JP3978411B2 - Permeability test equipment - Google Patents

Permeability test equipment Download PDF

Info

Publication number
JP3978411B2
JP3978411B2 JP2003158819A JP2003158819A JP3978411B2 JP 3978411 B2 JP3978411 B2 JP 3978411B2 JP 2003158819 A JP2003158819 A JP 2003158819A JP 2003158819 A JP2003158819 A JP 2003158819A JP 3978411 B2 JP3978411 B2 JP 3978411B2
Authority
JP
Japan
Prior art keywords
sample
water
sample storage
storage space
test apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003158819A
Other languages
Japanese (ja)
Other versions
JP2004361193A (en
Inventor
淳紀 沼田
雅行 筒井
勝二 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tobishima Corp
Original Assignee
Tobishima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tobishima Corp filed Critical Tobishima Corp
Priority to JP2003158819A priority Critical patent/JP3978411B2/en
Publication of JP2004361193A publication Critical patent/JP2004361193A/en
Application granted granted Critical
Publication of JP3978411B2 publication Critical patent/JP3978411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は透水試験装置に係り、持ち運びが可能で、試験位置の試料を採取するサンプラーを兼ね、採取した試料を所定の加圧条件下で高精度な試験が可能な透水試験装置に関する。
【0002】
【従来の技術】
近年、大規模な一般廃棄物の最終処分場の建設が各所で進められているが、これらの施設では堆積廃棄物からの浸出汚水等が場外に漏出しないように、十分な遮水工を設けることが必要である。この遮水工としては、ベントナイト混合土等が多く用いられている。この遮水工を進める上で、施工場所の透水性(遮水性)を確認するために、広い範囲で多数の計測点で遮水材の透水係数を計測する必要がある。また、フィルダム等における遮水ゾーンを構成するコア材の遮水性についても原位置での透水係数を測定することが必要となっている。
【0003】
対象地盤の透水係数を求める方法としては、原地盤にボーリング等によって試験孔を設け、試験孔内の水位を降下させて回復状況あるいは水位低下速度を測定したり、水位を一定に保つように水を供給してその供給水量から透水係数を求める試験が用いられている。また、原位置での試料を採取し、試験室で三軸応力状態下での透水試験を実施する方法がある(たとえば特許文献1参照)。
【0004】
【特許文献1】
特開平7−306198号公報参照。
【0005】
前者の現場試験では、試験孔の実形状や水の流れが理論式とは完全に一致しない点、飽和条件が不明確な点などの問題に加え、透水性の低い地盤では計測に長時間を要するため、その間、遮水工の作業が行えなくなる等の問題もある。後者の室内試験では、乱さない試料の確保が難しいことと、室内試験機が大がかりなものとなり、多数の試料の試験を行うのが大変であり、試験費用も大きくなる。
【0006】
【発明が解決しようとする課題】
そこで、本発明の透水試験装置は、上述の既存の試験方法、試験装置が有する問題に鑑み、以下の具体的な課題を解決できるような装置とすることがポイントとなる。すなわち、
(1)原地盤の乱さない状態での透水試験が可能なこと
(2)透水性に関する理論式が適用できる条件での試験が可能なこと
(3)原地盤の荷重状態を再現可能なこと
(4)装置として小型で持ち運びができ、構造がシンプル・堅牢で、現場での使用が容易なこと
(5)大量な測定点数にも対応可能なこと
(6)試料採取位置(測定点)における試験拘束時問が短いこと
(7)試験精度が高いこと。
(8)原地盤での透水方向(たとえば水平、鉛直方向)を任意に試験可能なこと
(9)装置は供給動力なしで動作可能なこと
【0007】
そこで、本発明の目的は上述した従来の技術が有するポイントを考慮した透水試験装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明は下端に刃先を有し、原位置の試料の採取時に、前記刃先から地盤面に打ち込むサンプラーとして使用され、前記試料を、上面に通水加圧板が配置された空間内部に原位置状態を保持して取り込んで収容可能な試料収容空間と、透水試験時に前記通水加圧板と試料とを通過した水を排水する排水経路とを有する試料収容容器と、前記試料収容容器内に設けられ、前記通水加圧板を介して前記試料を加圧する加圧手段と、前記試料収容容器と密着した際に、前記試料の一面を内部の通水支持板で支持するとともに、該通水支持板を介して透水試験時に前記試料面に給水する給水経路が形成されたベース部材と、前記試料収容容器をベース部材に切離し可能に密着固定する連結手段と、前記試料を通過して排水された水量を計量可能な計量手段とを
備えたことを特徴とする。
【0009】
前記加圧手段は、前記試料収容空間に連続して設けられた加圧シリンダ室内を往復動作するピストン機構からなり、該ピストン機構の動作により前記通水加圧板を押圧し、前記試料収容空間内の試料を原位置と同程度の三軸応力状態として透水試験を行うことができる。また、前記ピストン機構は、外部から供給される圧縮空気で動作させることが好ましい。
【0010】
または前記加圧手段は、前記試料収容空間に連続して設けられた加圧シリンダ室内に収容されたバネ機構からなり、該バネ機構の動作により前記通水加圧板を押圧し、前記試料収容空間内の試料を原位置と同程度の三軸応力状態として透水試験を行うことが好ましい。
【0011】
前記試料収容容器を刃先から地盤面に打ち込んで試料を前記試料収容空間内に取り込む際、前記試料収容空間内の試料を原位置と同程度の三軸応力状態とすることが好ましい。
【0012】
【発明の実施の形態】
以下、本発明の透水試験装置の一実施の形態について、添付図面を参照して説明する。本発明の透水試験装置1は、図1に示したように、上面中央に所定深さの円形凹所11が形成されたベースブロック10と、下端がベースブロック10の円形凹所11の周縁部に載置され、下面が開放された試料収容空間21内に収容された試料を加圧して所定の応力状態で収容できる試料収容ケーシング20とを主要構成としてなる。
【0013】
以下、透水試験装置1の各構成について説明する。ベースブロック10は、装置本体の台座として機能する扁平形状の鋼製ブロックで、上面中央に所定深さの円形凹所11が形成され、その内部には上面に多数の通水孔12aが形成された通水板支持台12が収容されている。通水支持台12上には周縁がシール材13で保持された通水板14が載置されている。この通水板14は、本実施の形態では一例として多孔質セラミックス板が使用されている。試料2の透水係数が比較的大きい場合にはポーラスストーン等の各種天然あるいは人工多孔質板材も使用できる。また、円形凹所11の周囲のブロック上面には保持ロッド15が立設されている。この保持ロッド15は、連結手段として、後述する固定治具40の締結用フランジ41の固定ナット42の締め付けにより試料収容ケーシング20をベースブロック10上に密着固定する役割を果たす。また、透水試験のための水供給路としてブロック外側面と円形凹所11とを貫通する給水孔16が設けられている。
【0014】
試料収容ケーシング20は、試験位置の原位置で透水試験用の試料2を採取するサンプラー(その作業手順は後述する。)として用いられ、採取した試料2を内部に収容し、透水試験装置1の一部として組み込まれて使用される円筒形状の鋼製部材である。試料収容ケーシング20の内部には、図1に示したように、下面側が所定直径の扁平円筒状にくり抜かれた試料収容空間21と、この試料収容空間21の上部に連続した円筒状の加圧シリンダ室22とが形成されている。試料収容空間21内には後述するピストン23の動作により空間壁面に沿って摺動しながら往復動可能な通水加圧板25が収容されている。この通水加圧板25は上述した通水支持台と同様な構成からなり、上面に多数の通水孔27aが形成された通水板保持枠27と、その下面凹所に固着された通水板28から構成されている。通水板保持枠27にOリング26を取り付けることにより、試料収容空間21の内面壁との間の水密性が保持することも可能である。通水加圧板25の通水板28は上述の通水板14と同じ材質からなるものが使用されている。
【0015】
加圧シリンダ室22内には、図1に示したように、ケーシング20上面を貫通して設けられた空気供給路29を介して導入される圧縮空気によりシリンダ室22内で膨張収縮することにより全長を伸縮可能な合成ゴム製のベロフラム30と、ベロフラム30の下端に位置し、ベロフラム30の伸縮に伴ってシリンダ室22の内壁に沿って往復動するピストン23とが収容され、このピストン23の下端で通水加圧板25を押圧し、試料収容空間21内にある試料2を所定の加圧状態に設定することができる。
【0016】
さらに、ケーシング20内には、透水試験時の水が試料収容空間21内の試料2を通過し、外部のビュレットに排水される計量用の排水孔32と、透水試験時に加圧シリンダ室22内に満たされた水の一部を排水する確認用の排水孔33とが形成されている。さらに装置外部の給水配管としてのスタンドパイプ34の上端には水タンク35が設けられ、排水パイプ上36には透水試験時の計量手段としてのビュレット37が設けられている。給水、排水経路上の装置側にはバルブ38(38A,38B,38C)が設けられ、透水試験を行うときは所定の手順で該当するバルブ38の開閉を行い、試料収容ケーシング20内への給水、試料2の飽和化、透水試験、排水を制御するようになっている。また、試験に際しての他の測定項目のために、圧縮空気圧計45、試料2への載荷圧としての空気供給路29上の空気圧と排水経路32,36上の水圧との差圧を測定する有効応力計46を設けることもできる。
【0017】
一方、試料収容ケーシング20の上端には、連結手段の一構成要素としての固定治具40がネジ連結されている。この固定治具40は、本体外径が試料収容ケーシング20と同寸法で、上部に円板状の締結用フランジ41が形成されている。締結用フランジ41の固定ナット42を保持ロッド15に締結することで試料収容ケーシング20をベースブロック10上に密着固定することができる。なお、図1においては、図中、下側から上側に向けての通水状態が示されているが、通水方向を天地逆向きとすることも可能である。
【0018】
次に、図1の透水試験装置1に組み込まれる試料収容ケーシング20をサンプラーとして用いて、試験位置での試料採取を行う手順について、図2〜図5を参照して説明する。なお、以下の説明では、その用途を明確にするために、試料収容ケーシング20をサンプラー20と記して説明する。図2(a)はサンプラー20として使用するために圧縮空気で加圧シリンダ室22内のベロフラム30を膨張させてベロフラム30の下端でピストン23を押し下げ、試料収容空間21内の通水加圧板25をサンプラー20の下端まで降下させた状態を示している。この状態で上端に円筒形状の打撃カラー5をネジ連結して使用する。
【0019】
このサンプラー20を用いて透水試験用の試料2を採取するには、まず試料採取地点(透水試験位置)の地盤3の表面を平滑に整形し、図3に示したようなガイド筒6を地盤表面に設置する。このガイド筒6は内径がサンプラー20外径よりわずかに大きく、全長もサンプラー20より長い円筒形状をなし、底面に円形フランジ6aが一体的に形成されている。この円形フランジ6aによってガイド筒6を地盤面に自立させることができる。サンプラー20は、試料採取時においても試料2に所定の鉛直圧力を作用させることができ、たとえば盛土完成時における上載荷重が作用した応力状態を試料2に再現することができるが、試料採取時は一般的にはごくわずかな圧力のみを載荷して用いる。加圧状態の調整は上述の加圧シリンダ室22内のベロフラム30の空気圧を調整して行う。この状態のサンプラー20を図3に示したように、ガイド筒6内に収納し、サンプラー20打ち込み装置7のドライブハンマ8の落下エネルギーを利用してサンプラー20を地盤3に打ち込む。サンプラー20の下端に形成された刃先20aが地盤3内に打ち込まれるのに従ってピストン23と通水加圧板25とが上昇して試料収容空間21内に地盤3の一部が試料2として取り込まれる。
【0020】
試料収容空間21内が試料2で満たされる所定深さまでサンプラー20を地盤3に打ち込んだら、ベロフラム30内の圧力を減圧または開放する。図4に示したように、サンプラー20の地中部分を周辺地盤ブロック4とともに掘り起こす。その後、整形ナイフ等を用いて試料2の端面2aを平滑に整形する。このようにしてサンプラー20の試料収容空間21内に乱さない透水試験用の試料2を収容することができる。なお、試料高さ(厚さ)は想定される透水係数にもよるが、通常はφ75mmに対して15〜50mm程度を適宜設定可能である。このとき試料収容空間21内に調整スペーサー等(図示せず)を挿入して高さ調整することが好ましい。
【0021】
次いで、この試料2を保持したサンプラー20を、上述した試料収容ケーシング20として図1に示したように、透水試験装置1に組み込む。この組み込みに際し、図2(b)に示したように打撃カラー5(同図(a)参照)を取り外した後のサンプラー20上端に固定治具40をネジ連結する。このサンプラー20を図1に示したように、ベースブロック10上に載置し、固定治具40の締結用フランジ41の固定ナット42を締結ロッド15(図1)に螺着してサンプラー20の下端刃先20aを、試料2の端面2aを通水板14に密着させるように、円形凹所11の周縁部に設けられたリング状のシール材13を介してベースブロック10の円形凹所11の周縁部に密着固定する。その後、給水、排水経路の各パイプ34,36、空気供給配管29を装置1に連結する。
【0022】
以下、この透水試験装置を用いた透水係数の測定について説明する。試料2の透水に先立ち、サンプラー20内の試料2の三軸応力状態を再現する。たとえば盛土完成時における上載荷重が作用した応力状態等を再現できる。鉛直荷重は加圧シリンダ室22内のベロフラム30の空気圧を調整することによって行う。まず、排水経路上のバルブ38B,38Cを開放する。次いで、水タンク35からの給水経路34上のバルブ38Aを開放して、装置1内に通水を開始する。試料2内を通過した水の一部は加圧シリンダ室22内に満たされ、さらに排水孔33から外部に排水される。この状態が確認されたらバルブ38Bを閉じる。さらに排水孔32からの排水が確認されたら、ビュレット37等の計量手段により単位時間当たりの排水量(透水量)を測定する。これにより試料2の透水係数を求めることができる。またベロフラム30の加圧は、透水試験時の動水勾配を大きくする際に試料の有効拘束圧を大きくするためにも用いることができる。
【0023】
なお、以上の説明では、加圧手段として、加圧シリンダ室22内にベロフラム30を設け、圧縮空気を用いた試料2の加圧を行っていたが、機構的にバネ係数を変化可能な圧縮バネ等を加圧シリンダ室22内に内蔵して所定のバネ抵抗を利用した加圧手段とすることも好ましい。この場合には空気供給手段等を要しないため、装置1をさらにコンパクトにすることができる。
【0024】
【発明の効果】
以上に述べたように、本発明の透水試験装置によれば、構造がシンプルで堅牢な装置の一部に組み込まれるサンプラーを用いて短時間に乱さない試料を採取でき、その試料をそのまま透水試験に使用することができ、その試験条件も試料収容空間内で単純な一方向の流れを実現して透水理論と同じ条件を再現できる。また、鉛直方向荷重を適宜設定することにより、原地盤や任意の荷重載荷条件を再現することができ、精度の高い透水試験を実現することができる。
【図面の簡単な説明】
【図1】本発明による透水試験装置の一実施の形態を一部断面で示した全体構成図。
【図2】図1に示した透水試験装置のサンプラー(試料収容ケーシング)の使用態様を示した断面図。
【図3】図2に示したサンプラーを用いた試料サンプリング状態を示した説明図(打ち込み状態)。
【図4】試料サンプリング状態を示した説明図(試料採取状態)。
【図5】試料サンプリング状態を示した説明図(試料整形状態)。
【符号の説明】
1 透水試験装置
2 試料
10 ベースブロック
11 円形凹所
12 通水支持台
13 シール材
14,28 通水板
15 保持ロッド
20 試料収容ケーシング(サンプラー)
21 試料収容空間
22 加圧シリンダ室
23 ピストン
25 通水板保持枠
29 空気供給路
30 ベロフラム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water permeation test apparatus, and relates to a water permeation test apparatus that can be carried and also serves as a sampler for collecting a sample at a test position, and can perform a highly accurate test on the collected sample under a predetermined pressure condition.
[0002]
[Prior art]
In recent years, construction of final disposal sites for large-scale general waste has been promoted in various places. At these facilities, sufficient water-impervious works are installed so that leachate from accumulated waste does not leak outside the site. It is necessary. Bentonite mixed soil or the like is often used as the water barrier. In proceeding with this water-impervious work, it is necessary to measure the water-permeability coefficient of the water-impervious material at a large number of measurement points in a wide range in order to confirm the water permeability (water-impervious) of the construction site. In addition, it is necessary to measure the in-situ permeability coefficient of the core material constituting the water-impervious zone in a fill dam or the like.
[0003]
As a method of determining the permeability coefficient of the target ground, a test hole is provided in the original ground by boring or the like, and the water level in the test hole is lowered to measure the recovery status or the rate of water level drop, or to maintain a constant water level. Is used to obtain the hydraulic conductivity from the amount of water supplied. In addition, there is a method of collecting a sample at an original position and performing a water permeability test under a triaxial stress state in a test room (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
See JP-A-7-306198.
[0005]
In the former field test, in addition to problems such as the fact that the actual shape of the test hole and the flow of water do not completely match the theoretical formula and the point where the saturation conditions are unclear, it takes a long time to measure on low-permeability ground. Therefore, there is also a problem that the work of the impermeable work cannot be performed during that time. In the latter laboratory test, it is difficult to secure an undisturbed sample, and the laboratory testing machine becomes large, and it is difficult to test a large number of samples, and the test cost also increases.
[0006]
[Problems to be solved by the invention]
Therefore, in view of the problems of the above-described existing test methods and test apparatuses, it is important that the water permeability test apparatus of the present invention is an apparatus that can solve the following specific problems. That is,
(1) Capable of conducting a permeability test without disturbing the original ground
(2) Capability of testing under conditions where the theoretical formula for water permeability can be applied
(3) The load condition of the original ground can be reproduced.
(4) The device must be small and portable, simple and robust in structure, and easy to use on site.
(5) Capable of handling a large number of measurement points
(6) The test restraint time at the sampling position (measurement point) is short.
(7) Test accuracy is high.
(8) Capability to arbitrarily test the direction of water permeability (for example, horizontal and vertical directions) in the ground.
(9) The apparatus must be operable without supply power.
Accordingly, an object of the present invention is to provide a water permeation test apparatus that takes into account the points of the above-described conventional techniques.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has a cutting edge at the lower end, and is used as a sampler for driving the sample from the cutting edge to the ground surface when collecting the sample in the original position. A sample storage container having a sample storage space that can be accommodated by holding the original position inside the space formed, and a drainage path for draining water that has passed through the water pressure plate and the sample during a water permeability test, provided in the sample receiving vessel, and a pressurizing means for pressurizing the sample through the water flow pressure plate, upon contact with the sample container, supporting one surface of the sample within the water passing the support plate And a base member in which a water supply path for supplying water to the sample surface during the water permeability test is formed through the water flow support plate, a connecting means for closely fixing the sample storage container to the base member, and the sample Through the drainage Characterized in that the the amount of water and a quantifiable metering means.
[0009]
The pressurizing means includes a piston mechanism that reciprocates in a pressurizing cylinder chamber that is continuously provided in the sample storage space, and presses the water pressure plate by the operation of the piston mechanism, The water permeability test can be performed with the sample in the triaxial stress state of the same level as the original position. The piston mechanism is preferably operated with compressed air supplied from the outside.
[0010]
Alternatively, the pressurizing means includes a spring mechanism housed in a pressurization cylinder chamber provided continuously in the sample housing space, and presses the water pressure plate by the operation of the spring mechanism, and the sample housing space. It is preferable to conduct the water permeability test with the sample in the same triaxial stress state as the original position.
[0011]
Samples were taken write no time to the sample receiving space dedicated to ground level the sample receiving container from the cutting edge, it is preferable that the triaxial stress state of the sample in situ as much of the sample holding space.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a water permeability test device of the present invention will be described with reference to the accompanying drawings. As shown in FIG. 1, the water permeability test apparatus 1 according to the present invention includes a base block 10 having a circular recess 11 having a predetermined depth at the center of the upper surface, and a peripheral portion of the circular recess 11 having a lower end at the base block 10. And a sample storage casing 20 that can pressurize the sample stored in the sample storage space 21 whose bottom surface is open and store the sample in a predetermined stress state.
[0013]
Hereinafter, each structure of the water permeability test apparatus 1 will be described. The base block 10 is a flat steel block that functions as a pedestal for the apparatus main body. A circular recess 11 having a predetermined depth is formed in the center of the upper surface, and a plurality of water passage holes 12a are formed in the upper surface thereof. The water flow plate support 12 is accommodated. On the water flow support 12, a water flow plate 14 whose periphery is held by a sealing material 13 is placed. As this water flow plate 14, a porous ceramic plate is used as an example in the present embodiment. When the water permeability coefficient of the sample 2 is relatively large, various natural or artificial porous plates such as porous stone can be used. A holding rod 15 is erected on the upper surface of the block around the circular recess 11. The holding rod 15 serves as a connecting means for tightly fixing the sample storage casing 20 onto the base block 10 by tightening a fixing nut 42 of a fastening flange 41 of a fixing jig 40 described later. Moreover, the water supply hole 16 which penetrates a block outer surface and the circular recess 11 is provided as a water supply path for a water permeability test.
[0014]
The sample storage casing 20 is used as a sampler (the operation procedure will be described later) that collects the sample 2 for the permeability test at the original position of the test position. It is a cylindrical steel member that is used as a part. As shown in FIG. 1, the sample storage casing 20 has a sample storage space 21 whose lower surface is hollowed out into a flat cylindrical shape having a predetermined diameter, and a cylindrical pressurization continuous to the upper portion of the sample storage space 21. A cylinder chamber 22 is formed. A water pressure plate 25 that can reciprocate while sliding along the wall surface of the space is accommodated in the sample storage space 21 by the operation of a piston 23 described later. This water pressure plate 25 has the same configuration as the water flow support base described above, and has a water flow plate holding frame 27 having a number of water holes 27a formed on the upper surface, and a water flow fixed to the lower surface recess. It consists of a plate 28. By attaching the O-ring 26 to the water flow plate holding frame 27, it is possible to maintain the water tightness between the inner wall of the sample storage space 21. The water flow plate 28 of the water flow pressure plate 25 is made of the same material as the water flow plate 14 described above.
[0015]
As shown in FIG. 1, the pressurized cylinder chamber 22 is expanded and contracted in the cylinder chamber 22 by compressed air introduced through an air supply passage 29 provided through the upper surface of the casing 20. A bellowram 30 made of synthetic rubber capable of expanding and contracting the entire length and a piston 23 positioned at the lower end of the bellophram 30 and reciprocating along the inner wall of the cylinder chamber 22 as the bellophram 30 expands and contracts are accommodated. The water pressure plate 25 is pressed at the lower end, and the sample 2 in the sample storage space 21 can be set to a predetermined pressure state.
[0016]
Further, in the casing 20, water at the time of the water permeability test passes through the sample 2 in the sample storage space 21 and is drained to an external burette, and inside the pressurized cylinder chamber 22 at the time of the water permeability test. And a drainage hole 33 for confirmation for draining a part of the water filled with water. Further, a water tank 35 is provided at the upper end of a stand pipe 34 serving as a water supply pipe outside the apparatus, and a burette 37 is provided as a measuring means at the time of the water permeability test on the drain pipe 36. A valve 38 (38A, 38B, 38C) is provided on the apparatus side on the water supply / drainage path, and when performing a water permeation test, the corresponding valve 38 is opened and closed by a predetermined procedure to supply water into the sample storage casing 20. The sample 2 is controlled for saturation, water permeability test, and drainage. Further, for other measurement items in the test, it is effective to measure the differential pressure between the compression air pressure gauge 45 and the air pressure on the air supply path 29 as the loading pressure on the sample 2 and the water pressure on the drainage paths 32 and 36. A stress meter 46 can also be provided.
[0017]
On the other hand, a fixing jig 40 as one component of the connecting means is screwed to the upper end of the sample storage casing 20. The fixing jig 40 has the same main body outer diameter as that of the sample storage casing 20, and a disk-like fastening flange 41 is formed on the upper part. By fastening the fixing nut 42 of the fastening flange 41 to the holding rod 15, the sample storage casing 20 can be tightly fixed on the base block 10. In addition, in FIG. 1, although the water flow state from the lower side to the upper side is shown in the figure, it is also possible to make the water flow direction upside down.
[0018]
Next, a procedure for collecting a sample at a test position using the sample storage casing 20 incorporated in the water permeability test apparatus 1 of FIG. 1 as a sampler will be described with reference to FIGS. In the following description, the sample storage casing 20 will be described as a sampler 20 in order to clarify its application. FIG. 2 (a) shows that the bellowram 30 in the pressurizing cylinder chamber 22 is inflated with compressed air for use as the sampler 20, and the piston 23 is pushed down at the lower end of the bellophram 30, so that the water pressure plate 25 in the sample storage space 21. Is lowered to the lower end of the sampler 20. In this state, a cylindrical hitting collar 5 is screwed to the upper end and used.
[0019]
In order to collect the sample 2 for the permeability test using the sampler 20, first, the surface of the ground 3 at the sample collection point (permeability test position) is shaped smoothly, and the guide tube 6 as shown in FIG. Install on the surface. The guide cylinder 6 has a cylindrical shape whose inner diameter is slightly larger than the outer diameter of the sampler 20 and whose overall length is longer than that of the sampler 20, and a circular flange 6a is integrally formed on the bottom surface. This circular flange 6a allows the guide tube 6 to stand on the ground surface. The sampler 20 can apply a predetermined vertical pressure to the sample 2 even when the sample is collected. For example, the sampler 20 can reproduce the stress state in which the loading load is applied when the embankment is completed. Generally, only a very small pressure is loaded and used. The pressure state is adjusted by adjusting the air pressure of the bellophram 30 in the pressure cylinder chamber 22 described above. As shown in FIG. 3, the sampler 20 in this state is housed in the guide cylinder 6, and the sampler 20 is driven into the ground 3 using the fall energy of the drive hammer 8 of the sampler 20 driving device 7. As the cutting edge 20 a formed at the lower end of the sampler 20 is driven into the ground 3, the piston 23 and the water pressure plate 25 rise and part of the ground 3 is taken into the sample storage space 21 as the sample 2.
[0020]
When the sampler 20 is driven into the ground 3 to a predetermined depth that fills the sample storage space 21 with the sample 2, the pressure in the bellophram 30 is reduced or released. As shown in FIG. 4, the underground portion of the sampler 20 is dug together with the surrounding ground block 4. Thereafter, the end surface 2a of the sample 2 is shaped smoothly using a shaping knife or the like. In this way, the sample 2 for a water permeability test that is not disturbed can be accommodated in the sample accommodation space 21 of the sampler 20. Although the sample height (thickness) depends on the assumed hydraulic conductivity, it is usually possible to appropriately set about 15 to 50 mm with respect to φ75 mm. At this time, it is preferable to adjust the height by inserting an adjustment spacer or the like (not shown) into the sample storage space 21.
[0021]
Next, the sampler 20 holding the sample 2 is incorporated into the water permeation test apparatus 1 as the above-described sample storage casing 20 as shown in FIG. At the time of this incorporation, the fixing jig 40 is screwed to the upper end of the sampler 20 after removing the striking collar 5 (see FIG. 2A) as shown in FIG. As shown in FIG. 1, the sampler 20 is placed on the base block 10, and the fixing nut 42 of the fastening flange 41 of the fixing jig 40 is screwed to the fastening rod 15 (FIG. 1) to fix the sampler 20. The circular recess 11 of the base block 10 is interposed via a ring-shaped sealing material 13 provided at the peripheral edge of the circular recess 11 so that the lower end cutting edge 20a is brought into close contact with the water plate 14 through the end surface 2a of the sample 2. Fix tightly to the periphery. Thereafter, the pipes 34 and 36 of the water supply and drainage paths and the air supply pipe 29 are connected to the apparatus 1.
[0022]
Hereinafter, the measurement of the water permeability coefficient using this water permeability test apparatus will be described. Prior to the water permeation of the sample 2, the triaxial stress state of the sample 2 in the sampler 20 is reproduced. For example, it is possible to reproduce the stress state and the like on which the overlay load is applied when the embankment is completed. The vertical load is performed by adjusting the air pressure of the bellophram 30 in the pressurizing cylinder chamber 22. First, the valves 38B and 38C on the drainage path are opened. Next, the valve 38 </ b> A on the water supply path 34 from the water tank 35 is opened to start water flow into the apparatus 1. Part of the water that has passed through the sample 2 is filled in the pressure cylinder chamber 22 and further drained to the outside through the drain hole 33. When this state is confirmed, the valve 38B is closed. Further, when the drainage from the drainage hole 32 is confirmed, the drainage amount (permeation amount) per unit time is measured by a measuring means such as a burette 37. Thereby, the water permeability coefficient of the sample 2 can be obtained. The pressurization of the belofram 30 can also be used to increase the effective restraining pressure of the sample when the hydraulic gradient during the water permeability test is increased.
[0023]
In the above description, as the pressurizing means, the bellophram 30 is provided in the pressurizing cylinder chamber 22 to pressurize the sample 2 using compressed air. However, the compression can be mechanically changed in the spring coefficient. It is also preferable that a spring or the like is built in the pressurizing cylinder chamber 22 to form a pressurizing means using a predetermined spring resistance. In this case, since an air supply means etc. are not required, the apparatus 1 can be made more compact.
[0024]
【The invention's effect】
As described above, according to the water permeability test apparatus of the present invention, a sample that is not disturbed in a short time can be collected using a sampler incorporated in a part of a simple and robust apparatus. The test conditions can also reproduce the same conditions as the permeability theory by realizing a simple unidirectional flow in the sample storage space. In addition, by appropriately setting the vertical load, it is possible to reproduce the original ground and arbitrary load loading conditions, and to realize a highly accurate water permeability test.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing an embodiment of a water permeability test device according to the present invention in a partial cross section.
2 is a cross-sectional view showing a usage mode of a sampler (sample storage casing) of the water permeability test apparatus shown in FIG. 1;
FIG. 3 is an explanatory diagram showing a sample sampling state using the sampler shown in FIG. 2 (injected state).
FIG. 4 is an explanatory diagram showing a sample sampling state (sample collection state).
FIG. 5 is an explanatory diagram showing a sample sampling state (sample shaping state).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Water permeability test apparatus 2 Sample 10 Base block 11 Circular recess 12 Water flow support stand 13 Sealing material 14, 28 Water flow plate 15 Holding rod 20 Sample storage casing (sampler)
21 Sample storage space 22 Pressurizing cylinder chamber 23 Piston 25 Water passage plate holding frame 29 Air supply path 30 Bellofram

Claims (5)

下端に刃先を有し、原位置の試料の採取時に、前記刃先から地盤面に打ち込むサンプラーとして使用され、前記試料を、上面に通水加圧板が配置された空間内部に原位置状態を保持して取り込んで収容可能な試料収容空間と、透水試験時に前記通水加圧板と試料とを通過した水を排水する排水経路とを有する試料収容容器と、
前記試料収容容器内に設けられ、前記通水加圧板を介して前記試料を加圧する加圧手段と、
前記試料収容容器と密着した際に、前記試料の一面を内部の通水支持板で支持するとともに、該通水支持板を介して透水試験時に前記試料面に給水する給水経路が形成されたベース部材と、
前記試料収容容器をベース部材に切離し可能に密着固定する連結手段と、
前記試料を通過して排水された水量を計量可能な計量手段とを
備えたことを特徴とする透水試験装置。
It has a cutting edge at the lower end, and is used as a sampler that is driven into the ground surface from the cutting edge when collecting the sample at the original position. A sample storage container having a sample storage space that can be taken in and stored, and a drainage passage for draining water that has passed through the water pressure plate and the sample during a water permeability test,
A pressurizing means provided in the sample storage container and pressurizing the sample via the water pressure plate;
Upon contact with the sample container, base one side of the sample as well as supported within the water passing the support plate, water supply channel for supplying water to the sample surface when Permeability Test through the vent water support plate is formed A member,
A connecting means for tightly fixing the sample container to the base member so as to be separable;
A water permeation test apparatus comprising a measuring means capable of measuring the amount of water drained through the sample.
前記加圧手段は、前記試料収容空間に連続して設けられた加圧シリンダ室内を往復動作するピストン機構からなり、該ピストン機構の動作により前記通水加圧板を押圧し、前記試料収容空間内の試料を原位置と同程度の三軸応力状態として透水試験を行うことを特徴とする請求項1記載の透水試験装置。  The pressurizing means includes a piston mechanism that reciprocates in a pressurizing cylinder chamber that is continuously provided in the sample storage space, and presses the water pressure plate by the operation of the piston mechanism, The water permeation test apparatus according to claim 1, wherein the water permeation test is carried out with the sample in a triaxial stress state similar to the original position. 前記ピストン機構は、外部から供給される圧縮空気で動作することを特徴とする請求項2記載の透水試験装置。  The water permeability test apparatus according to claim 2, wherein the piston mechanism is operated by compressed air supplied from outside. 前記加圧手段は、前記試料収容空間に連続して設けられた加圧シリンダ室内に収容されたバネ機構からなり、該バネ機構の動作により前記通水加圧板を押圧し、前記試料収容空間内の試料を原位置と同程度の三軸応力状態として透水試験を行うことを特徴とする請求項1記載の透水試験装置。  The pressurizing means includes a spring mechanism housed in a pressurization cylinder chamber provided continuously in the sample housing space, and presses the water pressure plate by the operation of the spring mechanism, The water permeation test apparatus according to claim 1, wherein the water permeation test is carried out with the sample in a triaxial stress state similar to the original position. 前記試料収容空間内の試料を原位置と同程度の三軸応力状態として、前記試料を試料収容空間内に取り込むことを特徴とする請求項記載の透水試験装置。5. The water permeation test apparatus according to claim 4 , wherein the sample in the sample storage space is in a triaxial stress state similar to the original position, and the sample is taken into the sample storage space.
JP2003158819A 2003-06-04 2003-06-04 Permeability test equipment Expired - Lifetime JP3978411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003158819A JP3978411B2 (en) 2003-06-04 2003-06-04 Permeability test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003158819A JP3978411B2 (en) 2003-06-04 2003-06-04 Permeability test equipment

Publications (2)

Publication Number Publication Date
JP2004361193A JP2004361193A (en) 2004-12-24
JP3978411B2 true JP3978411B2 (en) 2007-09-19

Family

ID=34052052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003158819A Expired - Lifetime JP3978411B2 (en) 2003-06-04 2003-06-04 Permeability test equipment

Country Status (1)

Country Link
JP (1) JP3978411B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109655599A (en) * 2018-12-04 2019-04-19 三峡大学 A kind of bentonite inflated power of high-pressure solid-infiltration coupling test instrument and its application method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4680718B2 (en) * 2005-08-15 2011-05-11 株式会社竹中工務店 Optimization method for remediation of contaminated soil and permeation rate measuring device used therefor
JP4814702B2 (en) * 2006-06-20 2011-11-16 財団法人電力中央研究所 Rock extraction device
JP5016900B2 (en) * 2006-11-20 2012-09-05 前田建設工業株式会社 In-situ permeability test apparatus and in-situ permeability measurement system
JP4850136B2 (en) * 2007-06-27 2012-01-11 鹿島建設株式会社 Permeability test apparatus and method
KR200455180Y1 (en) 2010-02-22 2011-08-23 한국건설기술연구원 Field Permeability Tester
CN103076061A (en) * 2013-01-11 2013-05-01 浙江驰成建设有限公司 Measuring cylinder device used for testing permeable rate of permeable concrete pavement
JP6797721B2 (en) * 2017-03-06 2020-12-09 株式会社安藤・間 Thin wall driving jig for hard brittle clay sampling
CN108663242A (en) * 2017-03-31 2018-10-16 浙江大学 A kind of ordinary triaxial test disturbed soil sample preparation device and method
CN108132162B (en) * 2017-12-04 2020-07-24 浙江雅迪世纪汽车内饰件有限公司 Hydraulic engineering pipeline lays and detects quick sampling equipment with soil
RU2695660C1 (en) * 2018-10-11 2019-07-25 Акционерное общество "Всероссийский научно-исследовательский институт гидротехники имени Б.Е. Веденеева" Method of studying water permeability and suffusion resistance of structural unit model of ground hydraulic structure, which consists of unbound earth and filtering geosynthetic material
JP7305521B2 (en) * 2019-11-14 2023-07-10 ライト工業株式会社 Penetration test method for test sand
CN110987618A (en) * 2019-12-13 2020-04-10 中国电建集团中南勘测设计研究院有限公司 Rockfill material testing device and method
CN113405841B (en) * 2021-06-17 2022-09-13 承德石油高等专科学校 Sampling device for field geology practice

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109655599A (en) * 2018-12-04 2019-04-19 三峡大学 A kind of bentonite inflated power of high-pressure solid-infiltration coupling test instrument and its application method

Also Published As

Publication number Publication date
JP2004361193A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP3978411B2 (en) Permeability test equipment
CA3055926C (en) Expandable jacket for triaxial, unconfined and uniaxial compression tests and test device for three-dimensional consolidation and settlement tests
JP7000594B2 (en) Test equipment and test method that can simulate erosion effect and interfacial shear in mounting suction bucket foundation
JP4844924B2 (en) In-situ permeability test method
CN107389466B (en) Test equipment
CN110320149A (en) It is a kind of to flow to adjustable irregular rock sample high-pressure osmosis device and test method
KR101523067B1 (en) Apparatus for measuring coefficient of permeability and permeability test method using thereof
CN105043960B (en) A kind of modified soil body joint consolidation permeameter
US6178808B1 (en) Apparatus and method for testing the hydraulic conductivity of geologic materials
RU2421705C2 (en) Method for laboratory determination of strength and deformability of materials under controlled triaxial load and device for implementing said method
CN1831514A (en) Osmotic coefficient investigating method and instrument
CN208239220U (en) Shear tester in hole in situ
JP5920739B1 (en) Ground sampling device and ground sampling method
CN107271297B (en) In-situ shearing experimental instrument for measuring contact surface of saturated loess-mudstone
US4458525A (en) Borehole plate test
US5520248A (en) Method and apparatus for determining the hydraulic conductivity of earthen material
CN103033460B (en) The determinator of soil body horizontal osmotic coefficient and method thereof
Nahlawi et al. Characterisation of geotextiles water retention using a modified capillary pressure cell
JP2001349813A (en) Water cutoff structure for testing water permeation, effective stress, hydraulic fracturing or the like in lock bed tester
RU92958U1 (en) DEVICE FOR COMPRESSION TESTS OF SOILS
CN113970570B (en) Device and method for testing barrier performance of unsaturated bentonite particle material
CN108385737A (en) A kind of vacuum preloading soft groundsill reinforcing sunykatuib analysis instrument and test method
KR100898230B1 (en) Measuring system for the hydraulic conductivity of a swelling clay with high density
Daniel¹ et al. Measurement of hydraulic properties of geosynthetic clay liners using a flow box
Liu et al. Commissioning of a large calibration chamber for cone penetration test in silty sands and tailings

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3978411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140629

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term