アルカリ液タンク 14 アルカリ液 15 アルカリ液循環ポンプ 16 酸性液タンク 17 酸性液 18 酸性液循環ポンプ 19 塩濃縮タンク 20 塩濃縮液 21 塩濃縮液循環ポンプ Reference Signs List A Anion exchange membrane B Bipolar membrane C Cation exchange membrane 1 Dialysis tank 2 Positive electrode 3 Negative electrode 4 Alkaline solution chamber 5 Acid solution chamber 6 Desalination chamber 7 Salt concentrate solution chamber 8 Soy sauce tank 10 Soy sauce tank 11 Soy sauce 12 Soy sauce circulation Pump 13 Alkaline solution tank 14 Alkaline solution 15 Alkaline solution circulation pump 16 Acid solution tank 17 Acid solution 18 Acid solution circulation pump 19 Salt concentration tank 20 Salt concentrate 21 Salt concentrate circulation pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古川 俊夫 千葉県野田市野田339番地 キッコーマ ン株式会社内 (72)発明者 中野 宗徳 千葉県野田市野田339番地 キッコーマ ン株式会社内 (58)調査した分野(Int.Cl.7,DB名) A23L 1/238 B01D 61/44 - 61/46 C25B 7/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshio Furukawa 339 Noda, Noda-shi, Chiba Kikkoman Corporation (72) Inventor Munenori Nakano 339 Noda, Noda-shi, Chiba Kikkoman Corporation (58) Field (Int.Cl. 7 , DB name) A23L 1/238 B01D 61/44-61/46 C25B 7/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 陰陽両電極間に陽極側から陽イオン交換
膜、バイポーラ膜、陰イオン交換膜の順に設置した1個
以上の繰り返し単位と、陽イオン交換膜、陰イオン交換
膜の順に設置した1個以上の繰り返し単位とにより構成
した電気透析装置において、陽極側から陰イオン交換膜
と陽イオン交換膜との間に形成される室に醤油を送液
し、該醤油中の塩分を減少させることを特徴とする減塩
醤油の製造方法。
1. An at least one repeating unit having a cation exchange membrane, a bipolar membrane, and an anion exchange membrane installed in this order from the anode side between the anion and cation electrodes, and a cation exchange membrane and an anion exchange membrane are installed in this order. In an electrodialysis apparatus composed of one or more repeating units, soy sauce is sent from an anode side to a chamber formed between an anion exchange membrane and a cation exchange membrane to reduce salt content in the soy sauce. A method for producing reduced salt soy sauce, characterized in that:
【請求項2】 陰陽両電極間に陽極側から陽イオン交換
膜、バイポーラ膜、陰イオン交換膜の順に設置した1個
以上の繰り返し単位と、陽イオン交換膜、陰イオン交換
膜の順に設置した1個以上の繰り返し単位とにより構成
した電気透析装置を有することを特徴とする減塩醤油の
製造装置。
2. One or more repetition units arranged in the order of a cation exchange membrane, a bipolar membrane, and an anion exchange membrane from the anode side between the anion and cation electrodes, and a cation exchange membrane and an anion exchange membrane are arranged in this order. An apparatus for producing reduced salt soy sauce, comprising an electrodialysis apparatus constituted by at least one repeating unit.
JP11004494A 1994-05-24 1994-05-24 Method and apparatus for producing reduced salt soy sauce Expired - Fee Related JP3154613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11004494A JP3154613B2 (en) 1994-05-24 1994-05-24 Method and apparatus for producing reduced salt soy sauce

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11004494A JP3154613B2 (en) 1994-05-24 1994-05-24 Method and apparatus for producing reduced salt soy sauce

Publications (2)

Publication Number Publication Date
JPH07313098A JPH07313098A (en) 1995-12-05
JP3154613B2 true JP3154613B2 (en) 2001-04-09

Family

ID=14525694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11004494A Expired - Fee Related JP3154613B2 (en) 1994-05-24 1994-05-24 Method and apparatus for producing reduced salt soy sauce

Country Status (1)

Country Link
JP (1) JP3154613B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060024412A1 (en) * 2004-02-23 2006-02-02 Kraft Foods Holdings, Inc. Shelf-stable acidified food compositions and methods for their preparation
JP2006158213A (en) * 2004-12-02 2006-06-22 Kikkoman Corp Functional soy sauce, and functional food and drink containing the same
TW200824581A (en) * 2006-06-16 2008-06-16 Kikkoman Corp Soy sauce seasoning having high γ-aminobutyric acid content
JP2010193866A (en) * 2009-02-27 2010-09-09 San Akuteisu:Kk Method for reducing sodium concentration in plum juice
CN106823815A (en) * 2017-02-16 2017-06-13 中国科学院青海盐湖研究所 Electrodialysis plant
CN111772158A (en) * 2020-06-24 2020-10-16 李锦记(新会)食品有限公司 Soy sauce desalting method and system
CN113967409B (en) * 2021-10-13 2024-04-09 青岛科技大学 Preparation method and device of high-potassium low-sodium healthy condiment
CN114849478B (en) * 2022-06-02 2023-11-17 中国科学技术大学 Asymmetric bipolar membrane electrodialysis device and acid-base preparation method

Also Published As

Publication number Publication date
JPH07313098A (en) 1995-12-05

Similar Documents

Publication Publication Date Title
US4110175A (en) Electrodialysis method
JP3154613B2 (en) Method and apparatus for producing reduced salt soy sauce
RU2358911C2 (en) Electrodialytic compositions and method of water solutions treatment with electrodialysis
JP4031789B2 (en) Manufacturing method and manufacturing apparatus for high-concentration mineral liquid
JP3109639B2 (en) Method for producing reduced salt soy sauce
JP2775992B2 (en) Method for producing hydroxylamine
JP4480903B2 (en) Method for producing dealkalized water glass solution
JPH02115025A (en) Separation of salt by electrodialysis
JPH04233902A (en) Manufacture of heparin calcium
JP3981521B2 (en) Method for producing dealkalized water glass aqueous solution
JPH06254356A (en) Ph adjusting method of salt water incorporating hardly soluble salt group
RU1838248C (en) Method of purifying water
SU1726389A1 (en) Method for desiliconizing of water
JPH07213869A (en) Production of water having small salt content
JPH04284832A (en) Electrodialysis of inorganic salt-containing amphoteric surfactant solution
RU2050176C1 (en) Electrodialyzer
JP2002079256A (en) Method for manufacturing alkali removed water glass aqueous solution
JPS6068009A (en) Electrodialysis cell installed with ion exchange membrane and desalting process
JPS6326736B2 (en)
JPH0247254B2 (en)
SU1729378A1 (en) Method for processing milk whey
SU1171050A1 (en) Method of obtaining acid and alkali solutions
JPS59179099A (en) Desalting of sugar liquid
JPS60216884A (en) Method for recovering available component from waste liquid generated in processing polyester fiber with alkali
JPS6312261A (en) Production of &#39;miso&#39; having reduced salt content

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010116

LAPS Cancellation because of no payment of annual fees