JP3978042B2 - Sintered plain bearing for construction machinery - Google Patents

Sintered plain bearing for construction machinery Download PDF

Info

Publication number
JP3978042B2
JP3978042B2 JP2002012556A JP2002012556A JP3978042B2 JP 3978042 B2 JP3978042 B2 JP 3978042B2 JP 2002012556 A JP2002012556 A JP 2002012556A JP 2002012556 A JP2002012556 A JP 2002012556A JP 3978042 B2 JP3978042 B2 JP 3978042B2
Authority
JP
Japan
Prior art keywords
bearing
peripheral surface
inner peripheral
pores
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002012556A
Other languages
Japanese (ja)
Other versions
JP2003214430A (en
Inventor
元博 宮坂
和夫 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2002012556A priority Critical patent/JP3978042B2/en
Priority to KR10-2003-0003940A priority patent/KR100518248B1/en
Priority to CNB031006825A priority patent/CN1245582C/en
Publication of JP2003214430A publication Critical patent/JP2003214430A/en
Application granted granted Critical
Publication of JP3978042B2 publication Critical patent/JP3978042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G17/00Connecting or other auxiliary members for forms, falsework structures, or shutterings
    • E04G17/06Tying means; Spacers ; Devices for extracting or inserting wall ties
    • E04G17/065Tying means, the tensional elements of which are threaded to enable their fastening or tensioning
    • E04G17/0655Tying means, the tensional elements of which are threaded to enable their fastening or tensioning the element consisting of several parts
    • E04G17/0657Tying means, the tensional elements of which are threaded to enable their fastening or tensioning the element consisting of several parts fully recoverable
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G17/00Connecting or other auxiliary members for forms, falsework structures, or shutterings
    • E04G17/06Tying means; Spacers ; Devices for extracting or inserting wall ties
    • E04G17/07Tying means, the tensional elements of which are fastened or tensioned by means of wedge-shaped members
    • E04G17/0707One-piece elements
    • E04G17/0714One-piece elements fully recoverable

