JP3977700B2 - Demolition and new construction method using existing underground structure - Google Patents

Demolition and new construction method using existing underground structure Download PDF

Info

Publication number
JP3977700B2
JP3977700B2 JP2002202955A JP2002202955A JP3977700B2 JP 3977700 B2 JP3977700 B2 JP 3977700B2 JP 2002202955 A JP2002202955 A JP 2002202955A JP 2002202955 A JP2002202955 A JP 2002202955A JP 3977700 B2 JP3977700 B2 JP 3977700B2
Authority
JP
Japan
Prior art keywords
floor
frame
dismantling
construction method
new
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002202955A
Other languages
Japanese (ja)
Other versions
JP2004044223A (en
Inventor
栄和 横城
知彦 古川
大次郎 秋田
和博 瀧沢
京輔 國近
直之 伊藤
英夫 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2002202955A priority Critical patent/JP3977700B2/en
Publication of JP2004044223A publication Critical patent/JP2004044223A/en
Application granted granted Critical
Publication of JP3977700B2 publication Critical patent/JP3977700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、市街地などのビルを解体し、新規に施工する場合の、特に地下工事部分における施工の合理化を図る既存地下躯体を利用した解体および新築工法に関するものである。
【0002】
【従来の技術】
市街地などのビルを解体し、新規に施工する場合に、敷地一杯の既存地下躯体を解体しての新築工事は不可能な場合があり、既存地下外壁と底盤を残し、新築躯体と合体させる設計が提案される。
【0003】
その場合の問題点は、▲1▼地下躯体の進捗に伴い、ある段階で浮力が卓越してしまい、浮いてしまう。▲2▼スラブの解体により、外壁の支持点が減ることにより、山止め壁としての外壁が崩壊してしまうなどである。
【0004】
そこで、浮力対応のため、躯体重量を既存躯体から新築躯体へと置換しながら、なお且つ、既存地下外周壁の健全性確保のため、外壁の支持点を維持する施工方法が要求される。
【0005】
このような要求に答えるために、逆打ち工法の基本的手順として、1F床を先行して施工する1F床先行工法がある。1F床を先行して施工することにより作業ヤードと上部鉄骨作業の足場を確保することが可能となる。この1F床先行工法では、下記の施工フローによる。
【0006】
1)B1立上り解体
地上上屋解体工事完了後、地下内の機器を搬出し、既存1F床上での置構台架設し、間仕切り壁を先行解体する。
2)構真柱・1G梁建方
既存躯体に穴あけを行っての本設地下鉄骨柱建方である。
3)1F床新躯体
吊型枠による1F床躯体を逆打ちで施工する。
4)B2立上り解体
既存B2F壁、B1床の解体
5)B1G建方
6)B1床新躯体
7)切梁架設(B2床上)
8)B3立上り解体
9)B2床新躯体
10)B4立上り解体
11)B3立上り新躯体
12)切梁解体
13)B1・B2・B3立上り後打ち躯体(逆打ち)
【0007】
かかる1F床先行工法では、前記のごとく1F床躯体が早期に完了するため、作業ヤードとして利用できる、タワークレーンを1F床に設置できるのでクライミングが1回減るという利点はあるものの、工区分け(作業ヤ ドを確保しながら)による解体及び1F床の施工は工程的ロスが大きく、1Fスラブが下階作業に邪魔となる、また、切梁の全面設置が必要であり、切梁架設の動線が確保できないという欠点がある。
【0008】
さらに、B3解体は切梁下で狭い、1F床コンの強度が出ないとB2解体ができない(外壁支点) 、B1床施工の支保工足場がB3床から立ち上げが必要、段階で切梁からマットまでの外壁の支点間距離が大きい、地下鉄骨建込み時、既存躯体の穴あけが4層必要、B1・B2・B3の3フロアの柱壁が後打ち躯体となる(逆打ち範囲の増) などのマイナス面もある。
【0009】
これに対して、中央部1F床を早期に完成し作業ヤードとして確保でき、切梁の範囲が少ないものとして、下記のアイランド・0段切梁工法が検討され、図18〜34に示す。
【0010】
図18に示すように、新設マット躯体1の先行施工を行い、東西タワークレーン2を設置し(新設マット躯体1より支持)、中央東B1・B2の解体を行う。
【0011】
図19に示すように、中央西B1・B2の解体を行い、既存床穴あけを行うなどして本設柱としての中央東構真柱3を建込む。図20に示すように、外周B1の解体を行い、中央東B1階の鉄骨建方を行い、中央東B1階の床・梁躯体( 旧躯体B2より支持、逆打ち) を施工する。
【0012】
図21に示すように、中央西の構真柱3を建込み、B1階梁鉄骨建方を行い、中央東1階梁鉄骨の建方及びB1壁・スラブ躯体(新B1より支持、順打ち) を施工する。図22に示すように、中央西B1階床梁躯体(旧B2より支持、逆打ち)を施工する。
【0013】
次に中央西B1壁・スラブ躯体を施工し、図23に示すように、中央東B1支保工解体し、東外周の構真柱3を建込み、0段切梁4を架設する。1F床上をヤード5として使用開始する。
【0014】
図24に示すように、西外周の構真柱3と0段切梁4の架設を行い、東外周B2の解体と斜切梁6を架設する。
【0015】
図25に示すように、西B2の解体を行い、図26に示すように、東西外周部B1階床梁躯体を施工し、図27に示すように、外周0段切梁4を撤去し、図28に示すように、東西外周B1壁スラブ躯体を施工し、図29に示すように、中央部B3Fを解体する(B2F型枠支保工解体搬出完了後) 。
【0016】
図30に示すように、東西外周部B3Fを解体し、図31に示すように、B2床梁躯体(旧B3より支持、逆打ち) を施工し、地上鉄骨工事に着手する。
【0017】
図32に示すように、B3階の支保工を解体し、また、地上工事は継続する。図33に示すように、旧B3(B4)の解体を行い、また、地上工事は継続する。図34に示すように、旧B3(B4)の解体を行い、地上工事は継続する。
【0018】
B2・B3の後打ち躯体施工を行い、地下後打躯体の施工を完了する。
【0019】
【発明が解決しようとする課題】
このような図18〜34に示すアイランド・0段切梁工法では、先に述べたように中央部1F床を早期に完成し作業ヤードとして確保でき、また、切梁の範囲が少ないというメリットの他に、地下の鉄骨梁建方、切梁作業が地上のクレーンで行える、B1及び一部B3躯体が順打ちで施工できる(B2・B3の2フロアの柱壁が後打ち躯体となる、逆打ち範囲の減)、地下各階の型枠支保工が1フロア分の高さで施工可能、地下各階の躯体足場が脚立程度で可能、B3・B4の解体作業は2フロア分のストロークが確保できる、B1・B2の解体はオープンで行える等のメリットもある。
【0020】
しかし、第1に、中央1Fのスラブができるまで他工区の作業動線が確保できないこと、第2に、1F床全体完了までの工期が長くなる(地上鉄骨着手の遅れ) こと、第3に、B1・B2の解体工事が継続してできないことなどの欠点がある。
【0021】
本発明の目的はこのような1F床先行工法やアイランド・0段切梁工法での不都合を解消し、安定した作業床を確保でき、土圧にも有利で、なおかつ解体効率によい施工法が得られる既存地下躯体を利用した解体および新築工法を提供することにある。
【0022】
【課題を解決するための手段】
本発明は前記目的を達成するため、新設マット躯体を先行して施工し、既存地下躯体の上部階は外周1スパンを切梁代わりとして残し、オープンで解体し、既存床に穴あけをして本設柱としての構真柱を建込み、この構真柱を基に1階クランド階・地下1階の鉄骨建方を行い、さらに、構台を架設し、また、外周のみ0段切梁を架設し、次いで、地下に順次下がる1フロアーずつの旧躯体解体及び新床躯体施工を行うことを要旨とするものである。
【0023】
本発明によれば、マット躯体の先行により、地下躯体の浮力対策として重量を稼ぐことができ、地下躯体手順を有利に進めることができ、構台の設置で、安定した作業床が得られ、躯体進捗に左右されない作業ヤードが確保でき、外周のみ0段切梁を架設と1フロアーずつの旧躯体解体及び新床躯体施工で、切梁の範囲が少なく、地下の鉄骨梁建方、切梁作業が地上のクレーンで行え、それに加えて、逆打ち範囲の減少や、型枠支保工の高さが低くてすみ、躯体足場も脚立程度ですみ、解体作業も容易性が増すことができる。
具体的には下記の通りである。
・躯体進捗に左右されない作業ヤードが確保できる
・切梁の範囲が少ない
・地下の鉄骨梁建方、切梁作業が地上のクレーンで行える
・B1及び一部B3躯体が順打ちで施工できる(B2・B3の2フロアの柱壁が後打ち躯体となる、逆打ち範囲の減)
・地下各階の型枠支保工が1フロア分の高さで施工可能
・地下各階の躯体足場が脚立程度で可能
・B3・B4解体作業は2フロア分のストロークが確保できる
・B1・B2の解体はオープンで行える
【0024】
【発明の実施の形態】
以下、本発明の実施の形態を詳細に説明する。図1〜図17は本発明の既存地下躯体を利用した解体および新築工法の1実施形態を示す各工程の説明図で、前記比較工法であるアイランド・0段切梁工法を示す図18〜34と同一構成要素には同一参照符号を付したものである。工事概要としては地下4階の旧躯体の地下構造物があり、ここに新築で地下3階、地上10階以上の建物を建築する場合である。
【0025】
図1に示すように、新設マット躯体1を先行して施工し、東西タワークレーン2を新設マット躯体1に支持させて設置する。西B1・B2は既存躯体の外周1スパンを切梁代わりとして残し、オープンで解体する。このように地下解体工事に先行し、新設マット躯体1の先行を行うのは、浮力対応として地下施工を有利に進めるため、また、旧B3床解体時の外壁支点間距離を小さくするためである。
【0026】
前記のごとく、B2Fまでのオープン解体とすることにより、B2F解体時に大型重機の使用が可能となる。また解体材の分別及び搬出が容易となり、作業効率が大幅にUPする。(作業性の悪い先行床躯体が完成した下部での作業が大幅に削減できる。)これに加えて、地下部の鉄骨建方において、地上よりタワークレーンを使用して障害物がない状況での施工となり、作業性及び施工精度の確保ができる。また、B1床より上部の地下躯体工事において、資材の搬出入が容易となる。
【0027】
図2に示すように、既存躯体の干渉部である既存床に穴あけをして西の本設柱である構真柱3を建込み、1G・B1Gの地下鉄骨の鉄骨建方を行う。
【0028】
図3に示すように、新設マット1上より支持し、また、既存B2・B3床よりフレ止め補強をして1FL上のレベルに西の構台7を組立し、外周1スパン残して東B1・B2を残り解体する。構台の支持は新設マット躯体とし、鉄骨と同じく既存躯体に穴あけし、支持柱の建込みを行う。
【0029】
図4に示すように、外壁補強8として腹起こし梁・バットレス壁を設置して中央部B1・B2を解体し、図5に示すように東の構真柱3(本設柱)を建込み、1G・B1Gの鉄骨建方を行い、東の構台7を組立てる。
【0030】
一般逆打ち工法の場合は、1階床の構台利用が通常であるが、逆打ち解体の場合、解体作業の効率化と新設躯体の同時施工を重視する必要がある。そのため、最低限の構台7を先行架設することとした。1F床躯体に先行して、設置することにより、解体工事および躯体工事の工程を妨げることなく、連続して施工ができ、構台7上を解体ガラの分別及び積み込みヤードとして使用できる。なお、B1Fおよび1Fの床躯体に支持柱のダメ穴が残るが、振れ止めを既存B2床とB3床を利用して施工すれば省力化できる。
【0031】
図6に示すように、外周部地下の残り鉄骨の建方を行い、外周0段切梁4の架設をなし、図7に示すように外周B2Fの解体、中央部B1F床梁躯体(旧B2より支持、逆打ち)を施工する。
【0032】
前記切梁は本設鉄骨を利用し、外周のみとした。切梁架設完了後、外周1スパンの残躯体の解体を行う。既存外壁の配筋不明部分および強度不足の部分には、外壁補強を行う。
【0033】
図8に示すように、外周部B1F床梁躯体(逆打ち)を施工し、中央部B1F壁・スラブ躯体(新B1床より支持、順打ち)を施工し、図9に示すように、0段切梁4の解体を行う。
【0034】
このように既存B2Fより型枠サポートにて支持し、B1Fの梁・床躯体を新設し、外壁の支持点とする(逆打ち)、次にB1F立上り躯体を順打ちにて新設する。0段切梁はこの時点で解体し、外周部の躯体工事を行う。
【0035】
図10に示すように、外周B1の壁スラブ躯体を施工し、図11に示すように1F床の強度確認後、構台7を解体し、B1・B2の支保工を解体し、既存B3の旧躯体立上りを解体する。また、B3Fの外壁に腹起こし梁・バットレス壁を設置する。
【0036】
図12に示すように、地上鉄骨建方を開始し、図13に示すように、B2床梁躯体(旧B3床より支持、逆打ち) を施工し、地上鉄骨工事を継続する。
【0037】
図14に示すようにB3の支保工を解体し、B4の旧躯体を解体する。また、B2の後打ち躯体を施工し、図15、図16に示すようにB3の床躯体(下部駐車ピット及び水槽他、マット上より順打ち) を施工し、図17に示すように、B3の後打ち躯体を施工し、地下各階の仮設開口をふさぎ、地下躯体完了となる。
【0038】
【発明の効果】
以上述べたように本発明の既存地下躯体を利用した解体および新築工法は、1F床先行工法やアイランド・0段切梁工法での不都合を解消し、安定した作業床を確保でき、土圧にも有利で、なおかつ解体効率のよい施工法が得られるもので、下記の効果を発揮することができる。
▲1▼地下躯体の浮力対策
マット躯体の先行により、重量を稼ぐことができ、地下躯体手順を有利に進めることができ、逆打ち工法を採用したことにより、1フロアー分の型枠支保工で新築躯体を構築することができ、解体分の重量とうまく置換することができる。
▲2▼水圧対策
0段切梁の採用により、切梁下の狭隘な場所での作業を削減できる。また、解体工事の上でも、大型の重機が使用でき、手間の削減となる。また、逆打ち工法の採用により、解体工事と新築工事の交互サイクルを確立し有効な既存外壁支持点を作ることができ、山止め壁としての既存外壁の健全性を確保することができる。
▲3▼作業ヤードの確保
逆打ち工法を採用したにもかかわらず、あえて構台の設置を行うことで、解体工事、新築工事共、工程の流れを妨げることなく、地下工事を進めることができる。
【図面の簡単な説明】
【図1】本発明の既存地下躯体を利用した解体および新築工法の1実施形態を示す第1工程の説明図である。
【図2】本発明の既存地下躯体を利用した解体および新築工法の1実施形態を示す第2工程の説明図である。
【図3】本発明の既存地下躯体を利用した解体および新築工法の1実施形態を示す第3工程の説明図である。
【図4】本発明の既存地下躯体を利用した解体および新築工法の1実施形態を示す第4工程の説明図である。
【図5】本発明の既存地下躯体を利用した解体および新築工法の1実施形態を示す第5工程の説明図である。
【図6】本発明の既存地下躯体を利用した解体および新築工法の1実施形態を示す第6工程の説明図である。
【図7】本発明の既存地下躯体を利用した解体および新築工法の1実施形態を示す第7工程の説明図である。
【図8】本発明の既存地下躯体を利用した解体および新築工法の1実施形態を示す第8工程の説明図である。
【図9】本発明の既存地下躯体を利用した解体および新築工法の1実施形態を示す第9工程の説明図である。
【図10】本発明の既存地下躯体を利用した解体および新築工法の1実施形態を示す第10工程の説明図である。
【図11】本発明の既存地下躯体を利用した解体および新築工法の1実施形態を示す第11工程の説明図である。
【図12】本発明の既存地下躯体を利用した解体および新築工法の1実施形態を示す第12工程の説明図である。
【図13】本発明の既存地下躯体を利用した解体および新築工法の1実施形態を示す第13工程の説明図である。
【図14】本発明の既存地下躯体を利用した解体および新築工法の1実施形態を示す第14工程の説明図である。
【図15】本発明の既存地下躯体を利用した解体および新築工法の1実施形態を示す第15工程の説明図である。
【図16】本発明の既存地下躯体を利用した解体および新築工法の1実施形態を示す第16工程の説明図である。
【図17】本発明の既存地下躯体を利用した解体および新築工法の1実施形態を示す第17工程の説明図である。
【図18】代替検討案としてのアイランド・0段切梁工法の第1工程を示す説明図である。
【図19】代替検討案としてのアイランド・0段切梁工法の第2工程を示す説明図である。
【図20】代替検討案としてのアイランド・0段切梁工法の第3工程を示す説明図である。
【図21】代替検討案としてのアイランド・0段切梁工法の第4工程を示す説明図である。
【図22】代替検討案としてのアイランド・0段切梁工法の第5工程を示す説明図である。
【図23】代替検討案としてのアイランド・0段切梁工法の第6工程を示す説明図である。
【図24】代替検討案としてのアイランド・0段切梁工法の第7工程を示す説明図である。
【図25】代替検討案としてのアイランド・0段切梁工法の第8工程を示す説明図である。
【図26】代替検討案としてのアイランド・0段切梁工法の第9工程を示す説明図である。
【図27】代替検討案としてのアイランド・0段切梁工法の第10工程を示す説明図である。
【図28】代替検討案としてのアイランド・0段切梁工法の第11工程を示す説明図である。
【図29】代替検討案としてのアイランド・0段切梁工法の第12工程を示す説明図である。
【図30】代替検討案としてのアイランド・0段切梁工法の第13工程を示す説明図である。
【図31】代替検討案としてのアイランド・0段切梁工法の第14工程を示す説明図である。
【図32】代替検討案としてのアイランド・0段切梁工法の第15工程を示す説明図である。
【図33】代替検討案としてのアイランド・0段切梁工法の第16工程を示す説明図である。
【図34】代替検討案としてのアイランド・0段切梁工法の第17工程を示す説明図である。
【符号の説明】
1…新設マット躯体
2…タワークレーン
3…構真柱
4…0段切梁
5…ヤード
6…斜切梁
7…構台
8…外壁補強
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a dismantling and a new construction method using an existing underground structure for streamlining construction, particularly in an underground construction part, when a building such as an urban area is dismantled and newly constructed.
[0002]
[Prior art]
When dismantling buildings such as urban areas and newly constructing them, it may not be possible to construct a new construction by dismantling the existing underground building full of the site. Is proposed.
[0003]
The problems in that case are as follows: (1) As the underground structure progresses, the buoyancy becomes prominent at a certain stage and floats. (2) When the slab is disassembled, the outer wall as the mountain retaining wall collapses due to a decrease in the support points of the outer wall.
[0004]
Therefore, in order to cope with buoyancy, there is a demand for a construction method that maintains the support point of the outer wall while ensuring the soundness of the existing underground outer peripheral wall while replacing the weight of the existing structure from the existing structure to the new structure.
[0005]
In order to respond to such a request, there is a 1F floor advance construction method in which the 1F floor is constructed in advance as a basic procedure of the reverse driving method. By constructing the 1F floor in advance, it is possible to secure a working yard and a scaffold for upper steel work. In this 1F floor advance construction method, the following construction flow is used.
[0006]
1) After the completion of the B1 rising dismantling ground roof dismantling work, the equipment in the basement is carried out, the frame is installed on the existing 1F floor, and the partition wall is dismantled in advance.
2) Construction column / 1G beam construction This is the construction of the main sub-frame.
3) 1F floor new frame with 1F floor new frame hanging formwork is constructed by backlashing.
4) B2 rising dismantling Existing B2F wall, B1 floor dismantling 5) B1G building 6) B1 floor new frame 7) Cut beam installation (on B2 floor)
8) B3 rising dismantling 9) B2 floor new body
10) B4 rising dismantling
11) B3 rising new body
12) Cutting beam dismantling
13) B1 and B2 and B3 after the rising edge (reverse strike)
[0007]
In this 1F floor advance construction method, as described above, the 1F floor frame is completed at an early stage. Therefore, the tower crane can be installed on the 1F floor because it can be used as a work yard. The dismantling and construction of the 1F floor (while securing the guard) has a large process loss, and the 1F slab interferes with the work on the lower floor, and it is necessary to install the entire surface of the beam. However, there is a drawback that cannot be secured.
[0008]
In addition, B3 dismantling is narrow under the beam, and B2 dismantling cannot be done unless the strength of the 1F floor joint is strong (outer wall fulcrum), the B1 floor construction scaffolding needs to be raised from the B3 floor, The distance between the fulcrum of the outer wall to the mat is large. When the subway is built, four layers of drilling of the existing frame are required, and the pillar walls of the three floors B1, B2, and B3 become the post-casting frame (increase in the reverse strike range) There are also downsides.
[0009]
On the other hand, the following island / zero-stage beam construction method has been studied as one that can complete the center 1F floor at an early stage and secure it as a work yard and has a small range of beam beams, and is shown in FIGS.
[0010]
As shown in FIG. 18, the new mat housing 1 is preliminarily constructed, the east-west tower crane 2 is installed (supported from the new mat housing 1), and the central east B1 and B2 are disassembled.
[0011]
As shown in FIG. 19, the central east structure true pillar 3 as the main pillar is built by dismantling the central west B1 and B2 and drilling the existing floor. As shown in FIG. 20, the outer periphery B1 is disassembled, the steel frame is erected on the B1 floor of the central east, and the floor / beam frame (supported from the old frame B2 and backlashed) is constructed on the B1 floor of the central east.
[0012]
As shown in FIG. 21, the B1 floor beam steel frame is built by constructing the central west frame column 3, and the B1 wall / slab frame (supported from the new B1 and ordered) ). As shown in FIG. 22, a central west B1 floor beam structure (supported from the old B2, backlashed) is constructed.
[0013]
Next, as shown in FIG. 23, the central west B1 wall / slab frame is constructed, and the central east B1 support construction is dismantled. Start using 1F floor as Yard 5.
[0014]
As shown in FIG. 24, the construction pillar 3 and the zero-stage beam 4 on the west outer periphery are installed, and the dismantling of the east outer periphery B2 and the oblique beam 6 are installed.
[0015]
As shown in FIG. 25, west B2 is dismantled, as shown in FIG. 26, the east-west outer periphery B1 floor beam frame is constructed, and as shown in FIG. As shown in FIG. 28, the east / west outer periphery B1 wall slab frame is constructed, and as shown in FIG. 29, the central portion B3F is dismantled (after completion of the B2F formwork support dismantling and dismantling).
[0016]
As shown in FIG. 30, the east-west outer peripheral part B3F is dismantled, and as shown in FIG. 31, a B2 floor beam frame (supported from the old B3, strikes back) is constructed, and the ground steel work is started.
[0017]
As shown in FIG. 32, the support work on the B3 floor is dismantled and the ground work continues. As shown in FIG. 33, the old B3 (B4) is dismantled and the ground work continues. As shown in FIG. 34, the old B3 (B4) is dismantled and the ground work continues.
[0018]
B2 and B3 post-casting construction is performed, and the construction of the underground post-casting construction is completed.
[0019]
[Problems to be solved by the invention]
18 to 34 shown in FIGS. 18 to 34, as described above, the center 1F floor can be completed early and secured as a work yard, and the range of cut beams is small. In addition, underground steel beam construction, beam cutting work can be done with a crane on the ground, B1 and part B3 frame can be constructed in order (B2 and B3 column walls on 2 floors are post-casting ranges ) Formwork support work on each floor is possible at a height of one floor, frame scaffolding on each basement floor is possible with a stepladder, B3 and B4 dismantling work can secure a stroke of two floors, B1・ B2 can be dismantled open.
[0020]
However, firstly, it is impossible to secure the work flow line of the other work area until the center 1F slab is completed, and secondly, the work period until the entire 1F floor is completed (delay of the ground steel frame start), thirdly , B1 and B2 dismantling work has a drawback that it can not continue.
[0021]
The object of the present invention is to solve the disadvantages of the 1F floor advance construction method and the island / zero-stage beam construction method, to secure a stable work floor, advantageous to earth pressure, and to have a good dismantling efficiency. The purpose is to provide dismantling and new construction methods using the existing underground structures.
[0022]
[Means for Solving the Problems]
In order to achieve the above object, the present invention constructs a new mat frame in advance, leaves the upper floor of the existing underground frame as an alternative to the cut beam, disassembles it open, drills the existing floor A built-up column is built as a building column, and the first-floor ground floor and underground 1st-floor steel frame is built based on this built-up column. Furthermore, a gantry is built and a zero-stage beam is built only on the outer periphery. Then, the gist is to perform the construction of the old building and the new building of the floor one floor at a time.
[0023]
According to the present invention, the mat body leads to gain weight as a countermeasure against the buoyancy of the underground body, the underground body procedure can be advantageously advanced, a stable work floor can be obtained by installing the gantry, and the body A work yard that does not depend on the progress can be secured, and the construction of the underground steel beam and the beam work on the ground is reduced by installing 0-stage beams on the outer circumference and dismantling the old and new floor frames one floor at a time. In addition to this, the range of backlash can be reduced, the height of the formwork support work can be low, the frame scaffolding can be as low as a stepladder, and the disassembly work can be facilitated.
Specifically, it is as follows.
・ Work yard that is not affected by the progress of the frame can be secured. ・ The range of cutting beams is small. ・ The underground steel beam construction and the beam cutting work can be done with the ground crane. ・ B1 and some B3 frames can be constructed in order (B2 / B3) (The two-floor pillar wall will be the post-casting frame, reducing the range of backlashing)
-Formwork support on each basement floor can be constructed at the height of one floor-The scaffolding on each basement floor can be built with a stepladder-B3 and B4 disassembly work can secure a stroke of two floors-B1 and B2 disassembly Can be done open. [0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. 1-17 is explanatory drawing of each process which shows one Embodiment of the dismantling using the existing underground skeleton of this invention, and a new construction method, FIG. 18-34 which shows the island and 0 stage cut beam method which is the said comparative construction method. The same components are denoted by the same reference numerals. As an outline of the construction, there is an underground structure of the old building on the 4th floor underground, and this is a case where a newly built building with 3 floors underground and 10 floors above ground is built.
[0025]
As shown in FIG. 1, the new mat frame 1 is constructed in advance, and the east-west tower crane 2 is supported by the new mat frame 1 and installed. West B1 and B2 are left open and dismantled, leaving one span of the outer periphery of the existing frame as a substitute for the beam. The reason why the new mat frame 1 is preceded by the underground demolition work is to advance the underground construction advantageously for buoyancy and to reduce the distance between the outer wall fulcrums during the old B3 floor demolition. .
[0026]
As described above, by using open dismantling up to B2F, large heavy machinery can be used during B2F dismantling. In addition, the dismantling material can be easily separated and carried out, and the working efficiency is greatly improved. (The work at the lower part of the preceding floor frame, which has poor workability, can be greatly reduced.) In addition, in the steel frame construction of the underground part, there is no obstacle using a tower crane from the ground. It becomes construction, and workability and construction accuracy can be secured. Moreover, in the underground frame construction above the B1 floor, the material can be easily carried in and out.
[0027]
As shown in FIG. 2, the construction floor 3 which is a west main pillar is built by drilling the existing floor which is an interference part of the existing frame, and the steel frame construction of the 1G / B1G subway frame is performed.
[0028]
As shown in FIG. 3, it is supported from the new mat 1 and is reinforced with anti-friction from the existing B2 and B3 floors, and the west gantry 7 is assembled to the level above 1FL. The remaining B2 is dismantled. The support for the gantry will be a new mat frame, which will be drilled in the existing frame in the same way as the steel frame, and the support columns will be built.
[0029]
As shown in FIG. 4, the erection beam and buttress wall are installed as the outer wall reinforcement 8 to dismantle the central parts B1 and B2, and the eastern pillar 3 (main pillar) is installed as shown in FIG. 1G and B1G steel frame construction is performed and the east gantry 7 is assembled.
[0030]
In the case of the general reverse construction method, the use of the ground floor gantry is normal. However, in the case of reverse strike dismantling, it is necessary to emphasize the efficiency of the dismantling work and the simultaneous construction of the new frame. Therefore, the minimum gantry 7 was decided to be installed in advance. By installing prior to the 1F floor frame, construction can be performed continuously without interfering with the steps of demolition work and frame work, and the gantry 7 can be used as a separation yard and loading yard. In addition, although the useless hole of a support pillar remains in the floor frame of B1F and 1F, if the steady rest is constructed using the existing B2 floor and B3 floor, labor can be saved.
[0031]
As shown in FIG. 6, the remaining steel frame in the basement of the outer periphery is constructed, and the outer periphery 0-stage beam 4 is constructed. As shown in FIG. 7, the disassembly of the outer periphery B2F, the center B1F floor beam frame (old B2 More support, reverse strike).
[0032]
The cutting beam was made of a steel frame and only the outer periphery. After completion of piercing of the beam, dismantling of the remaining 1 span of the outer periphery. Reinforce the outer wall of the existing outer wall where the bar arrangement is unknown and where the strength is insufficient.
[0033]
As shown in FIG. 8, the outer peripheral part B1F floor beam frame (reverse strike) is constructed, and the central part B1F wall / slab frame (supported from the new B1 floor, forward strike) is constructed. As shown in FIG. The stepped beam 4 is disassembled.
[0034]
In this way, the existing B2F is supported by the formwork support, the B1F beam / floor frame is newly set as a support point of the outer wall (reverse hitting), and then the B1F rising frame is newly set by forward hitting. The zero-stage beam will be dismantled at this point and the outer frame will be constructed.
[0035]
As shown in FIG. 10, the wall slab housing of the outer periphery B1 is constructed, and after checking the strength of the 1F floor as shown in FIG. 11, the gantry 7 is disassembled, the supporting work of B1 and B2 is dismantled, and the old B3 Dismantle the body rise. In addition, an upset beam / buttress wall is installed on the outer wall of B3F.
[0036]
As shown in FIG. 12, the construction of the ground steel frame is started, and as shown in FIG. 13, the B2 floor beam frame (supported from the old B3 floor, backlash) is constructed, and the ground steel construction is continued.
[0037]
As shown in FIG. 14, the support work of B3 is dismantled, and the old housing of B4 is dismantled. In addition, a B2 post-casting frame was constructed, and a B3 floor frame (lower parking pit and water tank, etc., in order from the mat) was constructed as shown in FIGS. 15 and 16, and as shown in FIG. After the construction, the temporary building on each basement floor is closed and the underground building is completed.
[0038]
【The invention's effect】
As described above, the dismantling and new construction method using the existing underground structure of the present invention eliminates the disadvantages of the 1F floor advance construction method and the island / zero-stage beam construction method, secures a stable work floor, Is advantageous, and a construction method with high disassembly efficiency can be obtained, and the following effects can be exhibited.
(1) Underground buoyancy countermeasure mats The weight of the mat can be increased by the advance of the mat body, and the underground body procedure can be advantageously advanced. A new building can be constructed and can be successfully replaced with the weight of the dismantled body.
(2) Water pressure countermeasures By adopting a zero-stage beam, work in a confined space under the beam can be reduced. In addition, large heavy machinery can be used even during demolition work, which reduces labor. In addition, by adopting the reverse driving method, an alternate cycle of dismantling work and new construction work can be established to make an effective existing outer wall support point, and the soundness of the existing outer wall as a retaining wall can be secured.
(3) Securing the work yard Despite the adoption of the counter-striking method, it is possible to proceed with the underground work without disturbing the flow of the process for both the dismantling work and the new construction work by intentionally installing the gantry.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram of a first step showing one embodiment of a dismantling and a new construction method using an existing underground structure of the present invention.
FIG. 2 is an explanatory diagram of a second step showing one embodiment of the dismantling and new construction method using the existing underground structure of the present invention.
FIG. 3 is an explanatory diagram of a third step showing one embodiment of the dismantling and new construction method using the existing underground structure of the present invention.
FIG. 4 is an explanatory diagram of a fourth step showing one embodiment of the dismantling and new construction method using the existing underground structure of the present invention.
FIG. 5 is an explanatory diagram of a fifth step showing one embodiment of the dismantling and new construction method using the existing underground structure of the present invention.
FIG. 6 is an explanatory diagram of a sixth step showing one embodiment of the dismantling and new construction method using the existing underground structure of the present invention.
FIG. 7 is an explanatory diagram of a seventh step showing one embodiment of the dismantling and new construction method using the existing underground structure of the present invention.
FIG. 8 is an explanatory diagram of an eighth step showing one embodiment of dismantling and new construction method using the existing underground skeleton of the present invention.
FIG. 9 is an explanatory diagram of a ninth step showing one embodiment of dismantling and new construction method using the existing underground skeleton of the present invention.
FIG. 10 is an explanatory diagram of a tenth step showing one embodiment of dismantling and new construction method using the existing underground skeleton of the present invention.
FIG. 11 is an explanatory diagram of an eleventh step showing one embodiment of the dismantling and new construction method using the existing underground structure of the present invention.
FIG. 12 is an explanatory diagram of a twelfth process showing one embodiment of the dismantling and new construction method using the existing underground skeleton of the present invention.
FIG. 13 is an explanatory diagram of a thirteenth process showing one embodiment of dismantling and new construction method using the existing underground skeleton of the present invention.
FIG. 14 is an explanatory view of a fourteenth step showing one embodiment of the dismantling and new construction method using the existing underground skeleton of the present invention.
FIG. 15 is an explanatory diagram of a fifteenth step showing one embodiment of dismantling and new construction method using the existing underground skeleton of the present invention.
FIG. 16 is an explanatory view of a sixteenth step showing one embodiment of the dismantling and new construction method using the existing underground skeleton of the present invention.
FIG. 17 is an explanatory view of a seventeenth step showing one embodiment of dismantling and new construction method using the existing underground skeleton of the present invention.
FIG. 18 is an explanatory diagram showing a first step of an island zero-stage beam construction method as an alternative study plan.
FIG. 19 is an explanatory diagram showing a second step of the island / zero-stage beam construction method as an alternative study plan.
FIG. 20 is an explanatory diagram showing a third step of the island / zero-stage beam construction method as an alternative study plan.
FIG. 21 is an explanatory diagram showing a fourth step of the island zero-stage beam construction method as an alternative study plan.
FIG. 22 is an explanatory diagram showing a fifth step of the island zero-stage beam construction method as an alternative study plan.
FIG. 23 is an explanatory diagram showing a sixth step of the island zero-stage beam construction method as an alternative study plan.
FIG. 24 is an explanatory diagram showing a seventh step of an island / zero-stage beam construction method as an alternative study plan.
FIG. 25 is an explanatory diagram showing an eighth step of an island / zero-stage beam construction method as an alternative study plan.
FIG. 26 is an explanatory diagram showing a ninth step of the island 0-stage beam method as an alternative study plan.
FIG. 27 is an explanatory diagram showing a tenth step of an island zero-stage beam construction method as an alternative study plan.
FIG. 28 is an explanatory diagram showing an eleventh step of an island / zero-stage beam construction method as an alternative study plan.
FIG. 29 is an explanatory diagram showing a twelfth step of an island / zero-stage beam construction method as an alternative study plan.
FIG. 30 is an explanatory diagram showing a thirteenth step of an island zero-stage beam construction method as an alternative study plan.
FIG. 31 is an explanatory diagram showing a 14th step of an island 0-stage beam method as an alternative study plan.
FIG. 32 is an explanatory diagram showing a fifteenth step of the island zero-stage beam construction method as an alternative study plan.
FIG. 33 is an explanatory diagram showing a sixteenth step of an island zero-stage beam construction method as an alternative study plan.
FIG. 34 is an explanatory diagram showing a seventeenth step of an island / zero-stage beam construction method as an alternative study plan.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Newly installed mat frame 2 ... Tower crane 3 ... Structural pillar 4 ... 0-stage beam 5 ... Yard 6 ... Oblique beam 7 ... Gantry 8 ... Exterior wall reinforcement

Claims (1)

新設マット躯体を先行して施工し、既存地下躯体の上部階は外周1スパンを切梁代わりとして残し、オープンで解体し、既存床に穴あけをして本設柱としての構真柱を建込み、この構真柱を基に1階グランド階・地下1階の鉄骨建方を行い、さらに、構台を架設し、また、外周のみ0段切梁を架設し、次いで、地下に順次下がる1フロアーずつの旧躯体解体及び新床躯体施工を行うことを特徴とした既存地下躯体を利用した解体および新築工法。A new mat frame was constructed in advance, and the upper floor of the existing underground frame was left open as a beam instead of a beam, dismantled open, drilled into the existing floor, and a built-up column as a main column was built. Based on this structural pillar, the first-floor ground floor and the first basement steel frame will be built, the base will be erected, the 0-step beam will be erected only on the outer periphery, and then the floor will be lowered to the basement in sequence. Demolition and new construction methods using existing underground structures, characterized by the construction of old and new floor structures.
JP2002202955A 2002-07-11 2002-07-11 Demolition and new construction method using existing underground structure Expired - Fee Related JP3977700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002202955A JP3977700B2 (en) 2002-07-11 2002-07-11 Demolition and new construction method using existing underground structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002202955A JP3977700B2 (en) 2002-07-11 2002-07-11 Demolition and new construction method using existing underground structure

Publications (2)

Publication Number Publication Date
JP2004044223A JP2004044223A (en) 2004-02-12
JP3977700B2 true JP3977700B2 (en) 2007-09-19

Family

ID=31708995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002202955A Expired - Fee Related JP3977700B2 (en) 2002-07-11 2002-07-11 Demolition and new construction method using existing underground structure

Country Status (1)

Country Link
JP (1) JP3977700B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103205983B (en) * 2013-04-15 2014-12-10 中建三局第二建设工程有限责任公司 Construction method of basement rear support system
JP5925231B2 (en) * 2014-03-11 2016-05-25 大成建設株式会社 Building construction method and underground building of new building
CN111962912B (en) * 2020-08-14 2021-10-08 山东金城建设有限公司 Integral hoisting and dismantling construction method for high-altitude frame column
CN113338333A (en) * 2021-06-09 2021-09-03 中铁四局集团第五工程有限公司 Quick mounting method for steel beam plate under cover-excavation top-down condition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3637519B2 (en) * 1997-08-04 2005-04-13 清水建設株式会社 Building rebuilding method
JP3761323B2 (en) * 1997-11-06 2006-03-29 株式会社竹中工務店 How to rebuild a building
JP3724320B2 (en) * 2000-03-17 2005-12-07 鹿島建設株式会社 Construction method for underground structures
JP2001262595A (en) * 2000-03-22 2001-09-26 Kajima Corp Building construction method of underground building frame
JP3728654B2 (en) * 2000-04-19 2005-12-21 清水建設株式会社 Building dismantling and construction methods

Also Published As

Publication number Publication date
JP2004044223A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
US6082058A (en) Lifting method of building construction from top to bottom
CN101294390A (en) Support system and construction method for smoothening-digging partial center island foundation pit
CN103866693B (en) A kind of mounting method of steel concrete bowstring arch bridge arch rib
CN102031785A (en) Foundation pit supporting technique for replacing temporary enclosing purlin by using plate belt of permanent structure
JPH1150480A (en) Rebuilding method of building
JP2012107479A (en) Method for constructing underground and aboveground structure
CN203684108U (en) Fully-precast assembly type reinforced concrete bridge assembling structure
CN108005264A (en) A kind of steel framework constraint precast reinforced concrete shear wall structure and preparation and installation method
JP2001262595A (en) Building construction method of underground building frame
CN206768570U (en) A kind of foundation ditch assembled steel trestle
CN109736593B (en) Underground engineering group pit mid-partition wall chiseling method
JP3724320B2 (en) Construction method for underground structures
CN110593269A (en) Turnover type structure support changing system and construction method thereof
JP3977700B2 (en) Demolition and new construction method using existing underground structure
JPH102126A (en) Base isolated building
CN112681340A (en) Inclined cast support supporting device for large-area deep foundation pit partition construction and construction method thereof
CN109235871A (en) Variable section structure aluminum alloy mould plate construction method
CN215164750U (en) Arch beam cross installation construction support for half-through tied steel box arch bridge
KR200263526Y1 (en) Hanging semi down up system
Luca Trombetta et al. Retrofit of buildings in Italy through seismic isolation
CN219732023U (en) Fender pile and steel diagonal bracing fender structure
CN219931554U (en) Cantilever steel structure construction platform with formwork system
CN221052613U (en) Permanently-used foundation pit supporting structure stressed in cooperation with underground structure
JP3281554B2 (en) How to rebuild underground structures
CN106677528A (en) Penetration-free type template support system jacking part and installation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees