JP3980154B2 - Low temperature fuel cell separator and method for producing the same - Google Patents

Low temperature fuel cell separator and method for producing the same Download PDF

Info

Publication number
JP3980154B2
JP3980154B2 JP05690698A JP5690698A JP3980154B2 JP 3980154 B2 JP3980154 B2 JP 3980154B2 JP 05690698 A JP05690698 A JP 05690698A JP 5690698 A JP5690698 A JP 5690698A JP 3980154 B2 JP3980154 B2 JP 3980154B2
Authority
JP
Japan
Prior art keywords
mass
stainless steel
separator
fuel cell
compound particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05690698A
Other languages
Japanese (ja)
Other versions
JPH11260383A (en
Inventor
康 福居
雅典 松野
日出男 三宅
実 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Nisshin Steel Co Ltd filed Critical Toyota Motor Corp
Priority to JP05690698A priority Critical patent/JP3980154B2/en
Publication of JPH11260383A publication Critical patent/JPH11260383A/en
Application granted granted Critical
Publication of JP3980154B2 publication Critical patent/JP3980154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【産業上の利用分野】
本発明は、固体高分子型燃料電池を始めとする低温で稼動する燃料電池のセパレータ及びその製造方法に関する。
【0002】
【従来の技術】
燃料電池のなかでも、固体高分子型の燃料電池は、100℃以下の温度で動作可能であり、短時間で起動する長所を備えている。また、各部材が固体からなるため、構造が簡単でメンテナンスが容易である、振動や衝撃に曝される用途にも適用できる。更に、出力密度が高いため小型化に適し、燃料効率が高く、騒音が小さい等の長所を備えている。これらの長所から、電気自動車搭載用としての用途が検討されている。ガソリン自動車と同等の走行距離を出せる燃料電池を自動車に搭載できると、NOx ,SOx の発生がほとんどなく、CO2 の発生が半減する等のように環境に対して非常にクリーンなものになる。
固体高分子型燃料電池は、分子中にプロトン交換基をもつ固体高分子樹脂膜がプロトン導電性電解質として機能することを利用したものであり、他の形式の燃料電池と同様に固体高分子膜の一側に水素等の燃料ガスを流し、他側に空気等の酸化性ガスを流す構造になっている。
【0003】
具体的には、固体高分子膜1は、図1に示すように両側に空気電極2及び水素電極3が接合され、それぞれガスケット4を介してセパレータ5を対向させている。空気電極2側のセパレータ5には空気供給口6,空気排出口7が形成され、水素電極3側のセパレータ5には水素供給口8,水素排出口9が形成されている。
セパレータ5には、水素g及び酸素又は空気oの導通及び均一分配のため、水素g及び酸素又は空気oの流動方向に延びる複数の溝10が形成されている。また、発電時に発熱があるため、給水口11から送り込んだ冷却水wをセパレータ5の内部に循環させた後、排水口12から排出させる水冷機構をセパレータ5に内蔵させている。
水素供給口8から水素電極3とセパレータ5との間隙に送り込まれた水素gは、電子を放出したプロトンとなって固体高分子膜1を透過し、空気電極2側で電子を受け、空気電極2とセパレータ5との間隙を通過する酸素又は空気oによって燃焼する。そこで、空気電極2と水素電極3との間に負荷をかけるとき、電力を取り出すことができる。
【0004】
燃料電池は、1セル当りの発電量が極く僅かである。そこで、図1(b)に示すようにセパレータ5,5で挟まれた固体高分子膜を1単位とし、複数のセルを積層することによって取出し可能な電力量を大きくしている。多数のセルを積層した構造では、セパレータ5の抵抗が発電効率に大きな影響を及ぼす。発電効率を向上させるためには、導電性が良好で接触抵抗の低いセパレータが要求され、リン酸塩型燃料電池と同様に黒鉛質のセパレータが使用されている。
黒鉛質のセパレータは、黒鉛ブロックを所定形状に切り出し、切削加工によって各種の孔や溝を形成している。そのため、材料費や加工費が高く、全体として燃料電池の価格を高騰させると共に、生産性を低下させる原因になっている。しかも、材質的に脆い黒鉛でできたセパレータでは、振動や衝撃が加えられると破損する虞れが大きい。そこで、プレス加工やパンチング加工等によって金属板からセパレータを作ることが特開平8−180883号公報で提案されている。
【0005】
【発明が解決しようとする課題】
しかし、酸素又は空気oが通過する空気電極2側は、酸性度がpH2〜3の酸性雰囲気にある。このような強酸性雰囲気に耐え、しかもセパレータに要求される特性を満足する金属材料は、これまでのところ実用化されていない。
たとえば、強酸に耐える金属材料としてステンレス鋼等の耐酸性材料が考えられる。これらの材料は、表面に形成した強固な不動態皮膜によって耐酸性を呈するものであるが、不動態皮膜によって表面抵抗や接触抵抗が高くなる。接触抵抗が高くなると、接触部分で多量のジュール熱が発生し、大きな熱損失となり、燃料電池の発電効率を低下させる。他の金属板でも、接触抵抗を高くする酸化膜が常に存在するものがほとんどである。
表面に酸化皮膜や不動態皮膜を形成しない金属材料としては、Auが知られている。Auは、酸性雰囲気にも耐えるが、非常に高価な材料であるため燃料電池のセパレータ材としては実用的でない。Ptは、酸化皮膜や不動態皮膜が形成されにくい金属材料であり、酸性雰囲気にも耐えるが、Auと同様に非常に高価な材料であるため実用的でない。
【0006】
また、水素や空気の流通路となる多数の溝10やフランジをプレス加工,パンチング加工等で形成するため、セパレータに使用される金属材料に高度の加工性が要求される。加工性は、金属表面に有機高分子膜を形成し或いは潤滑剤を塗布することによって改善できる。しかし、有機高分子膜又は潤滑剤中の吸着分子によって接触抵抗が高くなり、多数の燃料電池を積層したときに多量のジュール熱が発生し、電力損失を引き起し燃料電池の発電効率が低下する原因となる。
しかも、潤滑剤を塗布して金属材料を成形加工する場合、後工程として脱脂洗浄が必要になり、工程数の増加を招くばかりでなく、廃液処理にも多額の費用負担がかかる。更に有機溶剤やフロン系の溶剤で脱脂すると、大気中への溶剤の飛散による環境悪化の虞れもある。他方、有機皮膜を金属表面に形成すると潤滑剤なしで成形加工できるが、金属材料の接触抵抗が高くなることに加え、酸性環境での耐食性がない有機皮膜が剥離,溶解する。
【0007】
【課題を解決するための手段】
本発明は、このような問題を解消すべく案出されたものであり、SiC,B4C,TiO2 等の化合物粒子を分散させ且つ付着させた塗膜をステンレス鋼表面に形成させることにより、耐酸性を確保しながら良好な導電性及び低い接触抵抗を示す金属製セパレータを提供することを目的とする。
本発明の低温型燃料電池用セパレータは、その目的を達成するため、C:0.008〜0.2質量%,Si:0.05〜5.0質量%,Mn:0.1〜5.0質量%,Ni:5.0〜25.3質量%,Cr:14〜35質量%、残部Feおよび不可避的不純物からなるオーステナイト系ステンレス鋼、またはC:0.008〜0.2質量%,Si:0.05〜5.0質量%,Mn:0.1〜5.0質量%,Ni:2.0〜6.1質量%,Cr:17〜35質量%、残部Feおよび不可避的不純物からなるオーステナイト・フェライト二相系ステンレス鋼基材の、ステンレス鋼基材とSiC,B4C及びTiO2から選ばれた1種又は2種以上の化合物粒子との間で加熱拡散によって形成された拡散層を介して結合されたSiC,B4C及びTiO2から選ばれた1種又は2種以上の化合物粒子が、前記基材表面に、前記化合物粒子を塗料100重量部に対して0.01〜20重量部の割合で分散させた塗料を膜厚0.2〜5μmの厚さで塗布し、非酸化性雰囲気中で加熱処理して前記塗膜樹脂成分を分解・消失させることにより個々にまたは凝集して島状に分散付着されており、該化合物粒子が化合物分散塗膜の加熱処理で塗膜樹脂成分を分解・消失させて生成されたものであることを特徴とする。ステンレス鋼基材の表面に形成された化合物粒子層には、塗膜樹脂成分の分解・消失残渣を残存させることが好ましい。
この低温型燃料電池用セパレータは、SiC,B4C及びTiO2から選ばれた1種又は2種以上の化合物粒子を塗料100重量部に対して0.01〜20重量部の割合で分散させた塗料をステンレス鋼基材に膜厚0.2〜5μmの厚さで塗布し、非酸化性雰囲気中300〜1100℃に加熱処理して塗膜樹脂成分を分解・消失させることにより製造される。加熱処理に先立って、塗装ステンレス鋼基材を圧下率0.1〜50%で圧延することもできる。
【0008】
【作用】
本発明の低温型燃料電池用セパレータは、図2に示すように、ステンレス鋼13を基材とし、SiC,B4 C,TiO2 等の化合物粒子の付着層14が形成されている。このセパレータは、図1に示す固体高分子型燃料電池の外に、アルカリ型燃料電池等の燃料電池用セパレータとしても使用できる。
付着層14は、化合物粒子を分散させた塗膜の塗膜成分を加熱処理で分解・消失させることにより形成されたものである。粒径1μm以上の比較的大きな粒子では、ステンレス鋼基材13表面に個々の粒子として付着している(図2a)。粒径1μmの比較的微粒の化合物粒子では、多数の化合物粒子が集まった凝集層16が形成される(図2c)。本件明細書では、凝集層を包含する意味で「付着層」を使用している。
【0009】
付着層14又は凝集層16は、塗膜成分を分解・消失させる加熱処理時にステンレス鋼基材と拡散反応するため、ステンレス鋼基材13との間に拡散層15を形成している。拡散層15は、ステンレス鋼基材に対する化合物粒子の付着強度を向上させる。そのため、加工成形等によってステンレス鋼基材13に曲げ,伸び等の変形が生じた場合でも付着層14又は凝集層16に応力が蓄積されることがなく、付着層14又は凝集層16がステンレス鋼基材13から剥離することが抑制される。したがって、ステンレス鋼基材13は、セパレータとして必要な形状に加工される。加工性は、化合物粒子分散塗膜を形成した後、加熱処理に先立って圧延することにより更に向上させることができる。
【0010】
SiC,B4 C,TiO2 等の化合物粒子は、表面に酸化膜を生成することがなく、低い接触抵抗及び優れた耐酸性を示す。また、抵抗値が比較的高い化合物粒子を使用した場合でも、加熱処理で塗膜成分を分解・消失させるとき、ステンレス鋼基材13からFe,Cr等のステンレス鋼成分が拡散するため、形成された付着層14又は凝集層16の抵抗値が低下する。
抵抗値は、カーボン系の塗膜残渣を付着層14又は凝集層16に残留させることによっても低下する。この点では、塗膜を分解・消失させる加熱雰囲気を非酸化性雰囲気で加熱して塗膜を分解・消失されることが好ましい。非酸化性雰囲気としては、窒素,Ar等の不活性雰囲気や水素等の還元性雰囲気が使用される。加熱温度は、塗膜や化合物粒子の種類によって異なるが、300〜1100℃の範囲で設定される。
【0011】
【実施の形態】
本発明のセパレータは、耐酸性に優れたオーステナイト系ステンレス鋼やオーステナイト・フェライト二相系ステンレス鋼を基材13として使用している。基材の要求特性としては、酸化性雰囲気の酸による腐食だけではなく、非酸化性の酸による腐食にも耐えることが必要であることから、Crに加えてNiを合金成分として添加することにより耐酸性を向上させる。
使用可能なオーステナイト系ステンレス鋼は、14〜35質量%のCr濃度及び5〜25.3質量%のNi濃度をもつ。たとえば、C:0.008〜0.2質量%,Si:0.05〜5.0質量%,Mn:0.1〜5.0質量%,Ni:5.0〜25.3質量%,Cr:14〜35質量%を含む組成をもつものが使用される。
使用可能なオーステナイト・フェライト二相系ステンレス鋼は、17〜35質量%のCr濃度及び2〜6.1質量%のNi濃度をもつ。たとえば、C:0.008〜0.2質量%,Si:0.05〜5.0質量%,Mn:0.1〜5.0質量%,Ni:2.0〜6.1質量%,Cr:17〜35質量%を含む組成をもつものが使用される。
【0012】
基材のCr濃度が14質量%未満では、酸化性の酸による腐食雰囲気中での耐酸性が低い。逆に、35質量%を超えるCr濃度では、ステンレス鋼の変形抵抗が大きく、プレス加工等の加工が困難になる。Ni濃度が2質量%未満では、非酸化性の酸による腐食雰囲気中での耐酸性が低い。この耐酸性は、Ni含有量25.3質量%で飽和し、それ以上添加しても増量に見合った効果がみられず、材料コストの上昇を招く。
基材の耐酸性を更に高めるため、Mo,Cu,N等の1種又は2種以上を添加しても良い。すなわち、単位面積当りの電流値を上げて出力密度を増加させる燃料電池では、pHが低下することから、より耐酸性に優れたステンレス鋼基材が必要になる。そこで、Mo:0.2〜7質量%,Cu:0.1〜5質量%,N:0.02〜0.5質量%の1種又は2種以上を添加することにより耐酸性を改善する。また、場合によっては、少量のTi,Nb,Zr等の添加によっても耐酸性を高めることができる。
【0013】
付着層14又は凝集層16は、SiC,B4 C,TiO2 から選ばれた1種又は2種以上の化合物粒子を分散させた塗料をステンレス鋼基材13に塗布し、非酸化性雰囲気中で300〜1100℃に加熱処理することにより形成される。
化合物粒子を分散する塗料は、加熱処理によって分解し、ステンレス鋼基材13から消失する。分解・消失を促進させる上では、塗料の種類が特に制約されるものではないが、ポリエステル系塗料,アクリル系塗料,ポリオレフィン系塗料,ポリウレタン系塗料,それらの混合塗料等が使用される。
塗料100重量部に対し化合物粒子を0.01〜20重量部の割合で配合することが好ましい。化合物粒子の配合量が0.01重量部に満たないと、十分に化合物粒子が分散した付着層14が形成されず、ステンレス鋼基材13の接触抵抗が十分に低下しない。逆に、20重量部を超える多量の化合物粒子を配合すると、塗装が困難になり、塗装できたとしても下地ステンレス鋼に対する良好な密着性が得られなくなる。
化合物粒子分散塗料は、ステンレス鋼基材13に対する付着層14の密着性を確保する上から、5μm以下の膜厚でステンレス鋼基材13に施すことが好ましい。膜厚が5μmを超える塗膜では、加熱処理時に発生するガスの圧力で塗膜が剥離する虞れがある。
【0014】
化合物粒子が分散した塗膜が形成されたステンレス鋼基材13は、窒素,窒素+水素,アルゴン等の非酸化性雰囲気中で300〜1100℃に加熱処理される。塗膜に分散している化合物粒子は、非酸化性の加熱雰囲気で加熱されるため、酸化されることなくステンレス鋼基材13の表面に残る。また、加熱によって化合物粒子と下地鋼との間に拡散が生じ、拡散層15を介して化合物粒子が結合された付着層14が形成される。
塗膜に含まれている樹脂等の有機化合物は、加熱処理によって分解し、一部が分解残渣として基材13及び化合物粒子の表面に残る。残留している分解残渣は、プレス加工,パンチング加工等の際に潤滑剤として働き、ステンレス鋼基材13の加工性を向上させる。また、有機物質に由来するカーボン系の残渣であるため、セパレータの接触抵抗を低下させることにも有効に作用する。
【0015】
加熱処理に先立って、塗膜が形成されたステンレス鋼基材13に圧下率0.1〜50%の圧延を施すことにより、塗膜に含まれている化合物粒子のステンレス鋼基材13に対する密着性を改善することもできる。圧延により密着性が改善された化合物粒子は、後続する加熱処理段階で下地鋼との間の拡散反応を促進させ、ステンレス鋼基材13に対する付着層14の結合力を向上させると共に、接触抵抗も効果的に低下させる。ただし、圧下率が0.1%未満では、圧延による密着性の改善が顕著でない。逆に50%を超える圧下率では、下地ステンレス鋼が過度に変形し、塗膜を剥離させることがある。また、拡散反応促進効果は、圧下率50%で飽和し、それ以上に圧下率を高めてもそれに見合った効果の改善がみられない。
【0016】
【実施例】
実施例1:
表1に示した成分・組成をもつ3種類ステンレス鋼を基材として使用した。
【0017】

Figure 0003980154
【0018】
ステンレス鋼基材13に塗布する塗料として、化合物粒子としてSiC,B4C及びTiO2を分散させたアクリル系水性塗料を調製した。
塗料を0.2〜1.2μmの膜厚でステンレス鋼基材13に塗布した後、窒素雰囲気中で5秒間加熱した。この加熱処理によって塗膜中の有機物が分解し、一部が粒子状カーボンとなって基材表面に残留した。有機物が分解した後に残っている化合物粒子は、下地鋼との間で拡散反応し、拡散層15を介しステンレス鋼基材13に結合された平均厚み0.01〜1.0μmの付着層14となった。このときの塗料に対する化合物配合量,塗布条件,加熱処理条件等を表2に示す。
【0019】
Figure 0003980154
【0020】
化合物粒子の付着層14及び凝集層16が形成されたステンレス鋼基材13について、接触抵抗及び耐酸性を調査した。接触抵抗に関しては、荷重10kg/cm2 でステンレス鋼基材15にカーボン電極材を接触させ、両者の間の接触抵抗を測定した。耐酸性に関しては、ステンレス鋼基材15を浴温90℃,pH2の硫酸水溶液に浸漬し、腐食減量を測定した。比較のため、めっきしていないステンレス鋼基材及びNiめっき,Cuめっき,Crめっきを施したステンレス鋼基材についても、同様に接触抵抗及び耐酸性を調査した。
【0021】
表3の調査結果にみられるように、化合物粒子の付着層14及び凝集層16を形成したステンレス鋼基材は、何れも接触抵抗が低く、耐酸性に優れており、燃料電池用セパレータに要求される特性を備えていることが判る。
これに対し、無垢のステンレス鋼板を使用した試験番号16〜18では、何れも接触抵抗が高く、燃料電池用セパレータとして使用できなかった。他方、Niめっき及びCrめっきを施した試験番号19,20のステンレス鋼板は、接触抵抗が低いものの、腐食減量が大きく、pHの低い強酸性雰囲気で使用される燃料電池用セパレータとしては不適当であった。Cuめっきを施した試験番号21のステンレス鋼板は、接触抵抗及び耐酸性の双方が悪いことから、燃料電池用セパレータとしては不適当であった。
【0022】
Figure 0003980154
【0023】
実施例2:
表1に示した鋼種Bのステンレス鋼に付着層形成条件1及び3でSiC又はTiO2 分散塗料を塗布した後、加熱処理に先立って表4に示す圧下率で冷間圧延した。次いで、実施例1と同じ条件下で加熱処理し、塗料中の有機成分を分解除去した。このようにして化合物粒子の付着層14及び凝集層16が形成されたステンレス鋼基材13について、実施例1と同様に接触抵抗及び耐酸性を調査した。
調査結果を示す表4を表3と対比するとき、加熱処理に先立つ冷間圧延によって接触抵抗が一層低くなっており、圧下率に応じて接触抵抗が大きく低下していることが判る。
【0024】
Figure 0003980154
【0025】
【発明の効果】
以上に説明したように、本発明のセパレータは、耐酸性の良好なステンレス鋼を基材とし、SiC,B4 C,TiO2 等の化合物粒子の付着層をステンレス鋼基材表面に設けている。ステンレス鋼表面に化合物粒子の付着層があるため、導電性及び低接触抵抗に優れ、多数のセルを積層した構造をもつ低温型燃料電池用のセパレータとして使用するときジュール熱の発生が少なく、発電効率の高い燃料電池が形成される。しかも、基材として耐食性に優れたステンレス鋼を使用しているため、過酷な腐食雰囲気においても優れた耐久性を示す燃料電池が得られる。このようにして、プレス加工や打ち抜き加工によって必要形状に加工されるため、材料コストや製造コスト等を下げ、低温型燃料電池が生産性良く製造される。
【図面の簡単な説明】
【図1】 従来の固体高分子膜を電解質として使用した燃料電池の内部構造を説明する断面図(a)及び分解斜視図(b)
【図2】 化合物粒子の結合層及び付着層が形成されたステンレス鋼基材
【符号の説明】
1:固体高分子膜 2:空気電極 3:水素電極 4:ガスケット
5:セパレータ 6:空気供給口 7:空気排出口 8:水素供給口
9:水素排出口 10:溝 11:給水口 12:排水口
13:ステンレス鋼基材 14:化合物粒子の結合層 15:拡散層
16:化合物粒子の凝集層[0001]
[Industrial application fields]
The present invention relates to a separator for a fuel cell that operates at a low temperature, such as a polymer electrolyte fuel cell, and a method for manufacturing the same.
[0002]
[Prior art]
Among the fuel cells, the polymer electrolyte fuel cell can operate at a temperature of 100 ° C. or less and has an advantage of starting in a short time. In addition, since each member is made of a solid, it can be applied to applications where the structure is simple and the maintenance is easy, and it is exposed to vibration and impact. Furthermore, it has advantages such as high power density, suitable for downsizing, high fuel efficiency, and low noise. Due to these advantages, applications for mounting on electric vehicles are being studied. When it equipped with a fuel cell put out a travel distance equivalent to gasoline vehicles in a vehicle, NO x, generation of the SO x with little, very clean ones to the environment as such generation of CO 2 is reduced by half Become.
The polymer electrolyte fuel cell utilizes the fact that a polymer electrolyte membrane having a proton exchange group in the molecule functions as a proton conductive electrolyte. Like other types of fuel cells, the polymer electrolyte fuel cell A fuel gas such as hydrogen is allowed to flow on one side and an oxidizing gas such as air is allowed to flow on the other side.
[0003]
Specifically, as shown in FIG. 1, the air electrode 2 and the hydrogen electrode 3 are bonded to both sides of the solid polymer film 1, and the separator 5 is opposed to each other through the gasket 4. An air supply port 6 and an air discharge port 7 are formed in the separator 5 on the air electrode 2 side, and a hydrogen supply port 8 and a hydrogen discharge port 9 are formed on the separator 5 on the hydrogen electrode 3 side.
The separator 5 is formed with a plurality of grooves 10 extending in the flow direction of hydrogen g and oxygen or air o for conduction and uniform distribution of hydrogen g and oxygen or air o. In addition, since heat is generated during power generation, the cooling water w fed from the water supply port 11 is circulated in the separator 5 and then a water cooling mechanism for discharging the water from the drain port 12 is built in the separator 5.
Hydrogen g sent from the hydrogen supply port 8 to the gap between the hydrogen electrode 3 and the separator 5 becomes protons that have released electrons, passes through the solid polymer film 1, receives electrons on the air electrode 2 side, and receives the air electrode. It burns with oxygen or air o passing through the gap between the separator 2 and the separator 5. Therefore, when a load is applied between the air electrode 2 and the hydrogen electrode 3, electric power can be taken out.
[0004]
The fuel cell has very little power generation per cell. Therefore, as shown in FIG. 1B, the solid polymer film sandwiched between the separators 5 and 5 is set as one unit, and the amount of electric power that can be taken out is increased by stacking a plurality of cells. In a structure in which a large number of cells are stacked, the resistance of the separator 5 greatly affects the power generation efficiency. In order to improve the power generation efficiency, a separator having good conductivity and low contact resistance is required, and a graphite separator is used as in the phosphate fuel cell.
The graphite separator cuts out a graphite block into a predetermined shape and forms various holes and grooves by cutting. For this reason, material costs and processing costs are high, which increases the price of fuel cells as a whole and causes productivity to decrease. Moreover, a separator made of graphite that is brittle in material has a high possibility of being damaged when subjected to vibration or impact. In view of this, Japanese Patent Application Laid-Open No. 8-180883 proposes making a separator from a metal plate by pressing or punching.
[0005]
[Problems to be solved by the invention]
However, the air electrode 2 side through which oxygen or air o passes is in an acidic atmosphere with an acidity of pH 2 to 3. A metal material that can withstand such a strong acidic atmosphere and satisfies the characteristics required for the separator has not been put to practical use so far.
For example, an acid resistant material such as stainless steel is conceivable as a metal material resistant to strong acid. These materials exhibit acid resistance due to a strong passive film formed on the surface, but the surface resistance and contact resistance are increased by the passive film. When the contact resistance increases, a large amount of Joule heat is generated at the contact portion, resulting in a large heat loss, which reduces the power generation efficiency of the fuel cell. Most other metal plates always have an oxide film that increases the contact resistance.
Au is known as a metal material that does not form an oxide film or a passive film on the surface. Although Au can withstand an acidic atmosphere, it is a very expensive material, so it is not practical as a separator for fuel cells. Pt is a metal material that is difficult to form an oxide film or a passive film, and can withstand an acidic atmosphere, but is not practical because it is a very expensive material like Au.
[0006]
In addition, since a large number of grooves 10 and flanges serving as hydrogen and air flow passages are formed by pressing, punching, or the like, a high degree of workability is required for the metal material used for the separator. Workability can be improved by forming an organic polymer film on the metal surface or applying a lubricant. However, the contact resistance is increased by the adsorbed molecules in the organic polymer film or the lubricant, and when a large number of fuel cells are stacked, a large amount of Joule heat is generated, causing power loss and reducing the power generation efficiency of the fuel cell. Cause.
In addition, when a metal material is formed by applying a lubricant, degreasing is required as a subsequent process, which not only increases the number of processes, but also costs a large amount of cost for waste liquid treatment. In addition, when degreasing with an organic solvent or a chlorofluorocarbon-based solvent, there is a risk of environmental deterioration due to scattering of the solvent into the atmosphere. On the other hand, when an organic film is formed on the metal surface, it can be molded without a lubricant. However, in addition to increasing the contact resistance of the metal material, the organic film that does not have corrosion resistance in an acidic environment peels and dissolves.
[0007]
[Means for Solving the Problems]
The present invention has been devised to solve such problems, and by forming a coating film in which compound particles such as SiC, B 4 C, and TiO 2 are dispersed and adhered on the stainless steel surface. An object of the present invention is to provide a metallic separator that exhibits good conductivity and low contact resistance while ensuring acid resistance.
In order to achieve the object, the low-temperature fuel cell separator of the present invention has C: 0.008 to 0.2 mass%, Si: 0.05 to 5.0 mass%, Mn: 0.1 to 5. 0% by mass, Ni: 5.0-25.3% by mass, Cr: 14-35% by mass, austenitic stainless steel composed of the balance Fe and inevitable impurities, or C: 0.008-0.2% by mass, Si: 0.05-5.0% by mass, Mn: 0.1-5.0% by mass, Ni: 2.0-6.1% by mass, Cr: 17-35% by mass, balance Fe and inevitable impurities An austenitic ferrite two-phase stainless steel base material formed by heat diffusion between a stainless steel base material and one or more compound particles selected from SiC, B 4 C and TiO 2 . SiC bonded through a diffusion layer, B 4 C and T O 2 1 kind selected from or two or more compounds particles to the substrate surface, film the compound particles are dispersed at a ratio of 0.01 to 20 parts by weight based on the paint 100 parts by weight of the paint It is applied in a thickness of 0.2 to 5 μm, and is heat-treated in a non-oxidizing atmosphere to decompose and dissipate the coating resin components individually or agglomerate to be dispersed and attached in islands. The compound particles are produced by decomposing and eliminating coating film resin components by heat treatment of the compound-dispersed coating film. It is preferable to leave a decomposition / disappearance residue of the coating resin component in the compound particle layer formed on the surface of the stainless steel substrate.
This low-temperature fuel cell separator has one or more compound particles selected from SiC, B 4 C and TiO 2 dispersed in a proportion of 0.01 to 20 parts by weight with respect to 100 parts by weight of the coating material. The paint is applied to a stainless steel substrate with a thickness of 0.2 to 5 μm, and is heated to 300 to 1100 ° C. in a non-oxidizing atmosphere to decompose and eliminate the coating resin component. . Prior to the heat treatment, the coated stainless steel substrate can be rolled at a reduction rate of 0.1 to 50%.
[0008]
[Action]
As shown in FIG. 2, the separator for a low-temperature fuel cell of the present invention has a stainless steel 13 as a base material and an adhesion layer 14 of compound particles such as SiC, B 4 C, and TiO 2 . This separator can be used as a separator for a fuel cell such as an alkaline fuel cell in addition to the polymer electrolyte fuel cell shown in FIG.
The adhesion layer 14 is formed by decomposing and eliminating the coating film component of the coating film in which the compound particles are dispersed by heat treatment. In the case of relatively large particles having a particle diameter of 1 μm or more, they are adhered as individual particles to the surface of the stainless steel substrate 13 (FIG. 2a). A relatively fine compound particle having a particle diameter of 1 μm forms an aggregated layer 16 in which a large number of compound particles are collected (FIG. 2c). In the present specification, an “adhesion layer” is used to include an aggregation layer.
[0009]
Since the adhesion layer 14 or the agglomerated layer 16 undergoes a diffusion reaction with the stainless steel substrate during the heat treatment for decomposing / disappearing the coating film components, a diffusion layer 15 is formed between the adhesion layer 14 and the stainless steel substrate 13. The diffusion layer 15 improves the adhesion strength of the compound particles to the stainless steel substrate. Therefore, even when deformation such as bending or elongation occurs in the stainless steel substrate 13 due to processing or the like, no stress is accumulated in the adhesion layer 14 or the aggregation layer 16, and the adhesion layer 14 or the aggregation layer 16 is made of stainless steel. Peeling from the base material 13 is suppressed. Therefore, the stainless steel base material 13 is processed into a shape necessary as a separator. The workability can be further improved by forming a compound particle-dispersed coating and then rolling it prior to heat treatment.
[0010]
Compound particles such as SiC, B 4 C, and TiO 2 do not generate an oxide film on the surface, and exhibit low contact resistance and excellent acid resistance. Further, even when compound particles having a relatively high resistance value are used, when the coating film components are decomposed / disappeared by heat treatment, stainless steel components such as Fe and Cr diffuse from the stainless steel base material 13, so that they are formed. The resistance value of the adhered layer 14 or the agglomerated layer 16 decreases.
The resistance value is also lowered by leaving a carbon-based coating film residue in the adhesion layer 14 or the aggregation layer 16. In this respect, it is preferable that the heating atmosphere in which the coating film is decomposed / disappeared is heated in a non-oxidizing atmosphere to decompose / disappear the coating film. As the non-oxidizing atmosphere, an inert atmosphere such as nitrogen or Ar or a reducing atmosphere such as hydrogen is used. Although heating temperature changes with kinds of a coating film and compound particle | grains, it is set in the range of 300-1100 degreeC.
[0011]
[Embodiment]
The separator of the present invention uses austenitic stainless steel or austenitic-ferritic duplex stainless steel with excellent acid resistance as the base material 13. As the required properties of the base material, it is necessary to withstand not only corrosion by acids in an oxidizing atmosphere but also corrosion by non-oxidizing acids. Therefore, by adding Ni as an alloy component in addition to Cr Improve acid resistance.
Available austenitic stainless steel has a Cr concentration and. 5 to Ni concentration of 25.3 wt% of 14 to 35 wt%. For example, C: 0.008 to 0.2 mass %, Si: 0.05 to 5.0 mass %, Mn: 0.1 to 5.0 mass %, Ni: 5.0 to 25.3 mass %, What has the composition containing Cr: 14-35 mass % is used.
Available austenitic ferritic duplex stainless steel has a Cr concentration and the Ni concentration of from 2 to 6.1 weight percent of 17 to 35 wt%. For example, C: 0.008 to 0.2 mass %, Si: 0.05 to 5.0 mass %, Mn: 0.1 to 5.0 mass %, Ni: 2.0 to 6.1 mass% , What has a composition containing Cr: 17-35 mass % is used.
[0012]
When the Cr concentration of the substrate is less than 14% by mass , the acid resistance in a corrosive atmosphere with an oxidizing acid is low. On the other hand, when the Cr concentration exceeds 35% by mass , the deformation resistance of stainless steel is large, and processing such as press working becomes difficult. When the Ni concentration is less than 2% by mass , the acid resistance in a corrosive atmosphere caused by a non-oxidizing acid is low. This acid resistance is saturated at a Ni content of 25.3 % by mass , and even if added more than that, an effect commensurate with the increase is not observed, leading to an increase in material cost.
In order to further increase the acid resistance of the substrate, one or more of Mo, Cu, N, etc. may be added. That is, in a fuel cell in which the current value per unit area is increased to increase the output density, since the pH is lowered, a stainless steel base material with better acid resistance is required. Therefore, acid resistance is improved by adding one or more of Mo: 0.2-7 mass %, Cu: 0.1-5 mass %, and N: 0.02-0.5 mass %. . In some cases, acid resistance can be increased by adding a small amount of Ti, Nb, Zr or the like.
[0013]
The adhesion layer 14 or the agglomeration layer 16 is formed by applying a coating material in which one or more compound particles selected from SiC, B 4 C, and TiO 2 are dispersed to the stainless steel substrate 13 and in a non-oxidizing atmosphere. It is formed by heat treatment at 300 to 1100 ° C.
The coating material in which the compound particles are dispersed is decomposed by the heat treatment and disappears from the stainless steel substrate 13. In promoting decomposition / disappearance, the type of paint is not particularly limited, but polyester paint, acrylic paint, polyolefin paint, polyurethane paint, mixed paint thereof, and the like are used.
The compound particles are preferably blended at a ratio of 0.01 to 20 parts by weight with respect to 100 parts by weight of the paint. If the compounding amount of the compound particles is less than 0.01 parts by weight, the adhesion layer 14 in which the compound particles are sufficiently dispersed is not formed, and the contact resistance of the stainless steel base 13 is not sufficiently lowered. On the other hand, when a large amount of compound particles exceeding 20 parts by weight is blended, coating becomes difficult, and even if it can be coated, good adhesion to the underlying stainless steel cannot be obtained.
The compound particle-dispersed coating is preferably applied to the stainless steel substrate 13 with a film thickness of 5 μm or less from the viewpoint of ensuring the adhesion of the adhesion layer 14 to the stainless steel substrate 13. In a coating film with a film thickness exceeding 5 micrometers, there exists a possibility that a coating film may peel with the pressure of the gas generate | occur | produced at the time of heat processing.
[0014]
The stainless steel base material 13 on which a coating film in which compound particles are dispersed is heat-treated at 300 to 1100 ° C. in a non-oxidizing atmosphere such as nitrogen, nitrogen + hydrogen, and argon. Since the compound particles dispersed in the coating film are heated in a non-oxidizing heating atmosphere, they remain on the surface of the stainless steel substrate 13 without being oxidized. Further, diffusion occurs between the compound particles and the base steel by heating, and the adhesion layer 14 in which the compound particles are bonded through the diffusion layer 15 is formed.
An organic compound such as a resin contained in the coating film is decomposed by heat treatment, and a part thereof remains on the surface of the substrate 13 and the compound particles as a decomposition residue. The remaining decomposition residue acts as a lubricant during pressing, punching, etc., and improves the workability of the stainless steel substrate 13. Further, since it is a carbon-based residue derived from an organic substance, it effectively acts to reduce the contact resistance of the separator.
[0015]
Prior to the heat treatment, the stainless steel substrate 13 on which the coating film has been formed is rolled at a reduction rate of 0.1 to 50%, thereby allowing the compound particles contained in the coating film to adhere to the stainless steel substrate 13. It can also improve sex. The compound particles whose adhesion is improved by rolling promotes the diffusion reaction with the base steel in the subsequent heat treatment step, improves the bonding force of the adhesion layer 14 to the stainless steel substrate 13 and also has a contact resistance. Reduce effectively. However, when the rolling reduction is less than 0.1%, the improvement in adhesion by rolling is not remarkable. Conversely, if the rolling reduction exceeds 50%, the base stainless steel may be deformed excessively and the coating film may be peeled off. In addition, the diffusion reaction promoting effect is saturated at a reduction rate of 50%, and even if the reduction rate is increased further, the improvement corresponding to the reduction rate is not observed.
[0016]
【Example】
Example 1:
Three types of stainless steel having the components and compositions shown in Table 1 were used as the base material.
[0017]
Figure 0003980154
[0018]
An acrylic water-based paint in which SiC, B 4 C and TiO 2 were dispersed as compound particles was prepared as a paint to be applied to the stainless steel substrate 13.
The coating material was applied to the stainless steel substrate 13 with a film thickness of 0.2 to 1.2 μm, and then heated in a nitrogen atmosphere for 5 seconds . By this heat treatment, the organic matter in the coating film was decomposed, and part of the organic matter became particulate carbon and remained on the substrate surface. The compound particles remaining after the organic matter is decomposed are diffused and reacted with the base steel, and bonded layer 14 having an average thickness of 0.01 to 1.0 μm bonded to stainless steel substrate 13 through diffusion layer 15. became. Table 2 shows the compounding amount, coating conditions, heat treatment conditions, and the like for the paint at this time.
[0019]
Figure 0003980154
[0020]
The contact resistance and acid resistance of the stainless steel substrate 13 on which the compound particle adhesion layer 14 and the aggregation layer 16 were formed were examined. Regarding the contact resistance, the carbon electrode material was brought into contact with the stainless steel substrate 15 with a load of 10 kg / cm 2 , and the contact resistance between the two was measured. For acid resistance, the stainless steel substrate 15 was immersed in a sulfuric acid aqueous solution having a bath temperature of 90 ° C. and a pH of 2, and the corrosion weight loss was measured. For comparison, the contact resistance and acid resistance were similarly examined for the unplated stainless steel substrate and the stainless steel substrate subjected to Ni plating, Cu plating, and Cr plating.
[0021]
As can be seen from the investigation results in Table 3, the stainless steel substrate on which the adhesion layer 14 and the aggregation layer 16 of compound particles are formed has low contact resistance and excellent acid resistance, and is required for a separator for a fuel cell. It can be seen that it has the characteristics.
On the other hand, in test numbers 16 to 18 using a solid stainless steel plate, all had high contact resistance and could not be used as a fuel cell separator. On the other hand, the stainless steel plates with test numbers 19 and 20 subjected to Ni plating and Cr plating have low contact resistance but have large corrosion weight loss and are not suitable as separators for fuel cells used in a strongly acidic atmosphere with low pH. there were. The stainless steel plate of Test No. 21, which was plated with Cu, was unsuitable as a fuel cell separator because of poor contact resistance and acid resistance.
[0022]
Figure 0003980154
[0023]
Example 2:
After applying SiC or TiO 2 dispersion paint to the stainless steel of steel type B shown in Table 1 under adhesion layer forming conditions 1 and 3, cold rolling was performed at the rolling reduction shown in Table 4 prior to the heat treatment. Subsequently, it heat-processed on the same conditions as Example 1, and decomposed and removed the organic component in a coating material. In the same manner as in Example 1, the contact resistance and acid resistance of the stainless steel substrate 13 on which the adhesion layer 14 and the aggregation layer 16 of compound particles were formed were investigated.
When Table 4 showing the investigation results is compared with Table 3, it can be seen that the contact resistance is further lowered by the cold rolling prior to the heat treatment, and the contact resistance is greatly reduced according to the rolling reduction.
[0024]
Figure 0003980154
[0025]
【The invention's effect】
As described above, the separator of the present invention uses stainless steel having good acid resistance as a base material, and an adhesion layer of compound particles such as SiC, B 4 C, and TiO 2 is provided on the surface of the stainless steel base material. . Since there is an adhesion layer of compound particles on the surface of stainless steel, it has excellent conductivity and low contact resistance, and when it is used as a separator for a low-temperature fuel cell with a structure in which many cells are stacked, it generates less Joule heat and generates electricity. A highly efficient fuel cell is formed. Moreover, since stainless steel having excellent corrosion resistance is used as the base material, a fuel cell exhibiting excellent durability even in a severe corrosive atmosphere can be obtained. Thus, since it is processed into a required shape by pressing or punching, the material cost, the manufacturing cost, etc. are reduced, and the low-temperature fuel cell is manufactured with high productivity.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view (a) and an exploded perspective view (b) illustrating the internal structure of a fuel cell using a conventional solid polymer membrane as an electrolyte.
[Fig. 2] Stainless steel substrate on which a binding layer and an adhesion layer of compound particles are formed
1: Solid polymer membrane 2: Air electrode 3: Hydrogen electrode 4: Gasket 5: Separator 6: Air supply port 7: Air discharge port 8: Hydrogen supply port 9: Hydrogen discharge port 10: Groove 11: Water supply port 12: Drainage Mouth 13: Stainless steel substrate 14: Compound particle bonding layer 15: Diffusion layer 16: Compound particle aggregation layer

Claims (5)

C:0.008〜0.2質量%,Si:0.05〜5.0質量%,Mn:0.1〜5.0質量%,Ni:5.0〜25.3質量%,Cr:14〜35質量%、残部Feおよび不可避的不純物からなるオーステナイト系ステンレス鋼、またはC:0.008〜0.2質量%,Si:0.05〜5.0質量%,Mn:0.1〜5.0質量%,Ni:2.0〜6.1質量%,Cr:17〜35質量%、残部Feおよび不可避的不純物からなるオーステナイト・フェライト二相系ステンレス鋼基材の、ステンレス鋼基材とSiC,B4C及びTiO2から選ばれた1種又は2種以上の化合物粒子との間で加熱拡散によって形成された拡散層を介して結合されたSiC,B4C及びTiO2から選ばれた1種又は2種以上の化合物粒子が、前記基材表面に、前記化合物粒子を塗料100重量部に対して0.01〜20重量部の割合で分散させた塗料を膜厚0.2〜5μmの厚さで塗布し、非酸化性雰囲気中で加熱処理して前記塗膜樹脂成分を分解・消失させることにより個々にまたは凝集して島状に分散付着されており、該化合物粒子が化合物分散塗膜の加熱処理で塗膜樹脂成分を分解・消失させて生成されたものである低温型燃料電池用セパレータ。C: 0.008 to 0.2 mass%, Si: 0.05 to 5.0 mass%, Mn: 0.1 to 5.0 mass%, Ni: 5.0 to 25.3 mass%, Cr: Austenitic stainless steel consisting of 14 to 35% by mass, balance Fe and inevitable impurities, or C: 0.008 to 0.2% by mass, Si: 0.05 to 5.0% by mass, Mn: 0.1 to 0.1% Stainless steel base material of austenitic ferrite two-phase stainless steel base material consisting of 5.0% by mass, Ni: 2.0-6.1% by mass, Cr: 17-35% by mass, balance Fe and inevitable impurities Selected from SiC, B 4 C and TiO 2 bonded via a diffusion layer formed by heat diffusion between one and two or more compound particles selected from SiC, B 4 C and TiO 2 1 type or 2 types or more of compound particles are formed on the substrate surface. The coating material in which the compound particles are dispersed at a ratio of 0.01 to 20 parts by weight with respect to 100 parts by weight of the coating material is applied in a thickness of 0.2 to 5 μm, and is heat-treated in a non-oxidizing atmosphere. By decomposing / disappearing the coating film resin component individually or agglomerating and adhering to the islands, the compound particles decompose / disappear the coating resin component by heat treatment of the compound-dispersed coating film. A separator for a low-temperature fuel cell that is produced. さらに、Mo:0.2〜7質量%,Cu:0.1〜5質量%,N:0.02〜0.5質量%の1種または2種以上を含むステンレス鋼を基材とした請求項1記載の低温型燃料電池用セパレータ。Furthermore, the claim based on stainless steel containing one or more of Mo: 0.2-7 mass%, Cu: 0.1-5 mass%, N: 0.02-0.5 mass% Item 2. The separator for a low-temperature fuel cell according to Item 1. 塗膜樹脂成分の分解・消失残渣であるカーボンが化合物粒子の間に残存している請求項1または2記載の低温型燃料電池用セパレータ。The separator for a low-temperature fuel cell according to claim 1 or 2, wherein carbon which is a decomposition / disappearance residue of the coating resin component remains between the compound particles. SiC,B4C及びTiO2から選ばれた1種又は2種以上の化合物粒子を塗料100重量部に対して0.01〜20重量部の割合で分散させた塗料をステンレス鋼基材に膜厚0.2〜5μmの厚さで塗布し、非酸化性雰囲気中300〜1100℃に加熱処理して塗膜樹脂成分を分解・消失させることを特徴とする低温型燃料電池用セパレータの製造方法。A coating material in which one or more compound particles selected from SiC, B 4 C and TiO 2 are dispersed in a ratio of 0.01 to 20 parts by weight with respect to 100 parts by weight of the coating is formed on a stainless steel substrate. A method for producing a separator for a low-temperature fuel cell, characterized in that it is applied in a thickness of 0.2 to 5 μm, and heat-treated at 300 to 1100 ° C. in a non-oxidizing atmosphere to decompose and eliminate the coating resin component. . 加熱処理に先立って塗装ステンレス鋼基材を圧下率0.1〜50%で圧延する請求項記載の低温型燃料電池用セパレータの製造方法。The method for producing a separator for a low-temperature fuel cell according to claim 4 , wherein the coated stainless steel substrate is rolled at a rolling reduction of 0.1 to 50% prior to the heat treatment.
JP05690698A 1998-03-09 1998-03-09 Low temperature fuel cell separator and method for producing the same Expired - Fee Related JP3980154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05690698A JP3980154B2 (en) 1998-03-09 1998-03-09 Low temperature fuel cell separator and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05690698A JP3980154B2 (en) 1998-03-09 1998-03-09 Low temperature fuel cell separator and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11260383A JPH11260383A (en) 1999-09-24
JP3980154B2 true JP3980154B2 (en) 2007-09-26

Family

ID=13040503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05690698A Expired - Fee Related JP3980154B2 (en) 1998-03-09 1998-03-09 Low temperature fuel cell separator and method for producing the same

Country Status (1)

Country Link
JP (1) JP3980154B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1906477A1 (en) 2005-06-22 2008-04-02 Nippon Steel Corporation Separator for solid polymer electrolyte fuel cell of stainless steel, titanium or titanium alloy, process for producing the same, and method for evaluating warping and twisting of separator
JP5014644B2 (en) 2006-02-27 2012-08-29 新日本製鐵株式会社 Separator for polymer electrolyte fuel cell and method for producing the same
US8603703B2 (en) 2006-07-26 2013-12-10 GM Global Technology Operations LLC Method for making super-hydrophilic and electrically conducting surfaces for fuel cell bipolar plates
KR101428341B1 (en) 2009-08-03 2014-08-07 신닛테츠스미킨 카부시키카이샤 Titanium material for solid polymer fuel cell separator, and process for production thereof
JP7020291B2 (en) * 2018-05-23 2022-02-16 トヨタ車体株式会社 Method for manufacturing fuel cell separator and fuel cell separator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06146006A (en) * 1992-11-04 1994-05-27 Sumitomo Metal Ind Ltd Ferrite stainless steel material and its manufacture
JPH07169470A (en) * 1993-12-14 1995-07-04 Hitachi Cable Ltd Separator for battery
JPH086910A (en) * 1994-06-23 1996-01-12 Hitachi Ltd Cluster type computer system

Also Published As

Publication number Publication date
JPH11260383A (en) 1999-09-24

Similar Documents

Publication Publication Date Title
JP3904696B2 (en) Low temperature fuel cell separator and method for producing the same
KR100367338B1 (en) A separator of a low-temperature fuel cell and manufacturing method thereof
JP3904690B2 (en) Low temperature fuel cell separator
JP4886885B2 (en) Titanium fuel cell separator
JP3908359B2 (en) Low temperature fuel cell separator
KR101597721B1 (en) Titanium material for solid polymer fuel cell separators, method for producing same, and solid polymer fuel cell using same
JP2001214286A (en) Method for producing stainless steel for conductive part
JP5507496B2 (en) Manufacturing method of fuel cell separator
JP2000323152A (en) Separator for stainless steel low-temperature type fuel cell and manufacture thereof
JP3908358B2 (en) Low temperature fuel cell separator
JP2001283880A (en) Low-temperature fuel cell separator and its manufacturing method
WO2018147087A1 (en) Stainless steel plate substrate of steel plate for fuel cell separator, and method for producing same
JP2001283872A (en) Low-temperature fuel cell separator and its manufacturing method
JP3980154B2 (en) Low temperature fuel cell separator and method for producing the same
JP3645118B2 (en) Low temperature fuel cell separator
JP4340448B2 (en) Ferritic stainless steel for fuel cell separator and method for producing the same
JP3980153B2 (en) Low temperature fuel cell separator
WO2017170067A1 (en) Cell for solid polymer fuel cell, and solid polymer fuel cell stack
JP2004071321A (en) Metal separator for fuel cell and manufacturing method therefor
JP2012186176A (en) Fuel cell separator
JP3971267B2 (en) Material plate for metal separator for fuel cell and metal separator for fuel cell using the same
JP2002170582A (en) Fuel battery separator and manufacturing method thereof
JP2005108549A (en) Metal separator for fuel cell and its manufacturing method
JP2008091207A (en) Adhesive layer for polymer electrolyte fuel cell, member for bipolar plate, bipolar plate layered product, cell structure, and polymer electrolyte fuel cell
JP2012212644A (en) Manufacturing method of fuel cell separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070302

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070313

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070315

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees