JP3975127B2 - Multi-can installation boiler with unit control - Google Patents

Multi-can installation boiler with unit control Download PDF

Info

Publication number
JP3975127B2
JP3975127B2 JP2002175257A JP2002175257A JP3975127B2 JP 3975127 B2 JP3975127 B2 JP 3975127B2 JP 2002175257 A JP2002175257 A JP 2002175257A JP 2002175257 A JP2002175257 A JP 2002175257A JP 3975127 B2 JP3975127 B2 JP 3975127B2
Authority
JP
Japan
Prior art keywords
pressure
boiler
combustion
steam
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002175257A
Other languages
Japanese (ja)
Other versions
JP2004020041A (en
Inventor
寛治 黒田
Original Assignee
株式会社サムソン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サムソン filed Critical 株式会社サムソン
Priority to JP2002175257A priority Critical patent/JP3975127B2/en
Publication of JP2004020041A publication Critical patent/JP2004020041A/en
Application granted granted Critical
Publication of JP3975127B2 publication Critical patent/JP3975127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、台数制御を行う多缶設置ボイラに関するものである。
【0002】
【従来の技術】
ボイラを複数台設置し、個々のボイラの燃焼状態を調節することでボイラ全体での蒸気供給量を制御するボイラの多缶設置システムが知られている。蒸気ボイラの多缶設置システムの場合、各ボイラで発生した蒸気をスチームヘッダに集合させて蒸気使用部へ供給しており、スチームヘッダに設けた圧力検出装置によって検出した蒸気圧力値に基づいて各ボイラの燃焼状態を定める台数制御を行う。台数制御では、蒸気圧力制御範囲内を複数の圧力区分に分割し、圧力区分ごとにボイラの燃焼状態を定めた燃焼パターンを設定しておき、スチームヘッダで検出した蒸気圧力値がどの圧力区分に該当するかによって各ボイラの燃焼状態を定め、ボイラの蒸発量を制御する。圧力区分は一定の幅で定めておき、蒸気圧力値が高圧側の圧力区分に移るほどボイラの燃焼量を少なくし、逆に低圧側の圧力区分に移るほどボイラの燃焼量を多くする。
【0003】
多缶設置の場合、個々のボイラは、高燃焼・低燃焼・停止の3位置で燃焼制御し、低燃焼は高燃焼の約半分の蒸発量であるボイラを使用するのが一般的である。図4は従来の台数制御の例であり、高燃焼・低燃焼・停止で燃焼を制御する3位置燃焼制御のボイラを6台設置し、蒸気圧力制御範囲を0.74MPa〜0.85MPaとした場合の燃焼パターンを示している。ボイラ1台当たりの蒸発量の値を、低燃焼の場合には1、高燃焼の場合には2としている。0.74MPa〜0.85MPaの蒸気圧力制御範囲内に11の圧力区分と、蒸気圧力制御範囲の上下に2つの圧力区分を設定し、全部で13の圧力区分を定め、各圧力区分にボイラの燃焼状態を定めている。6台のボイラには燃焼の優先順位を定めておき、優先順位が上位のものから順に燃焼を行う。ボイラの燃焼状態は、高燃焼の場合を「H」、低燃焼の場合を「L」、停止の場合を「−」で示しており、各燃焼状態におけるボイラ全体での蒸発量の値を記載している。
【0004】
蒸気圧力値が0.85MPaよりも高い圧力区分にあれば、すべてのボイラを停止し、蒸発量の値は0、蒸気圧力値が0.84MPa〜0.85MPaの圧力区分にある場合には、優先順位第1位のボイラのみ低燃焼でほかのボイラは停止として蒸発量の値は1、蒸気圧力値が0.83MPa〜0.84MPaの圧力区分にある場合には、優先順位が第1位と第2位のボイラを低燃焼として蒸発量の値は2としており、以下同様に蒸気圧力値が0.74MPa未満となり、すべてのボイラを高燃焼とし、蒸発量の値が12となるまでの燃焼状態を定めている。
【0005】
停止しているボイラを低燃焼へ変更又は低燃焼を行っているボイラを高燃焼へ変更することで蒸発量は増加し、逆に低燃焼を行っているボイラを停止又は高燃焼を行っているボイラを低燃焼へ変更することで蒸発量は減少する。ボイラの燃焼状態を低燃焼と高燃焼で変更する場合や燃焼を停止する場合は、短時間で蒸発量を変化させることができるが、停止していたボイラの燃焼を開始する場合、プレパージなどの準備に要する時間が必要であるため、燃焼開始指令から実際に蒸気を発生し始めるまでに比較的長い時間が掛かる。蒸気圧力値が0.80MPa以下であって、蒸発量を増加するには低燃焼のボイラを高燃焼へ変更することで行っている場合、燃焼量の変更はごく短時間で行える。しかし蒸気圧力値が0.80MPa以上であって、蒸発量の増加は停止しているボイラを低燃焼へ変更することで行っている場合、蒸発量の変更に時間が掛かかることになっていた。
【0006】
また、蒸気圧力制御範囲を分割する圧力区分数が多くなると、各圧力区分の圧力幅が狭くなり、蒸気圧力値が変化している場合には短時間で次の圧力区分に移行することになる。燃焼開始の出力から実際に蒸気が発生するまでの時間が長く掛かり、かつ圧力区分の圧力幅が狭い場合、蒸気発生の準備を行っている間に蒸気圧力値が低下してさらに低圧側の圧力区分となり、本来なら燃焼を行う必要のないボイラに対しても燃焼を開始させることがある。例えば、燃焼台数を1台増加するだけで蒸気圧力は安定するはずであったのに、燃焼指示を行っても蒸気圧力が更に低下しているとして、2台以上のボイラに燃焼指示を送ると、蒸気供給が始まれば蒸発量が大きくなりすぎているために蒸気圧力が急上昇することになる。この場合、燃焼開始直後に燃焼台数を減少する出力を行わなければならなくなり、蒸発量を急に減少することで再び蒸気圧力が低下するということを繰り返すハンチングを引き起こすことがある。