Description

【0001】
【発明の属する技術分野】
本発明は、建設機械用の軸受要素のように、軸受摺動面に高い面圧が作用する用途に好適な焼結滑り軸受に関する。
【0002】
【従来の技術】
例えば、建設機械の油圧ショベルは、掘削動作をするときに、油圧シリンダを用いて、アーム先端に取り付けられたバケットを揺動させるようになっている。バケットとアームとの関節は、軸と軸受からなる滑り軸受要素で構成されている。このような軸受要素は、大きな面圧がかかるため、耐摩耗性が高い軸受を用い、摺動面には粘度の高い潤滑油やグリース等を介在させて用いられる。
【0003】
このような軸受としては、鋳造合金を切削加工したものや摺動面に黒鉛片を斑点状に埋め込んだものに代えて、動粘度が高い潤滑油を含浸させた鉄炭素系焼結合金が使用されている。この焼結含油軸受は、高強度と高い耐摩耗性を確保するために、合金基地がマルテンサイト組織を含んだ鉄炭素系合金を用い、その組織中に約20質量%程度の銅を分散させたものである。軸受は、熱処理されて硬く、比較的大型なので、最終の仕上げは切削加工した後、内周面を研削して作られる。
【0004】
【発明が解決しようとする課題】
このような従来の焼結含油滑り軸受は、潤滑油を含み、焼入れされた鉄合金基地に銅が分散した合金で、高荷重に適しており、良好に使用できるものであるが、耐久性に若干のばらつきがあり、より安定して長寿命となることが望まれていた。
【0005】
そこで、従来の焼結含油滑り軸受について使用した摩耗の状況を観察し、軸受内周面の気孔状態に着眼して研究し、新規な知見を得た。本発明はこのような知見に基いて完成したものである。
【0006】
【課題を解決するための手段】
本発明は前記課題を解決するためになされたもので、その技術手段は、焼入れ組織の多孔質鉄基焼結合金からなり、軸受内周面が研削面で、その内周面に露出している気孔が面積率で10%以下であり、表面近傍に、加工により目潰しされて封孔されている気孔が内周面から金属厚さが20μm以下のみに存在することを特徴とする建設機械用焼結滑り軸受である。この軸受は、面圧58.8MPa以上及び摺動速度2〜5cm/秒の使用条件ですぐれた性能を示す。なお、研削面はグラインダー(研削盤)によって研削された面である。また封孔とは、表面に露出していない空孔をいう。
【0007】
この鉄基焼結合金は、鉄炭素系合金基地中にマルテンサイトを含むと共に、銅が分散し、銅の含有量が15〜25質量%で、有効多孔率が15〜28%であるものが好ましい。有効多孔率とは表面と連通していて含油することができる気孔の体積の試料体積に占める比率である。
【0008】
また、本発明の焼結滑り軸受は、ラジアル荷重を受けるべき軸受内周面及びその近傍の露出気孔量がその他の内周面の露出気孔量より多くかつ封孔が少くなっているものも包含される。このような軸受は、例えば軸受の内面がラジアル荷重を受けて軸と摺動して初期摩耗を生ずるような条件で加工又は使用することによって得ることができる。
【0009】
さらに、本発明の焼結滑り軸受は、建設機械油圧ショベルの関節用またはクレーンのアーム支持関節用軸受として用いると最適である。
【0010】
本発明の特徴とする前記構成を要件とする理由について説明すると下記のようである。
【0011】
(1)焼結合金
本発明の焼結滑り軸受の材質、組成は強度及び耐摩耗性から、マルテンサイト組織を含む鉄基焼結多孔質合金とした。特に、鉄炭素系合金基地中に、銅が分散した合金が好ましく、銅の含有量は15〜25質量%が好適である。硬い鉄炭素系合金基地の骨格の中に、軟質で軸とのなじみ性が良い銅が介在しているもので、合金を構成する元素が少なく、耐久性にも優れている。摺動面に存在する銅が少ないと、硬い鉄合金の性質が強くなり、軸をアブレシグ摩耗させ易く、銅が多い場合は、高い面圧の摺動によって、銅が変形したり表面の気孔を塞いで摩耗が進行しやすいことから、銅の含有量を15〜25質量%とする。
【0012】
(2)有効多孔率と密度
有効多孔率は15%以上必要で、低いと含油量が少ないために摺動面に油切れを起こしやすくなり寿命を短くする。有効多孔率は大きいほど含油能力が高くて好ましいが、密度が低くなり、強度が低下し、耐摩耗性にも影響する。この合金の密度は5.8g/cm3以上であることが必要である。前記した好ましい焼結合金の銅含有量が最大値の25質量%の場合、密度が5.8g/cm3以上では、有効多孔率は28%以下となる。これらのことから、有効多孔率を15〜28%とする。
【0013】
(3)軸受内周面の状態
軸受内周面は、グラインダー(研削盤)による研削面とする。そしてその内周面の表面に露出している気孔が面積率で10%以下とする。また、内周面から深さ方向の金属厚さが20μm以下で表面に開口していない、封孔されている気孔が存在するようにする。この封孔されている気孔は軸受断面のラッピング面の顕微鏡組織から観察されるもので、軸受の内周面の表面の近傍にある封孔のうち、幅が約50μm以上の気孔であって、軸受内周表面までの距離が20μm以下である。このような研削面は、予め密度を決定して製造した軸受素材の内周面を加工する研磨砥石と研削条件を選定することによって安定的に得ることができる。また、軸受素材の内周面を予め旋盤により切削加工した後研削する場合は、軸受内周面の表面附近に存在する気孔を所定深さまで目潰しすると共に表面部を緻密化するように切削加工を施し、その表層部を所定量研削して表層を除去する手段によって得ることができる。この場合、切削加工は、焼結後の焼結体に施す場合と、熱処理後の熱処理体に施す場合があり、前者の方が緻密化部分の深さを深く形成することができる。
【0014】
研削面の平均面粗さは、Rmaxで0.5〜1μm程度とする。このような軸受内周面は、軸と組み合わせて嵌合部に潤滑油を供給して使用したとき、軸受内周の表面に露出している気孔が少ない状態なので、摺動部の油圧(油膜強度)が高くなるが、軸受内周面にかかる高い面圧のラジアル荷重によって、軸受内周の荷重の作用部は初期摩耗し、薄い金属で封孔されていた気孔が摩耗した面に露出する。本発明の軸受は、建設機械油圧ショベルの関節用またはクレーンのアーム支持関節用軸受であると最適である。このとき初期摩耗する部分は、軸と軸受が相対的に揺動運動し、高い面圧が作用している箇所である。この部分が初期摩耗してもその他の部分は研削面が僅かに摩耗した程度で気孔量が少ない状態が維持される。封孔されていた気孔が露出すると、含浸された潤滑油が容易に供給され、初期摩耗が終わった後の摩擦を低くする。一方、荷重の小さい軸受内周部分は封孔がそのまま維持され依然として潤滑油の油圧逃げが少ない状態を維持する。これらの結果全体として摺動性能が安定化する効果を奏する。このようなの軸受を初期摩耗が生ずるのと同様の作用を生ずる加工手段を施すことによって製造してもよい。
【0015】
軸受内周面の表面近傍に存在し表面に開口していないで封孔されている気孔の軸受内周面までの金属厚さは、初期摩耗によって容易に除去され、初期摩耗を受けない部分では表面の気孔が少ない状態を維持することができるように20μm以下とする。さらに好ましくは8〜12μm(10μm程度)である。このような厚みを形成するには、グラインダー(研削盤)による研削加工が適している。
【0016】
研削面に開口している気孔の量は、軸受焼結合金の気孔率との差が大きいことが好ましいが、焼結合金の許容される最低の密度5.8g/cm3における研削面の状態から面積率で10%以下とする。好ましくは1〜3%である。
【0017】
(4)含浸される潤滑剤
含浸油は、この種の高面圧滑り軸受に使用される品質のものを用いるとよい。例えば、40℃における動粘度が2.2〜10m2/s(220〜1000cSt)程度のものが適当である。また、常温で固態状または半固態状で滴点60℃以上であるようなワックスも適している。このワックスは、パラフィンワックス、マイクロクリスタリンワックスなどに油分を含み、好ましくは黒鉛や二硫化モリブデンの粒子を含有しているものである。含浸されている潤滑油は、軸受と軸との摺動による軸受の温度上昇により膨張し、摺動面へ供給される。軸受が使用されるときは、軸受要素にグリースを注入するとよい。
【0018】
【発明の実施の態様】
以下、好ましい実施例と比較例により本発明の実施の態様を説明する。
【0019】
(1)焼結軸受素材の製作
アトマイズ鉄粉(神戸製鋼所製アトメル300M)81.2kgと、電解銅粉(福田金属箔粉工業製CE15)18kgと、黒鉛粉(日本黒鉛工業製CPB)0.8kgとに、成形系潤滑剤としてステアリン酸亜鉛粉0.5kgを追加混合し、円筒形状に圧縮成形した。この成形体を温度1120℃の還元性ガス中で焼結した。焼結品の鉄基焼結合金基地中の結合炭素量は0.6質量%であった。また、焼結体の密度は6.2g/cm3で、有効多孔率は21%であった。焼結体は、温度850℃に加熱したのち油焼入れし、温度180℃で焼戻した。得られた軸受素材はマルテンサイト組織を含むものであった。
【0020】
(2)切削加工及び研削
上記熱処理された焼結軸受素材の内外周面及び端面を旋盤を用いて超硬バイトで切削加工し、次に、研削盤を用いて軸受素材と砥石を回転させて内周面を研削した。このとき、研磨代を変えることにより、内周面に露出した気孔量を調節した。軸受の内径寸法は直径50mm、全長寸法は50mmである。
【0021】
これら加工条件の異なる軸受試料を切断し、内周面の露出気孔量を顕微鏡観察により求め、内周面を含む断面を顕微鏡組織により観察して、表面に近い封孔された幅が約50μm以上の複数の気孔について、内周面までの金属部分の厚さを測定した。下記の(a)、(b)、(c)の測定値である加工条件グループを軸受試料とした。
(a)実施例:内周面の気孔量が3面積%、封孔表面の金属厚さが10μmの試料。
(b)比較例1:内周面の気孔量が1面積%、封孔表面の金属厚さが30μmの試料。
(c)比較例2:内周面の気孔量が15面積%で、表面附近に封孔が殆ど認められない試料。
【0022】
(3)潤滑油の含浸
軸受試料には、ISO V G460相当(40℃における動粘度4.6m2/s(460cSt))の潤滑油を真空含浸した。各試料は内周面の状態が異なるが、内部の気孔は同じであり、含油率が21%である。
【0023】
(4)軸受試験
軸受試料をハウジングに固定し、焼入れ及び研磨された軸にグリースを塗布して軸受試料の内周に嵌合した。軸にラジアル方向の荷重を与え、面圧は58.8MPa(6kgf/mm2)とした。軸は中心角100度の範囲の軸摺動面を滑り速度が1分間あたり1.2mの速さで往復回動させた。往復運動の末端位置でそれぞれ0.5秒間休止させた。
【0024】
軸受試料の外周面に熱電対を装着し、運転過程の軸受温度を測定した。若し軸受温度が150℃になれば試験を中止することとした。150℃は、経験則から焼付き摩耗になっていると認められる温度である。
【0025】
(5)軸受温度の測定結果
このようにして試験した軸受温度は表1のとおりである。表1に示すように、実施例の焼結含油滑り軸受は、運転初期段階で温度上昇するが、その状態を過ぎた後は温度が下がり、30時間までほぼ同じ温度レベルを推移した。
【0026】
内周面の気孔量が少なく、封孔表面の金属厚さが比較的大きい加工によって気孔が目潰しされた状態の比較例1では、初期段階でより高い温度になり、その温度が暫時継続されてから温度が下がり、実施例の温度より高い温度で安定化している。また、内周面の気孔量が多く、加工による封孔が殆どない表面状態の比較例2では、比較例1のような初期段階の温度急上昇は起こらないが、緩やかに温度上昇し、実施例の軸受の安定温度より高い温度で推移している。
【0027】
いずれも温度が150℃には達していない。
【0028】
【表1】

Figure 0003978042
【0029】
(6)試験結果の評価
これらの運転温度の推移は、軸受内周面を観察した状況から、次のような理由によるものと考えられる。
【0030】
実施例の焼結含油滑り軸受は、運転初期段階でラジアル荷重作用面に潤滑油が不足していて初期摩耗が進行し温度上昇したものと考えられる。次いで摩耗により、軸荷重と軸受気孔内の潤滑油の押し上げ力が程良く釣り合うような気孔の開口面積を形成し、理想的な潤滑形態が初期摩耗によって作り出されている。初期摩耗のあとは、比較的硬質な焼入れ組織の鉄炭素系合金基地と比較的軟質な銅粒子とによる耐摩耗性と、最適気孔量に基づいて、摩耗が進行せず、摺動特性が安定したものと考えられる。
【0031】
一方、比較例1のように、加工による目潰し状態が摺動表面部から比較的深くまで及んでいるものは、初期摩耗によってある程度の開口気孔が露出するものの、依然として必要な潤滑油の供給が不足した状態が推移して温度が上昇する。そして、高い温度が継続することによって、潤滑油が流出しやすくなるが、封孔の金属厚さが厚く、摩擦が高くなって摩耗しながら推移し、安定期になるまでの時間が長くなっているものと考えられる。
【0032】
また、比較例2のように、封孔量が少なく摺動面に開口した気孔が比較的多いものは、初期段階からラジアル荷重作用面に潤滑油が供給され、温度上昇が比較的緩やかとなるが、ラジアル荷重作用面以外の部分も多孔質であるため、荷重作用面の油圧が隣接する気孔に逃げ易い状態となっており、潤滑が不足することにより温度が高い状態を推移するものと考えられる。
【0033】
前述したように、軸受摺動面を真円度が優れた平滑面とするために、単に研削しただけでは摺動特性が不充分で、軸受素材の表面気孔が適度に封孔された内周面にするとともに、初期摩耗によってラジアル荷重作用面が潤滑油の油圧と程良く釣り合う状態の気孔になったときときに、耐久性がある焼結含油滑り軸受となることが分かる。
【0034】
このような内周表面状態で有効多孔率が十分あるような焼結含油滑り軸受は粉末冶金における表面緻密化技法によっても製作することはできるが、製作工程が多く、軸受をハウジングに組立てるときに位相合せを必要とする欠点がある。それに比べ、本発明の焼結含油滑り軸受は、軸受素材の密度と切削加工及び研削加工条件を一定にすることにより、軸受内周面を所定表面状態に安定して製作することができ、使用することによって当然に生じる初期摩耗を利用して使用条件に最適な摺動面の気孔状態を形成することができる。従って、軸受性能、製作性、組立て性に優れたものである。
【0035】
【発明の効果】
以上、説明したように、本発明の高面圧に適した焼結滑り軸受は、摩擦が少ない状態を長期問安定して維持できるので、予定保守の間隔を延ばすことができ、コスト削減効果を期待することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sintered sliding bearing suitable for applications in which a high surface pressure acts on a bearing sliding surface, such as a bearing element for construction machinery.
[0002]
[Prior art]
For example, a hydraulic excavator of a construction machine uses a hydraulic cylinder to swing a bucket attached to the arm tip when excavating. The joint between the bucket and the arm is composed of a sliding bearing element including a shaft and a bearing. Since such a bearing element is subjected to a large surface pressure, a bearing having high wear resistance is used, and a lubricating oil or grease having a high viscosity is used on the sliding surface.
[0003]
For such bearings, iron-carbon sintered alloys impregnated with lubricating oils with high kinematic viscosity are used instead of cast alloys that have been machined and those with sliding pieces embedded with spots of graphite. Has been. In this sintered oil-impregnated bearing, in order to ensure high strength and high wear resistance, the alloy base uses an iron-carbon alloy containing a martensite structure, and about 20% by mass of copper is dispersed in the structure. It is a thing. Since the bearing is hardened by heat treatment and is relatively large, the final finish is made by cutting the inner peripheral surface after cutting.
[0004]
[Problems to be solved by the invention]
Such a conventional sintered oil-impregnated sliding bearing is an alloy in which copper is dispersed in a hardened iron alloy base containing lubricating oil, suitable for high loads, and can be used satisfactorily. There was some variation, and it was desired to have a more stable and long life.
[0005]
Therefore, we observed the wear conditions used for conventional sintered oil-impregnated plain bearings, studied the pores on the inner peripheral surface of the bearing, and obtained new knowledge. The present invention has been completed based on such knowledge.
[0006]
[Means for Solving the Problems]
The present invention has been made in order to solve the above problems, the technical means is a porous iron-based sintered alloy quenching tissue, the bearing inner surface at the ground surface, exposed to the inner peripheral surface thereof and pores is 10% or less by area ratio and, in the vicinity of the front surface, construction blinding to the metallic thickness from the inner peripheral surface pores are sealed by machining, characterized in that there only to 20μm or less It is a sintered plain bearing for machinery . This bearing exhibits excellent performance under use conditions of a surface pressure of 58.8 MPa or more and a sliding speed of 2 to 5 cm / second. The ground surface is a surface ground by a grinder. Moreover, a sealing hole means the void | hole which is not exposed to the surface.
[0007]
This iron-based sintered alloy contains martensite in an iron-carbon alloy base, copper is dispersed, the copper content is 15 to 25% by mass, and the effective porosity is 15 to 28%. preferable. The effective porosity is the ratio of the volume of pores communicating with the surface and capable of containing oil to the sample volume.
[0008]
Further, the sintered plain bearing of the present invention includes a bearing whose inner peripheral surface to be subjected to a radial load and the amount of exposed pores in the vicinity thereof are larger than the amount of exposed pores in other inner peripheral surfaces and the number of sealed holes is smaller. Is done. Such a bearing can be obtained, for example, by processing or using it under conditions such that the inner surface of the bearing receives a radial load and slides with the shaft to cause initial wear.
[0009]
Furthermore, the sintered plain bearing of the present invention is optimally used as a bearing for a joint of a construction machine hydraulic excavator or an arm support joint of a crane.
[0010]
The reason why the above-mentioned configuration, which is a feature of the present invention, is a requirement will be described below.
[0011]
(1) Sintered Alloy The material and composition of the sintered sliding bearing of the present invention was an iron-based sintered porous alloy containing a martensite structure because of its strength and wear resistance. In particular, an alloy in which copper is dispersed in an iron-carbon alloy base is preferable, and the content of copper is preferably 15 to 25% by mass. The skeleton of the hard iron-carbon alloy base is interspersed with copper, which is soft and has good compatibility with the shaft, and has few elements that make up the alloy and has excellent durability. If there is less copper on the sliding surface, the properties of the hard iron alloy will be stronger, and the shaft will be subject to abrasive wear, and if there is a lot of copper, the copper will be deformed or the pores of the surface will be deformed by sliding with high surface pressure. The copper content is set to 15 to 25% by mass because the wear tends to progress due to the plugging.
[0012]
(2) Effective porosity and density Effective porosity is required to be 15% or more. If the porosity is low, the oil content is small, so that the sliding surface is likely to run out of oil and shorten the life. A larger effective porosity is preferable because it has a higher oil impregnation capacity, but the density is lowered, the strength is lowered, and the wear resistance is also affected. The density of this alloy needs to be 5.8 g / cm 3 or more. When the copper content of the preferable sintered alloy is 25% by mass, the effective porosity is 28% or less at a density of 5.8 g / cm 3 or more. Therefore, the effective porosity is set to 15 to 28%.
[0013]
(3) State of bearing inner peripheral surface The bearing inner peripheral surface is a ground surface by a grinder. And the pore exposed to the surface of the internal peripheral surface shall be 10% or less by area ratio. Moreover, the metal thickness of the depth direction from an inner peripheral surface is 20 micrometers or less, and it is made for the air | hole which is not sealed to the surface to be sealed. The sealed pores are observed from the microstructure of the wrapping surface of the bearing cross section, and among the pores near the inner peripheral surface of the bearing, the pores have a width of about 50 μm or more, The distance to the inner peripheral surface of the bearing is 20 μm or less. Such a grinding surface can be stably obtained by selecting a grinding wheel and grinding conditions for processing the inner peripheral surface of the bearing material manufactured by determining the density in advance. In addition, when grinding the inner peripheral surface of the bearing material with a lathe in advance, cutting is performed so that the pores existing near the surface of the bearing inner peripheral surface are crushed to a predetermined depth and the surface portion is densified. The surface layer portion can be ground by a predetermined amount and removed by a means for removing the surface layer. In this case, the cutting process may be performed on the sintered body after sintering or on the heat treated body after heat treatment, and the former can form a deeper deep portion.
[0014]
The average surface roughness of the ground surface is about 0.5 to 1 μm in Rmax. Such a bearing inner peripheral surface has a small number of pores exposed on the surface of the bearing inner periphery when used by supplying lubricating oil to the fitting portion in combination with the shaft. Strength) is increased, but due to the high radial pressure applied to the inner peripheral surface of the bearing, the acting portion of the load on the inner surface of the bearing is initially worn, and the pores sealed with a thin metal are exposed to the worn surface. . The bearing of the present invention is most preferably a bearing for a joint of a construction machine hydraulic excavator or an arm support joint of a crane. At this time, the initial wear portion is a portion where the shaft and the bearing are relatively swung and a high surface pressure is applied. Even if this part is initially worn, the other parts are maintained in a state where the amount of pores is small as the ground surface is slightly worn. When the pores that have been sealed are exposed, the impregnated lubricating oil is easily supplied, reducing the friction after the initial wear. On the other hand, the inner peripheral portion of the bearing with a small load maintains the sealed state as it is, and still maintains the state where the hydraulic oil escape from the lubricating oil is small. As a result, the sliding performance is stabilized as a whole. Such a bearing may be manufactured by applying a machining means that produces the same effect as the initial wear.
[0015]
The metal thickness up to the bearing inner peripheral surface of the pores that exist near the surface of the inner peripheral surface of the bearing and that are sealed without opening on the surface is easily removed by the initial wear, and in the parts that do not receive the initial wear. The thickness is set to 20 μm or less so that the surface can be maintained with a small number of pores. More preferably, it is 8-12 micrometers (about 10 micrometers). In order to form such a thickness, grinding by a grinder (grinding machine) is suitable.
[0016]
The amount of pores opened in the grinding surface is preferably large in difference from the porosity of the bearing sintered alloy, but the state of the grinding surface at the minimum allowable density of 5.8 g / cm 3 of the sintered alloy. The area ratio is 10% or less. Preferably it is 1-3%.
[0017]
(4) The lubricant-impregnated oil to be impregnated may be of the quality used for this type of high surface pressure sliding bearing. For example, a kinematic viscosity at 40 ° C. of about 2.2 to 10 m 2 / s (220 to 1000 cSt) is suitable. Also suitable are waxes that are solid or semi-solid at room temperature and have a dropping point of 60 ° C. or higher. This wax contains oil in paraffin wax, microcrystalline wax or the like, and preferably contains graphite or molybdenum disulfide particles. The impregnated lubricating oil expands as the temperature of the bearing rises due to sliding between the bearing and the shaft, and is supplied to the sliding surface. When a bearing is used, grease may be injected into the bearing element.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to preferred examples and comparative examples.
[0019]
(1) Manufacture of sintered bearing material 81.2 kg of atomized iron powder (Atomel 300M manufactured by Kobe Steel), 18 kg of electrolytic copper powder (CE15 manufactured by Fukuda Metal Foil Powder Industry), graphite powder (CPB manufactured by Nippon Graphite Industries Co., Ltd.) 0 0.5 kg of zinc stearate powder as a molding lubricant was additionally mixed with 0.8 kg, and compression molded into a cylindrical shape. The molded body was sintered in a reducing gas having a temperature of 1120 ° C. The amount of bonded carbon in the sintered base of the iron-based sintered alloy was 0.6% by mass. The sintered body had a density of 6.2 g / cm 3 and an effective porosity of 21%. The sintered body was heated to a temperature of 850 ° C., quenched with oil, and tempered at a temperature of 180 ° C. The obtained bearing material contained a martensite structure.
[0020]
(2) Cutting and grinding The inner and outer peripheral surfaces and end faces of the heat-treated sintered bearing material are cut with a carbide tool using a lathe, and then the bearing material and the grindstone are rotated using a grinding machine. The inner peripheral surface was ground. At this time, the amount of pores exposed on the inner peripheral surface was adjusted by changing the polishing allowance. The inner diameter of the bearing is 50 mm in diameter, and the total length is 50 mm.
[0021]
These bearing samples with different processing conditions are cut, the amount of exposed pores on the inner peripheral surface is obtained by microscopic observation, the cross section including the inner peripheral surface is observed with a microscopic structure, and the sealed width close to the surface is about 50 μm or more. For the plurality of pores, the thickness of the metal part up to the inner peripheral surface was measured. The processing condition groups, which are measured values of the following (a), (b), and (c), were used as bearing samples.
(A) Example: A sample having a pore volume of 3 area% on the inner peripheral surface and a metal thickness of 10 μm on the sealing surface.
(B) Comparative Example 1: A sample having a pore volume of 1 area% on the inner peripheral surface and a metal thickness of 30 μm on the sealing surface.
(C) Comparative Example 2: A sample having an inner peripheral surface with a pore volume of 15 area% and almost no sealing near the surface.
[0022]
(3) Lubricating oil impregnation The bearing sample was vacuum impregnated with lubricating oil equivalent to ISO V G460 (kinematic viscosity at 40 ° C. 4.6 m 2 / s (460 cSt)). Each sample has a different inner peripheral surface, but the internal pores are the same and the oil content is 21%.
[0023]
(4) Bearing test The bearing sample was fixed to the housing, grease was applied to the quenched and polished shaft, and fitted to the inner periphery of the bearing sample. A radial load was applied to the shaft, and the surface pressure was 58.8 MPa (6 kgf / mm 2 ). The shaft was reciprocally rotated on a shaft sliding surface with a central angle of 100 degrees at a sliding speed of 1.2 m per minute. Each end of the reciprocating motion was paused for 0.5 seconds.
[0024]
A thermocouple was attached to the outer peripheral surface of the bearing sample, and the bearing temperature during the operation was measured. If the bearing temperature reached 150 ° C, the test was stopped. 150 ° C. is a temperature that is recognized as seizure wear based on a rule of thumb.
[0025]
(5) Measurement results of bearing temperature The bearing temperatures tested in this way are shown in Table 1. As shown in Table 1, the temperature of the sintered oil-impregnated plain bearing of the example increased in the initial stage of operation, but after that state, the temperature decreased and remained at the same temperature level until 30 hours.
[0026]
In Comparative Example 1 in which the pores were clogged by processing with a small amount of pores on the inner peripheral surface and a relatively large metal thickness on the sealing surface, the temperature became higher in the initial stage, and the temperature was continued for a while. The temperature is lowered from the above, and the temperature is stabilized at a temperature higher than that of the example. Further, in Comparative Example 2 having a surface state in which the amount of pores on the inner peripheral surface is large and there is almost no sealing due to processing, an initial temperature sudden rise does not occur as in Comparative Example 1, but the temperature rises slowly, and the Example The temperature is higher than the stable temperature of the bearing.
[0027]
In either case, the temperature does not reach 150 ° C.
[0028]
[Table 1]
Figure 0003978042
[0029]
(6) Evaluation of test results These transitions in operating temperature are considered to be due to the following reasons from the observation of the inner peripheral surface of the bearing.
[0030]
In the sintered oil-impregnated plain bearing of the example, it is considered that at the initial stage of operation, the lubricating oil is insufficient on the radial load acting surface, the initial wear progresses, and the temperature rises. Next, the wear forms a pore opening area in which the axial load and the push-up force of the lubricating oil in the bearing pores are balanced, and an ideal lubrication form is created by the initial wear. After initial wear, wear does not progress and the sliding characteristics are stable based on the wear resistance by the iron-carbon alloy base with relatively hard-quenched structure and relatively soft copper particles and the optimum pore volume. It is thought that.
[0031]
On the other hand, as in Comparative Example 1, in the case where the crushing state by processing extends from the sliding surface portion to a relatively deep depth, a certain amount of open pores are exposed due to initial wear, but the necessary lubricant supply is still insufficient. The state changes and the temperature rises. And, as the high temperature continues, the lubricating oil tends to flow out, but the metal thickness of the sealing hole is thick, the friction increases and wears, and the time until the stable period becomes longer It is thought that there is.
[0032]
Further, as in Comparative Example 2, when the amount of sealing is small and the number of pores opened on the sliding surface is relatively large, the lubricating oil is supplied to the radial load acting surface from the initial stage, and the temperature rise is relatively moderate. However, since the part other than the radial load acting surface is porous, the oil pressure on the load acting surface is likely to escape to the adjacent pores, and it is considered that the temperature changes due to insufficient lubrication. It is done.
[0033]
As described above, in order to make the bearing sliding surface a smooth surface with excellent roundness, simply grinding the surface does not provide sufficient sliding characteristics, and the inner surface of the bearing material is appropriately sealed. It can be seen that a durable sintered oil-impregnated sliding bearing is obtained when the radial load acting surface becomes a well-balanced state with the oil pressure of the lubricating oil due to initial wear.
[0034]
Sintered oil-impregnated plain bearings that have a sufficient effective porosity in such an inner peripheral surface state can also be manufactured by surface densification techniques in powder metallurgy, but there are many manufacturing processes, and when assembling the bearing into the housing There is a drawback of requiring phase alignment. Compared with that, the sintered oil-impregnated plain bearing of the present invention can be stably manufactured in a predetermined surface state by making the bearing material density, cutting and grinding conditions constant, and can be used. By doing so, it is possible to form the pore state of the sliding surface that is optimal for use conditions by utilizing the initial wear that naturally occurs. Therefore, it is excellent in bearing performance, manufacturability and assemblability.
[0035]
【The invention's effect】
As described above, the sintered plain bearing suitable for high surface pressure according to the present invention can stably maintain a state with little friction for a long period of time, so that it is possible to extend the scheduled maintenance interval and to reduce the cost. You can expect.

Claims (3)

焼入れ組織の多孔質鉄基焼結合金からなり、軸受内周面が研削面で、その内周面に露出している気孔が面積率で10%以下であり、表面近傍に、加工により目潰しされて封孔されている気孔が内周面から金属厚さが20μm以下のみに存在することを特徴とする建設機械用焼結滑り軸受。 Blinding a porous iron-based sintered alloy of quenched structure, in the grinding plane peripheral surface the bearing, of which is 10% or less in pore area ratio exposed to the peripheral surface, in the vicinity of the front surface, the working A sintered sliding bearing for construction machinery, wherein the pores sealed by the holes are present only at a metal thickness of 20 μm or less from the inner peripheral surface . 前記鉄基焼結合金が、鉄炭素系合金基地中にマルテンサイトを含むと共に、銅が分散し、銅の含有量が15〜25質量%で、有効多孔率が15〜28%であることを特徴とする請求項1記載の建設機械用焼結含油滑り軸受。The iron-based sintered alloy contains martensite in the iron-carbon alloy base, copper is dispersed, the copper content is 15 to 25% by mass, and the effective porosity is 15 to 28%. The sintered oil-impregnated plain bearing for construction machinery according to claim 1 characterized by the above-mentioned. ラジアル荷重を受けるべき軸受内周面及びその近傍の露出気孔量がその他の内周面の露出気孔量より多くかつ封孔が少くなっていることを特徴とする請求項1記載の建設機械用焼結滑り軸受。2. A baked construction machine according to claim 1, wherein the amount of exposed pores in and near the bearing inner peripheral surface to receive a radial load is larger than the amount of exposed pores in other inner peripheral surfaces and the number of sealed holes is smaller. Lid plain bearing.
JP2002012556A 2002-01-22 2002-01-22 Sintered plain bearing for construction machinery Expired - Lifetime JP3978042B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002012556A JP3978042B2 (en) 2002-01-22 2002-01-22 Sintered plain bearing for construction machinery
KR10-2003-0003940A KR100518248B1 (en) 2002-01-22 2003-01-21 Sintered sliding bearing for construction equipments
CNB031006825A CN1245582C (en) 2002-01-22 2003-01-21 Sintered slide bearing for construction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002012556A JP3978042B2 (en) 2002-01-22 2002-01-22 Sintered plain bearing for construction machinery

Publications (2)

Publication Number Publication Date
JP2003214430A JP2003214430A (en) 2003-07-30
JP3978042B2 true JP3978042B2 (en) 2007-09-19

Family

ID=27649739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002012556A Expired - Lifetime JP3978042B2 (en) 2002-01-22 2002-01-22 Sintered plain bearing for construction machinery

Country Status (3)

Country Link
JP (1) JP3978042B2 (en)
KR (1) KR100518248B1 (en)
CN (1) CN1245582C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9249830B2 (en) 2012-03-07 2016-02-02 Ntn Corporation Sintered bearing
JP2014066271A (en) * 2012-09-25 2014-04-17 Hitachi Powdered Metals Co Ltd Plain bearing assembly
JP6424983B2 (en) * 2016-05-19 2018-11-21 日立化成株式会社 Iron-based sintered oil-impregnated bearing
DE102020202739A1 (en) * 2020-03-04 2021-09-09 Mahle International Gmbh Sintered bearing bushing material, plain bearings, internal combustion engines and electrical machines
DE102020202738A1 (en) * 2020-03-04 2021-09-09 Mahle International Gmbh Plain bearing, method for producing a plain bearing, internal combustion engine with plain bearing and electrical machine with plain bearing

Also Published As

Publication number Publication date
CN1434225A (en) 2003-08-06
CN1245582C (en) 2006-03-15
KR100518248B1 (en) 2005-10-04
JP2003214430A (en) 2003-07-30
KR20030063224A (en) 2003-07-28

Similar Documents

Publication Publication Date Title
US7014367B2 (en) Oil-impregnated sintered sliding bearing
JP5085040B2 (en) Sintered sliding material, sliding member, coupling device and apparatus to which sliding member is applied
JP5378530B2 (en) Sliding bearing with improved wear resistance and method for manufacturing the same
CN103221702B (en) The sliding bearing that lubrication property improves
CN100427776C (en) Sliding bearing assembly and sliding bearing
CN101415963B (en) Sliding bearing
KR20060035557A (en) Sliding bearing for use under high load
JP4193969B2 (en) Valve guide for internal combustion engine made of iron-based sintered alloy
JP3622938B2 (en) Sliding bearing and method of using the same
JP3978042B2 (en) Sintered plain bearing for construction machinery
CN103909258B (en) Take kerosene as gear pump bearing material of medium and preparation method thereof
JP4848821B2 (en) Sliding member
JP4619302B2 (en) Slide bearing and manufacturing method thereof
JP4236665B2 (en) Self-lubricating sintered sliding material and manufacturing method thereof
CN101793291B (en) Sintered oil-retaining bearing
JP2008057626A (en) Bush for bearing device
CN105570304A (en) Novel oil-containing bearing
JP2508084B2 (en) Oil-free bearings for sewing machines
RU2199601C2 (en) Method of manufacture of sintered antifriction non-porous iron-based materials
JP2020183568A (en) Joint bushing of construction machine
Dhanasekaran Abrasive Wear Behavior of Fe-C-Cu Sintered Steels~ Containing MoS2
JP2018048381A (en) Method for producing sintered component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3978042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term