【0007】
ハンチングを引き起こした場合には、蒸気供給の安定性が悪化することになり、またボイラが頻繁に発停することになるとボイラの効率が低下し、さらに発停回数が多くなると機器の寿命が短くなるという問題がある。
【0008】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、ボイラの多缶設置システムにおいて、ハンチングが発生することを防止し、蒸気の供給を安定させることにある。
【0009】
請求項1に記載の発明は、並列に設置した複数台のボイラ、ボイラで発生した蒸気の圧力を検出する圧力検出装置、検出した蒸気圧力値に基づいてボイラの燃焼台数を制御する台数制御装置を備えている多缶設置ボイラであって、前記台数制御装置には、蒸気圧力制御範囲を複数の圧力区分に分割し、圧力区分ごとにボイラの燃焼状態を定めた燃焼パターンを設定しておき、前記圧力検出装置にて検出した蒸気圧力値と前記燃焼パターンに基づき、各ボイラの燃焼状態を制御する台数制御を行っている多缶設置ボイラにおいて、
蒸気圧力制御範囲内に台数制限用設定値と台数制限解除用設定値を定めておき、蒸気圧力値が台数制限用設定値よりも高くなると、台数制御の対象とするボイラの台数と圧力区分数を少なくした燃焼パターンに基づく台数制御を行い、蒸気圧力値が台数制限解除用設定値より低くなると、台数制御の対象とするボイラの台数と圧力区分数を多くした燃焼パターンに基づく台数制御を行うものであって、
前記の燃焼パターンではそれぞれで複数の圧力区分を設定しており、台数制御対象台数を少なくした燃焼パターンでの圧力区分は、蒸気圧力値が台数制限用設定値より高くなることで台数制御対象台数を少なくした燃焼パターンに変更した時に入る圧力区分を基準としたとき、基準となる圧力区分の低圧側に少なくとも1つの圧力区分を設け、前記台数制限解除用設定値は基準となる圧力区分よりも1つ低圧側に設けている圧力区分内の値よりも更に低い値としていることを特徴とする。
【0010】
請求項2に記載の発明は、前記の台数制御を行う多缶設置ボイラにおいて、台数制御対象ボイラ減少後における蒸気圧力制御範囲を、台数制御対象ボイラ減少前における蒸気圧力制御範囲より高くしていることを特徴とする。
【0011】
【発明の実施の形態】
本発明の一実施例を図面を用いて説明する。図1は本発明を実施する多缶設置ボイラの設置例、図2は第1の実施例における圧力区分とボイラの燃焼状態の関係を示した説明図、図3は第2の実施例における圧力区分とボイラの燃焼状態の関係を示した説明図である。高燃焼・低燃焼・停止の3位置で燃焼制御を行うボイラを複数台設置しておき、各ボイラ1で発生させた蒸気を集合させるスチームヘッダ4を設ける。ボイラ1とスチームヘッダ4の間を蒸気配管5で結んでおき、発生させた蒸気はスチームヘッダ4に集合させた後で蒸気使用部2へ送る。スチームヘッダ4には、蒸気圧力を検出する圧力検出器6を設け、圧力検出器6で検出した蒸気圧力値は台数制御装置3へ送る。各ボイラには、それぞれに運転制御装置7を設けており、運転制御装置7は台数制御装置3からの燃焼要求信号を受けてボイラの燃焼制御を行う。
【0012】
台数制御装置3にて行うボイラの台数制御は、台数制御装置3に設定している燃焼パターンに基づいて行い、圧力検出器6で検出した蒸気圧力値が低いほど燃焼量を多くし、蒸気圧力値が高いほど燃焼量を少なくする。蒸気の発生量が蒸気の使用量より大きい場合には蒸気圧力は上昇し、蒸気の発生量が蒸気の使用量より小さい場合には蒸気圧力は低下することとなり、蒸気圧力値を制御圧力幅内に保つようにボイラの燃焼量を制御する。
【0013】
まず図2に記載の第1の実施例に基づいて説明を行う。本実施例では、高燃焼・低燃焼・停止で燃焼を制御する3位置燃焼制御のボイラを6台設置し、蒸気圧力制御範囲は0.74MPa〜0.85MPaとしており、ボイラ1台当たりの蒸発量の値を、低燃焼の場合には1、高燃焼の場合には2として、従来の技術欄に記載した条件と同じにしておく。図2でも、高燃焼の状態を「H」、低燃焼の状態を「L」、停止の状態を「−」で表しており、各燃焼状態における全体での蒸発量を数値で記載している。
【0014】
台数制御装置3には、すべてのボイラを用いて台数制御を行う燃焼パターンであるパターンAと、一部のボイラを台数制御の対象から外して残りのボイラのみで台数制御を行う燃焼パターンであるパターンBを設定している。パターンAは、6台のボイラで台数制御を行うものであり、蒸気圧力値を13の圧力区分に分割しておき、区分ごとにボイラの燃焼状態を定めている。蒸気圧力制御範囲内での各圧力区分の幅は0.01MPa分であり、蒸気圧力値が0.01MPa変化するごとに燃焼量の変更を行う。パターンBは、低負荷時におけるハンチングを防止する台数制御であり、6台設置しているボイラのうち、半分のボイラを台数制御対象から切り離し、残り3台のボイラで台数制御を行うものである。蒸気圧力値を7つの圧力区分に分割しておき、区分ごとにボイラの燃焼状態を定めている。この場合の圧力区分幅は0.02MPa分であり、蒸気圧力値が0.02MPa変化するごとに燃焼量の変更を行う。台数制御対象外のボイラは「×」で示しており、優先順位が第4位以降のボイラは蒸気圧力値に関係なく燃焼は行わない。
【0015】
台数制御はパターンAとパターンBのいずれかに基づいて行い、パターンAとパターンBは負荷状況によって切り替える。パターンAからパターンBへ切り替える台数制限用設定値は0.82MPaとしておき、パターンAにて台数制御を行っている場合に蒸気圧力値が0.82MPaを上回ると、パターンBによる台数制御へ切り替える。また、パターンBからパターンAへ切り替える台数制限解除用設定値は0.77MPaとしておき、パターンBにて台数制御を行っている場合に蒸気圧力値が0.77MPaを下回ると、パターンAによる台数制御へ切り替える。そのため、パターンAにおける蒸気圧力値が0.82MPa以上の領域と、パターンBにおける0.77MPa以下の領域は使用しないことになる。なお、本実施例では従来例と比較しやすくするために使用しない圧力区分の領域であっても燃焼状態を記載しているが、実際の台数制御装置3には使用しない領域では燃焼状態を設定する必要はない。
【0016】
以下、更に具体的に説明する。パターンAによって台数制御を行っている場合、蒸気圧力値が0.81MPaから0.82MPaの圧力区分内にあれば、ボイラの燃焼状態は「LLLL」であり、4台のボイラが低燃焼を行う。その後に蒸気圧力値が上昇し、0.82MPaを越える圧力区分になるとき、パターンBの台数制御へ移行する。パターンBへ移行した時点では0.81MPaから0.83MPaの圧力区分に入り、該圧力区分におけるボイラの燃焼状態は低燃焼が2台であるため、優先順位が第3位のボイラと第4位のボイラを停止し、優先順位が第1位と第2位のボイラは低燃焼を継続する。蒸気圧力値が更に上昇し、蒸気圧力値が0.83MPaから0.85MPaの圧力区分に入ると、優先順位が第2位のボイラを停止し、逆に蒸気圧力値が低下して0.79MPaから0.81MPaの圧力区分内に入ると、優先順位が第3位のボイラを低燃焼とする。
【0017】
その後も蒸気圧力値が台数制限解除用設定値へ低下するまでは、パターンBによる台数制御を行う。パターンBの圧力区分に基づいてボイラの台数制御を行っている場合に、蒸気圧力値が0.77MPaより低くなると、パターンAによる台数制御へ切り替える。パターンBの0.77MPaから0.79MPaの圧力区分におけるボイラの燃焼状態は「HLL」であるが、パターンAの0.76MPaから0.77MPaの圧力区分におけるボイラの燃焼状態は「HHHLLL」であるため、高燃焼のボイラを2台と低燃焼のボイラを1台追加する。その後はパターンAに基づいて台数制御を行い、蒸気圧力値が更に低下し、蒸気圧力値が0.75MPaから0.76MPaの圧力区分に入ると、低燃焼を行っていた優先順位が第4位のボイラを高燃焼とし、逆に蒸気圧力値が上昇して0.77MPaから0.78MPaの圧力区分内に入ると、高燃焼を行っていた優先順位が第3位のボイラを低燃焼とする。以降も蒸気圧力値が台数制限用設定値である0.82MPaを上回るまでは、パターンAに基づいてボイラの台数制御を行う。
【0018】
パターンAに基づいて台数制御を行う場合、すべてのボイラが低燃焼以上の燃焼状態である高負荷時には、低燃焼のボイラを高燃焼とすることで燃焼量を増加することができるため、燃焼量の増加は短時間で行うことができ、圧力区分の幅が狭くてもハンチングを発生することはない。しかし同じパターンAに基づく台数制御であっても、停止しているボイラを低燃焼とすることで蒸発量を増加する場合には比較的長い時間が必要であるため、圧力区分の幅が狭ければハンチングを引き起こすことがある。特に燃焼台数が少ない低負荷の場合、1台のボイラの発停でも蒸気圧力値に大きな影響を与えることになるためハンチングを発生しやすい。
【0019】
低負荷の場合には、台数制御の対象とするボイラの台数を制限し、圧力区分の幅を広げたパターンBとすることでハンチングの発生を防止することができる。パターンBにおける各圧力区分の幅はパターンAの場合の2倍であり、圧力区分の幅が広ければ蒸気圧力値が変化している時に、蒸気圧力値が1つの圧力区分内にとどまる時間が長くなる。つまりパターンBの場合は、わずかな圧力変動では燃焼量の変更を行わず、蒸気圧力値が一様に低下していたとしても、次の圧力区分に入るまでの時間が長くなる。そのため、短時間に必要台数以上のボイラに対して燃焼開始を指示することによって発生するハンチングは起こりにくくなる。ただし、ボイラの運転台数を制限することによって蒸気供給量が不足してはならないため、パターンBによる台数制御で蒸気圧力値がある程度以下にまで低下した場合には、パターンAによる台数制御に切り替え、蒸気圧力値を上昇させることができるようにしておく。
【0020】
なお、台数制限用設定値と台数制限解除用設定値は任意の値に定めることができるが、台数制限用設定値は台数制御対象としているボイラの負荷で25%程度、台数制限解除用設定値は台数制御対象としているボイラの負荷で80%程度をめどに設定すると、蒸気圧力を安定させることができる。
【0021】
次に図3に基づき、第2の実施例に関する説明を行う。第2の実施例の場合、第1の実施例で説明したパターンBに代えて、台数制御対象ボイラ減少後における蒸気圧力制御範囲を、台数制御対象ボイラ減少前における蒸気圧力制御範囲より高くした燃焼パターンであるパターンCを設定している。パターンCの蒸気圧力制御範囲が高くなっていることと、パターンCからパターンAへ切り替える台数制限解除用設定値が0.79MPaになったこと以外は第1の実施例と同じである。
【0022】
パターンAによって台数制御を行っている場合、蒸気圧力値が0.81MPaから0.82MPaの圧力区分内にあれば、ボイラの燃焼状態は「LLLL」であり、4台のボイラを低燃焼とする。蒸気圧力値が上昇し、0.82MPaを越える圧力区分になるとき、パターンCの台数制御へ移行する。パターンCへ移行した時点では0.81MPaから0.83MPaの圧力区分に入り、該圧力区分におけるボイラの燃焼状態は低燃焼が3台であるため、優先順位が第4位のボイラを停止し、優先順位が第1位から第3位のボイラは低燃焼を継続する。その後はパターンCに基づき、蒸気圧力値が上昇するとボイラの燃焼台数を少なくし、蒸気圧力値が低下するとボイラの燃焼台数を多くする制御を行う。
【0023】
パターンCの圧力区分に基づいてボイラの台数制御を行っている場合に、蒸気圧力値が0.79MPaより低くなると、パターンAによる台数制御へ切り替える。パターンCの0.79MPaから0.81MPaの圧力区分におけるボイラの燃焼状態は「HLL」であるが、パターンAの0.78MPaから0.79MPaの圧力区分におけるボイラの燃焼状態は「HLLLLL」であるため、低燃焼のボイラを3台追加する。以降は蒸気圧力値が台数制限用設定値である0.82MPaを上回るまでは、パターンAに基づいてボイラの台数制御を行う。2つの燃焼パターンを切り替える場合、圧力区分の取り方が異なるためにボイラの燃焼状態は必ず変更しなければならないが、パターンCの蒸気圧力制御範囲を高めたことにより、燃焼パターン切替え時に必要となるボイラの燃焼状態変更量を少なくすることができる。
【0024】
【発明の効果】
本発明を実施することで、燃焼の発停を繰り返すハンチングの発生を防止でき、蒸気供給の安定、ボイラの効率向上、機器寿命の延長などの効果を得ることができる。
【図面の簡単な説明】
【図1】 本発明を実施するボイラ多缶設置システムの設置例
【図2】 第1実施例における圧力区分とボイラの燃焼状態の説明図
【図3】 第2実施例における圧力区分とボイラの燃焼状態の説明図
【図4】 従来の場合の圧力区分とボイラの燃焼状態の説明図
【符号の説明】
1 ボイラ
2 蒸気使用部
3 台数制御装置
4 スチームヘッダ
5 蒸気配管
6 圧力検出器
7 運転制御装置
[0001]
[Industrial application fields]
The present invention relates to a multi-can installation boiler that controls the number of units.
[0002]
[Prior art]
A boiler multi-can installation system is known in which a plurality of boilers are installed and the amount of steam supplied to the entire boiler is controlled by adjusting the combustion state of each boiler. In the case of a multi-can installation system for steam boilers, the steam generated in each boiler is gathered in a steam header and supplied to the steam use section, and each steam pressure is detected based on the steam pressure value detected by the pressure detection device provided in the steam header. Perform unit control to determine the combustion state of the boiler. In unit control, the steam pressure control range is divided into multiple pressure categories, a combustion pattern that determines the combustion state of the boiler is set for each pressure category, and the steam pressure value detected by the steam header is assigned to which pressure category. The combustion state of each boiler is determined depending on whether it corresponds, and the amount of evaporation of the boiler is controlled. The pressure section is determined with a certain width, and the boiler combustion amount decreases as the steam pressure value shifts to the high pressure side pressure section, and conversely the boiler combustion amount increases as the steam pressure value shifts to the low pressure side pressure section.
[0003]
In the case of installing multiple cans, each boiler is generally controlled at three positions of high combustion, low combustion, and stop, and the low combustion generally uses a boiler whose evaporation amount is about half that of high combustion. Fig. 4 shows an example of conventional unit control, where six three-position combustion control boilers that control combustion with high combustion, low combustion, and stop are installed, and the steam pressure control range is 0.74 MPa to 0.85 MPa. The combustion pattern is shown. The value of the amount of evaporation per boiler is 1 for low combustion and 2 for high combustion. 11 pressure categories within the steam pressure control range of 0.74MPa to 0.85MPa, and two pressure categories above and below the steam pressure control range, a total of 13 pressure categories are defined, and the combustion state of the boiler in each pressure category Is stipulated. Prioritization of combustion is determined for the six boilers, and combustion is performed in order from the highest priority. The combustion state of the boiler is indicated by “H” in the case of high combustion, “L” in the case of low combustion, and “−” in the case of stop, and the value of the evaporation amount in the entire boiler in each combustion state is described. is doing.
[0004]
If the steam pressure value is higher than 0.85MPa, stop all boilers, if the evaporation value is 0 and the steam pressure value is 0.84MPa ~ 0.85MPa When the first boiler is low-burning and the other boilers are stopped, the evaporation value is 1, and the steam pressure value is in the pressure category of 0.83MPa to 0.84MPa, the priority is the 1st and 2nd The boiler has low combustion and the evaporation value is 2. Similarly, the steam pressure value is less than 0.74 MPa, all the boilers have high combustion, and the combustion state until the evaporation value becomes 12 is defined. .
[0005]
By changing the stopped boiler to low combustion or changing the low combustion boiler to high combustion, the evaporation amount increases, and conversely, the low combustion boiler is stopped or high combustion is performed. The amount of evaporation is reduced by changing the boiler to low combustion. When changing the combustion state of the boiler between low combustion and high combustion or when stopping the combustion, the evaporation amount can be changed in a short time, but when starting the combustion of the stopped boiler, pre-purge etc. Since time required for preparation is required, it takes a relatively long time from the start of combustion to the start of actual generation of steam. When the steam pressure value is 0.80 MPa or less and the amount of evaporation is increased by changing the low combustion boiler to high combustion, the amount of combustion can be changed in a very short time. However, when the steam pressure value is 0.80 MPa or more and the increase in the evaporation amount is performed by changing the stopped boiler to low combustion, it takes a long time to change the evaporation amount.
[0006]
In addition, when the number of pressure sections that divide the steam pressure control range increases, the pressure width of each pressure section becomes narrower, and if the steam pressure value changes, it will move to the next pressure section in a short time. . If it takes a long time from the start of combustion to the actual generation of steam and the pressure range has a narrow pressure range, the steam pressure value decreases while preparing for steam generation, and the pressure on the lower pressure side It becomes a category, and combustion may be started even for boilers that do not normally need to be combusted. For example, if the steam pressure should have stabilized only by increasing the number of combustion units by one, but the steam pressure has further decreased even if a combustion instruction is given, sending a combustion instruction to two or more boilers When the steam supply is started, the vapor pressure increases rapidly because the evaporation amount is too large. In this case, an output for reducing the number of combustion must be performed immediately after the start of combustion, which may cause hunting to repeatedly reduce the vapor pressure again by suddenly reducing the evaporation amount.
[0007]
If hunting occurs, the stability of the steam supply will deteriorate, and if the boiler starts and stops frequently, the efficiency of the boiler will decrease, and if the number of starts and stops increases, the life of the equipment will be shortened. There is a problem of becoming.
[0008]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to prevent the occurrence of hunting and stabilize the supply of steam in a boiler multi-can installation system.
[0009]
The invention described in claim 1 includes a plurality of boilers installed in parallel, a pressure detection device that detects the pressure of steam generated in the boiler, and a number control device that controls the number of boiler combustions based on the detected steam pressure value. In the multi-can boiler, the steam pressure control range is divided into a plurality of pressure sections, and a combustion pattern that determines the combustion state of the boiler is set for each pressure section. Based on the steam pressure value detected by the pressure detection device and the combustion pattern, in a multi-can installation boiler that performs unit control for controlling the combustion state of each boiler,
When the steam pressure control range is set to the number limit setting value and the number limit release setting value, and the steam pressure value is higher than the number limit setting value, the number of boilers and the number of pressure categories to be controlled Unit control based on the combustion pattern with fewer parts, and when the steam pressure value becomes lower than the set value for canceling the unit limit, the unit control is performed based on the combustion pattern with the number of boilers and the number of pressure categories to be controlled. And
In the above-mentioned combustion pattern, a plurality of pressure categories are set for each, and the pressure category in the combustion pattern in which the number of units to be controlled is reduced is the number of units to be controlled by the steam pressure value becoming higher than the set value for the number limit. If the pressure classification that is entered when the combustion pattern is changed to be reduced is used as a reference, at least one pressure classification is provided on the low pressure side of the reference pressure classification, and the set number for releasing the unit restriction is higher than the reference pressure classification. One value is lower than the value in the pressure section provided on the low pressure side .
[0010]
The invention according to claim 2 is such that in the multi-can installation boiler that performs the number control, the steam pressure control range after the number control target boiler is decreased is higher than the steam pressure control range before the number control target boiler is decreased. It is characterized by that.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an installation example of a multi-can installation boiler for carrying out the present invention, FIG. 2 is an explanatory diagram showing the relationship between the pressure classification and the combustion state of the boiler in the first embodiment, and FIG. 3 is a pressure in the second embodiment. It is explanatory drawing which showed the relationship between a division | segmentation and the combustion state of a boiler. A plurality of boilers that perform combustion control at three positions of high combustion, low combustion, and stop are installed, and a steam header 4 that collects steam generated in each boiler 1 is provided. The boiler 1 and the steam header 4 are connected by the steam pipe 5, and the generated steam is collected in the steam header 4 and then sent to the steam using unit 2. The steam header 4 is provided with a pressure detector 6 for detecting the steam pressure, and the steam pressure value detected by the pressure detector 6 is sent to the unit control device 3. Each boiler is provided with an operation control device 7, and the operation control device 7 receives a combustion request signal from the number control device 3 and performs combustion control of the boiler.
[0012]
The number control of the boiler performed by the number control device 3 is performed based on the combustion pattern set in the number control device 3, and the lower the steam pressure value detected by the pressure detector 6, the more the combustion amount is increased. The higher the value, the lower the combustion amount. If the amount of steam generated is greater than the amount of steam used, the steam pressure will increase.If the amount of steam generated is less than the amount of steam used, the steam pressure will decrease, and the steam pressure value will fall within the control pressure range. The combustion amount of the boiler is controlled so that
[0013]
First, a description will be given based on the first embodiment shown in FIG. In this example, six three-position combustion control boilers that control combustion with high combustion, low combustion, and stop are installed, the steam pressure control range is 0.74MPa to 0.85MPa, and the amount of evaporation per boiler is The value is set to 1 in the case of low combustion, and 2 in the case of high combustion. Also in FIG. 2, the high combustion state is represented by “H”, the low combustion state is represented by “L”, and the stop state is represented by “−”, and the total evaporation amount in each combustion state is represented numerically. .
[0014]
The number control device 3 has a combustion pattern in which the number control is performed using all the boilers, and a combustion pattern in which some boilers are excluded from the number control target and the number control is performed only with the remaining boilers. Pattern B is set. In pattern A, the number of boilers is controlled by six boilers, and the steam pressure value is divided into 13 pressure sections, and the combustion state of the boiler is determined for each section. The width of each pressure division within the steam pressure control range is 0.01 MPa, and the combustion amount is changed every time the steam pressure value changes by 0.01 MPa. Pattern B is a unit control to prevent hunting at low load. Of the six installed boilers, half of the boilers are separated from the unit control target, and the unit control is performed with the remaining three boilers. . The steam pressure value is divided into seven pressure sections, and the combustion state of the boiler is determined for each section. In this case, the pressure division width is 0.02 MPa, and the combustion amount is changed every time the steam pressure value changes by 0.02 MPa. Boilers that are not subject to unit control are indicated by “x”, and the boilers with the fourth or higher priority do not burn regardless of the steam pressure value.
[0015]
The number control is performed based on either the pattern A or the pattern B, and the pattern A and the pattern B are switched depending on the load situation. The number limit setting value for switching from pattern A to pattern B is set to 0.82 MPa. When the number control is performed in pattern A and the steam pressure value exceeds 0.82 MPa, the control is switched to the number control by pattern B. In addition, the setting value for canceling the restriction on the number of units to be switched from pattern B to pattern A is set to 0.77 MPa, and when the number control is performed in pattern B, if the steam pressure value falls below 0.77 MPa, the unit is switched to the number control by pattern A. . Therefore, the region where the vapor pressure value in the pattern A is 0.82 MPa or more and the region where the vapor pressure value in the pattern B is 0.77 MPa or less are not used. In the present embodiment, the combustion state is described even in the region of the pressure section that is not used for easy comparison with the conventional example, but the combustion state is set in the region that is not used in the actual number control device 3. do not have to.
[0016]
More specific description will be given below. When the number control is performed by the pattern A, if the steam pressure value is within the pressure range of 0.81 MPa to 0.82 MPa, the combustion state of the boiler is “LLLL”, and the four boilers perform low combustion. After that, when the steam pressure value rises and the pressure section exceeds 0.82 MPa, the process shifts to pattern B unit control. At the time of shifting to pattern B, it enters the pressure section from 0.81MPa to 0.83MPa, and the combustion state of the boiler in the pressure section is two low combustion, so the boiler with the third priority and the boiler with the fourth priority And the boilers with the first and second priority ranks continue low combustion. When the steam pressure value further rises and the steam pressure value enters the pressure category from 0.83MPa to 0.85MPa, the boiler with the second highest priority is stopped, and conversely the steam pressure value decreases and 0.79MPa to 0.81MPa The boiler with the third highest priority is set to low combustion.
[0017]
Thereafter, the number control by the pattern B is performed until the steam pressure value decreases to the set value for canceling the number limit. When the number control of the boiler is performed based on the pressure category of pattern B, when the steam pressure value becomes lower than 0.77 MPa, the control is switched to the number control by pattern A. The combustion state of the boiler in the pressure section from 0.77 MPa to 0.79 MPa in Pattern B is “HLL”, but the combustion state of the boiler in the pressure section from 0.76 MPa to 0.77 MPa in Pattern A is “HHHLLL”. Two boilers and one low combustion boiler will be added. After that, the number of units is controlled based on Pattern A, and when the steam pressure value further falls and the steam pressure value enters the pressure range from 0.75 MPa to 0.76 MPa, the boiler that has been performing low combustion is the fourth-ranked boiler. If the steam pressure value rises and falls within the pressure range of 0.77 MPa to 0.78 MPa, the boiler with the third highest priority is set to low combustion. Thereafter, the number of boilers is controlled based on the pattern A until the steam pressure value exceeds 0.82 MPa which is the set value for limiting the number of units.
[0018]
When performing unit control based on pattern A, the combustion amount can be increased by setting the low combustion boiler to high combustion at high load when all boilers are in a combustion state of low combustion or higher. Can be increased in a short time, and hunting will not occur even if the width of the pressure section is narrow. However, even in the case of unit control based on the same pattern A, a relatively long time is required to increase the evaporation amount by setting the stopped boiler to low combustion, so the width of the pressure section is narrowed. May cause hunting. In particular, when the number of combustion is low and the load is low, hunting is likely to occur because the steam pressure value is greatly affected even if one boiler is started or stopped.
[0019]
In the case of a low load, it is possible to prevent the occurrence of hunting by limiting the number of boilers subject to unit control and setting the pattern B with a wider pressure section. The width of each pressure section in pattern B is twice that of pattern A. If the pressure section is wide, the steam pressure value stays within one pressure section when the steam pressure value changes. Become. In other words, in the case of Pattern B, even if the change in the combustion amount is not performed with a slight pressure fluctuation, the time until entering the next pressure section becomes long even if the steam pressure value is uniformly reduced. Therefore, hunting that occurs by instructing the start of combustion to more than the required number of boilers in a short time is less likely to occur. However, since the steam supply amount should not be insufficient by restricting the number of boilers operated, when the steam pressure value drops to a certain level or less in the number control by pattern B, switch to the number control by pattern A, The steam pressure value can be increased.
[0020]
The number limit setting value and the number limit release setting value can be set to arbitrary values, but the number limit setting value is approximately 25% at the load of the boiler that is the number control target. is set to prospect for about 80 percent at a load of the boiler being the number controlled object, it is possible to stabilize the vapor pressure.
[0021]
Next, the second embodiment will be described with reference to FIG. In the case of the second embodiment, instead of the pattern B described in the first embodiment, combustion in which the steam pressure control range after the number control target boiler reduction is higher than the steam pressure control range before the number control target boiler reduction. Pattern C, which is a pattern, is set. The same as the first embodiment except that the steam pressure control range of pattern C is high and the set value for canceling the number of units to be switched from pattern C to pattern A is 0.79 MPa.
[0022]
When the number control is performed by the pattern A, if the steam pressure value is within the pressure range of 0.81 MPa to 0.82 MPa, the combustion state of the boiler is “LLLL”, and the four boilers are set to low combustion. When the steam pressure value rises and the pressure section exceeds 0.82 MPa, the process shifts to pattern C unit control. At the time of shifting to Pattern C, it enters the pressure section from 0.81 MPa to 0.83 MPa, and the combustion state of the boiler in the pressure section is three low combustion, so the boiler with the fourth priority is stopped, the priority order However, the 1st to 3rd boilers continue low combustion. Thereafter, based on the pattern C, control is performed such that when the steam pressure value increases, the number of boilers burned decreases, and when the steam pressure value decreases, the number of boilers burned increases.
[0023]
When the number control of the boiler is performed based on the pressure category of pattern C, when the steam pressure value becomes lower than 0.79 MPa, the control is switched to the number control by pattern A. The combustion state of the boiler in the pressure section of pattern C from 0.79 MPa to 0.81 MPa is “HLL”, but the combustion state of the boiler in the pressure section of pattern A from 0.78 MPa to 0.79 MPa is “HLLLLL”. Add three boilers. Thereafter, the number of boilers is controlled based on the pattern A until the steam pressure value exceeds 0.82 MPa, which is the number limit setting value. When switching between two combustion patterns, the combustion state of the boiler must be changed because the pressure classification is different, but it is necessary when switching the combustion pattern by increasing the pattern C steam pressure control range. The amount of boiler combustion state change can be reduced.
[0024]
【The invention's effect】
By implementing the present invention, it is possible to prevent the occurrence of hunting that repeatedly starts and stops combustion, and it is possible to obtain effects such as stable steam supply, improved boiler efficiency, and extended equipment life.
[Brief description of the drawings]
FIG. 1 is an example of installation of a boiler multi-can installation system for carrying out the present invention. FIG. 2 is an explanatory diagram of pressure classification and boiler combustion state in the first embodiment. FIG. 3 is an illustration of pressure classification and boiler in the second embodiment. Explanatory diagram of combustion state [Fig. 4] Explanatory diagram of pressure classification and boiler combustion state in conventional case [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Boiler 2 Steam use part 3 Number control device 4 Steam header 5 Steam piping 6 Pressure detector 7 Operation control device

Claims (2)

並列に設置した複数台のボイラ、ボイラで発生した蒸気の圧力を検出する圧力検出装置、検出した蒸気圧力値に基づいてボイラの燃焼台数を制御する台数制御装置を備えている多缶設置ボイラであって、前記台数制御装置には、蒸気圧力制御範囲を複数の圧力区分に分割し、圧力区分ごとにボイラの燃焼状態を定めた燃焼パターンを設定しておき、前記圧力検出装置にて検出した蒸気圧力値と前記燃焼パターンに基づき、各ボイラの燃焼状態を制御する台数制御を行っている多缶設置ボイラにおいて、
蒸気圧力制御範囲内に台数制限用設定値と台数制限解除用設定値を定めておき、蒸気圧力値が台数制限用設定値よりも高くなると、台数制御の対象とするボイラの台数と圧力区分数を少なくした燃焼パターンに基づく台数制御を行い、蒸気圧力値が台数制限解除用設定値より低くなると、台数制御の対象とするボイラの台数と圧力区分数を多くした燃焼パターンに基づく台数制御を行うものであって、
前記の燃焼パターンではそれぞれで複数の圧力区分を設定しており、台数制御対象台数を少なくした燃焼パターンでの圧力区分は、蒸気圧力値が台数制限用設定値より高くなることで台数制御対象台数を少なくした燃焼パターンに変更した時に入る圧力区分を基準としたとき、基準となる圧力区分の低圧側に少なくとも1つの圧力区分を設け、前記台数制限解除用設定値は基準となる圧力区分よりも1つ低圧側に設けている圧力区分内の値よりも更に低い値としていることを特徴とする台数制御を行う多缶設置ボイラ。
A multi-can installed boiler equipped with multiple boilers installed in parallel, a pressure detection device that detects the pressure of steam generated in the boiler, and a unit control device that controls the number of boiler combustions based on the detected steam pressure value In the number control device, the steam pressure control range is divided into a plurality of pressure categories, a combustion pattern that determines the combustion state of the boiler is set for each pressure category, and detected by the pressure detection device. Based on the steam pressure value and the combustion pattern, in a multi-can installation boiler that performs unit control for controlling the combustion state of each boiler,
When the steam pressure control range is set to the number limit setting value and the number limit release setting value, and the steam pressure value is higher than the number limit setting value, the number of boilers and the number of pressure categories to be controlled Unit control based on the combustion pattern with fewer parts, and when the steam pressure value becomes lower than the set value for canceling the unit limit, the unit control is performed based on the combustion pattern with the number of boilers and the number of pressure categories to be controlled. And
In the above-mentioned combustion pattern, a plurality of pressure categories are set for each, and the pressure category in the combustion pattern in which the number of units to be controlled is reduced is the number of units to be controlled by the steam pressure value becoming higher than the set value for the number limit. If the pressure classification that is entered when the combustion pattern is changed to be reduced is used as a reference, at least one pressure classification is provided on the low pressure side of the reference pressure classification, and the set number for releasing the unit restriction is higher than the reference pressure classification. A multi-can installation boiler for controlling the number of units, characterized in that the value is lower than the value in the pressure section provided on one low pressure side .
請求項1に記載の台数制御を行う多缶設置ボイラにおいて、台数制御対象ボイラ減少後における蒸気圧力制御範囲を、台数制御対象ボイラ減少前における蒸気圧力制御範囲より高くしていることを特徴とする台数制御を行う多缶設置ボイラ。The multi-can installation boiler for controlling the number of units according to claim 1, wherein the steam pressure control range after the number control target boiler is reduced is higher than the steam pressure control range before the number control target boiler is reduced. Multi-can boiler that controls the number of units.
JP2002175257A 2002-06-17 2002-06-17 Multi-can installation boiler with unit control Expired - Fee Related JP3975127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002175257A JP3975127B2 (en) 2002-06-17 2002-06-17 Multi-can installation boiler with unit control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002175257A JP3975127B2 (en) 2002-06-17 2002-06-17 Multi-can installation boiler with unit control

Publications (2)

Publication Number Publication Date
JP2004020041A JP2004020041A (en) 2004-01-22
JP3975127B2 true JP3975127B2 (en) 2007-09-12

Family

ID=31173969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002175257A Expired - Fee Related JP3975127B2 (en) 2002-06-17 2002-06-17 Multi-can installation boiler with unit control

Country Status (1)

Country Link
JP (1) JP3975127B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632361B2 (en) * 2005-10-25 2011-02-16 株式会社サムソン Multi-can installation boiler with unit control
JP4870461B2 (en) * 2006-04-03 2012-02-08 株式会社サムソン Boiler and boiler combustion control method
JP5410849B2 (en) * 2009-06-12 2014-02-05 株式会社サムソン Boiler multi-can installation system
JP5647904B2 (en) * 2011-01-20 2015-01-07 株式会社サムソン Boiler multi-can installation system
JP6220256B2 (en) * 2013-12-16 2017-10-25 株式会社サムソン Multi-can boiler

Also Published As

Publication number Publication date
JP2004020041A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
KR101778123B1 (en) Controller and boiler system
JP3975127B2 (en) Multi-can installation boiler with unit control
JP4148514B2 (en) Number control device in boiler multi-can installation system
JP2006317104A (en) Multiple can boiler system
JP5916194B2 (en) Multi-can boiler
JP5692807B2 (en) Multi-can boiler
JP4632361B2 (en) Multi-can installation boiler with unit control
JP2005055014A (en) Method of controlling number of boilers
JP4059728B2 (en) Multi-can boiler
JP4341065B2 (en) Number control method of boiler
JP6550999B2 (en) Boiler system
JP5302078B2 (en) Boiler multi-can installation system
JP5465473B2 (en) Boiler multi-can installation system
JP6220256B2 (en) Multi-can boiler
JP5045914B2 (en) Boiler unit controller
JPH0641801B2 (en) Boiler automatic number control system
JP2671246B2 (en) Method of controlling the number of once-through boilers
JP2001201001A (en) Multi-boiler installing system provded with device for controlling the number of boilers
JP2010286180A (en) Boiler multi-can installation system
JP2007192435A (en) Multitubular installation system for boiler
JP5230386B2 (en) Boiler multi-can installation system
JP5541780B2 (en) Boiler multi-can installation system
JP7140356B2 (en) Multi-can boiler
JP2008224084A (en) Boiler multi-can installation system
JP6528494B2 (en) Boiler system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3975127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees