JP2004020041A - Multi-can type boiler controlling number of boilers - Google Patents

Multi-can type boiler controlling number of boilers Download PDF

Info

Publication number
JP2004020041A
JP2004020041A JP2002175257A JP2002175257A JP2004020041A JP 2004020041 A JP2004020041 A JP 2004020041A JP 2002175257 A JP2002175257 A JP 2002175257A JP 2002175257 A JP2002175257 A JP 2002175257A JP 2004020041 A JP2004020041 A JP 2004020041A
Authority
JP
Japan
Prior art keywords
pressure
boilers
combustion
boiler
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002175257A
Other languages
Japanese (ja)
Other versions
JP3975127B2 (en
Inventor
Kanji Kuroda
黒田 寛治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAMSON CO Ltd
Original Assignee
SAMSON CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAMSON CO Ltd filed Critical SAMSON CO Ltd
Priority to JP2002175257A priority Critical patent/JP3975127B2/en
Publication of JP2004020041A publication Critical patent/JP2004020041A/en
Application granted granted Critical
Publication of JP3975127B2 publication Critical patent/JP3975127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a hunting from being generated and to stabilize the supply of vapor in a multi-can type system of boilers. <P>SOLUTION: This multi-can type boiler is provided with a plurality of boilers set in parallel, a pressure detecting device for detecting the pressure of vapor generated in the boilers, a number controller for controlling the number of combustion boilers based on the vapor pressure value detected. A set value for number limitation and a set value for number limitation release are set within the range of the vapor pressure control. When the vapor pressure value becomes higher than the set value for number limitation, the numbers are controlled based on a combustion pattern (pattern B) reducing the number of boilers and the number of pressure division which are subjected to the number control. When the vapor pressure value becomes lower than the set value for number limitation release, the numbers are controlled based on a combustion pattern (pattern A) increasing the number of boilers and the number of pressure division which are subjected to the number control. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、台数制御を行う多缶設置ボイラに関するものである。
【0002】
【従来の技術】
ボイラを複数台設置し、個々のボイラの燃焼状態を調節することでボイラ全体での蒸気供給量を制御するボイラの多缶設置システムが知られている。蒸気ボイラの多缶設置システムの場合、各ボイラで発生した蒸気をスチームヘッダに集合させて蒸気使用部へ供給しており、スチームヘッダに設けた圧力検出装置によって検出した蒸気圧力値に基づいて各ボイラの燃焼状態を定める台数制御を行う。台数制御では、蒸気圧力制御範囲内を複数の圧力区分に分割し、圧力区分ごとにボイラの燃焼状態を定めた燃焼パターンを設定しておき、スチームヘッダで検出した蒸気圧力値がどの圧力区分に該当するかによって各ボイラの燃焼状態を定め、ボイラの蒸発量を制御する。圧力区分は一定の幅で定めておき、蒸気圧力値が高圧側の圧力区分に移るほどボイラの燃焼量を少なくし、逆に低圧側の圧力区分に移るほどボイラの燃焼量を多くする。
【0003】
多缶設置の場合、個々のボイラは、高燃焼・低燃焼・停止の3位置で燃焼制御し、低燃焼は高燃焼の約半分の蒸発量であるボイラを使用するのが一般的である。図4は従来の台数制御の例であり、高燃焼・低燃焼・停止で燃焼を制御する3位置燃焼制御のボイラを6台設置し、蒸気圧力制御範囲を0.74MPa〜0.85MPaとした場合の燃焼パターンを示している。ボイラ1台当たりの蒸発量の値を、低燃焼の場合には1、高燃焼の場合には2としている。0.74MPa〜0.85MPaの蒸気圧力制御範囲内に11の圧力区分と、蒸気圧力制御範囲の上下に2つの圧力区分を設定し、全部で13の圧力区分を定め、各圧力区分にボイラの燃焼状態を定めている。6台のボイラには燃焼の優先順位を定めておき、優先順位が上位のものから順に燃焼を行う。ボイラの燃焼状態は、高燃焼の場合を「H」、低燃焼の場合を「L」、停止の場合を「−」で示しており、各燃焼状態におけるボイラ全体での蒸発量の値を記載している。
【0004】
蒸気圧力値が0.85MPaよりも高い圧力区分にあれば、すべてのボイラを停止し、蒸発量の値は0、蒸気圧力値が0.84MPa〜0.85MPaの圧力区分にある場合には、優先順位第1位のボイラのみ低燃焼でほかのボイラは停止として蒸発量の値は1、蒸気圧力値が0.83MPa〜0.84MPaの圧力区分にある場合には、優先順位が第1位と第2位のボイラを低燃焼として蒸発量の値は2としており、以下同様に蒸気圧力値が0.74MPa未満となり、すべてのボイラを高燃焼とし、蒸発量の値が12となるまでの燃焼状態を定めている。
【0005】
停止しているボイラを低燃焼へ変更又は低燃焼を行っているボイラを高燃焼へ変更することで蒸発量は増加し、逆に低燃焼を行っているボイラを停止又は高燃焼を行っているボイラを低燃焼へ変更することで蒸発量は減少する。ボイラの燃焼状態を低燃焼と高燃焼で変更する場合や燃焼を停止する場合は、短時間で蒸発量を変化させることができるが、停止していたボイラの燃焼を開始する場合、プレパージなどの準備に要する時間が必要であるため、燃焼開始指令から実際に蒸気を発生し始めるまでに比較的長い時間が掛かる。蒸気圧力値が0.80MPa以下であって、蒸発量を増加するには低燃焼のボイラを高燃焼へ変更することで行っている場合、燃焼量の変更はごく短時間で行える。しかし蒸気圧力値が0.80MPa以上であって、蒸発量の増加は停止しているボイラを低燃焼へ変更することで行っている場合、蒸発量の変更に時間が掛かかることになっていた。
【0006】
また、蒸気圧力制御範囲を分割する圧力区分数が多くなると、各圧力区分の圧力幅が狭くなり、蒸気圧力値が変化している場合には短時間で次の圧力区分に移行することになる。燃焼開始の出力から実際に蒸気が発生するまでの時間が長く掛かり、かつ圧力区分の圧力幅が狭い場合、蒸気発生の準備を行っている間に蒸気圧力値が低下してさらに低圧側の圧力区分となり、本来なら燃焼を行う必要のないボイラに対しても燃焼を開始させることがある。例えば、燃焼台数を1台増加するだけで蒸気圧力は安定するはずであったのに、燃焼指示を行っても蒸気圧力が更に低下しているとして、2台以上のボイラに燃焼指示を送ると、蒸気供給が始まれば蒸発量が大きくなりすぎているために蒸気圧力が急上昇することになる。この場合、燃焼開始直後に燃焼台数を減少する出力を行わなければならなくなり、蒸発量を急に減少することで再び蒸気圧力が低下するということを繰り返すハンチングを引き起こすことがある。
【0007】
ハンチングを引き起こした場合には、蒸気供給の安定性が悪化することになり、またボイラが頻繁に発停することになるとボイラの効率が低下し、さらに発停回数が多くなると機器の寿命が短くなるという問題がある。
【0008】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、ボイラの多缶設置システムにおいて、ハンチングが発生することを防止し、蒸気の供給を安定させることにある。
【0009】
【課題を解決するための手段】
請求項1の記載の発明は、並列に設置した複数台のボイラ、ボイラで発生した蒸気の圧力を検出する圧力検出装置、検出した蒸気圧力値に基づいてボイラの燃焼台数を制御する台数制御装置を備えている多缶設置ボイラであって、前記台数制御装置には、蒸気圧力制御範囲を複数の圧力区分に分割し、圧力区分ごとにボイラの燃焼状態を定めた燃焼パターンを設定しておき、前記圧力検出装置にて検出した蒸気圧力値と前記燃焼パターンに基づき、各ボイラの燃焼状態を制御する台数制御を行っている多缶設置ボイラにおいて、蒸気圧力制御範囲内に台数制限用設定値と台数制限解除用設定値を定めておき、蒸気圧力値が台数制限用設定値よりも高くなると、台数制御の対象とするボイラの台数と圧力区分数を少なくした燃焼パターンに基づく台数制御を行い、蒸気圧力値が台数制限解除用設定値より低くなると、台数制御の対象とするボイラの台数と圧力区分数を多くした燃焼パターンに基づく台数制御を行うことを特徴とする。
【0010】
請求項2に記載の発明は、前記の台数制御を行う多缶設置ボイラにおいて、台数制御対象ボイラ減少後における蒸気圧力制御範囲を、台数制御対象ボイラ減少前における蒸気圧力制御範囲より高くしていることを特徴とする。
【0011】
【発明の実施の形態】
本発明の一実施例を図面を用いて説明する。図1は本発明を実施する多缶設置ボイラの設置例、図2は第1の実施例における圧力区分とボイラの燃焼状態の関係を示した説明図、図3は第2の実施例における圧力区分とボイラの燃焼状態の関係を示した説明図である。高燃焼・低燃焼・停止の3位置で燃焼制御を行うボイラを複数台設置しておき、各ボイラ1で発生させた蒸気を集合させるスチームヘッダ4を設ける。ボイラ1とスチームヘッダ4の間を蒸気配管5で結んでおき、発生させた蒸気はスチームヘッダ4に集合させた後で蒸気使用部2へ送る。スチームヘッダ4には、蒸気圧力を検出する圧力検出器6を設け、圧力検出器6で検出した蒸気圧力値は台数制御装置3へ送る。各ボイラには、それぞれに運転制御装置7を設けており、運転制御装置7は台数制御装置3からの燃焼要求信号を受けてボイラの燃焼制御を行う。
【0012】
台数制御装置3にて行うボイラの台数制御は、台数制御装置3に設定している燃焼パターンに基づいて行い、圧力検出器6で検出した蒸気圧力値が低いほど燃焼量を多くし、蒸気圧力値が高いほど燃焼量を少なくする。蒸気の発生量が蒸気の使用量より大きい場合には蒸気圧力は上昇し、蒸気の発生量が蒸気の使用量より小さい場合には蒸気圧力は低下することとなり、蒸気圧力値を制御圧力幅内に保つようにボイラの燃焼量を制御する。
【0013】
まず図2に記載の第1の実施例に基づいて説明を行う。本実施例では、高燃焼・低燃焼・停止で燃焼を制御する3位置燃焼制御のボイラを6台設置し、蒸気圧力制御範囲は0.74MPa〜0.85MPaとしており、ボイラ1台当たりの蒸発量の値を、低燃焼の場合には1、高燃焼の場合には2として、従来の技術欄に記載した条件と同じにしておく。図2でも、高燃焼の状態を「H」、低燃焼の状態を「L」、停止の状態を「−」で表しており、各燃焼状態における全体での蒸発量を数値で記載している。
【0014】
台数制御装置3には、すべてのボイラを用いて台数制御を行う燃焼パターンであるパターンAと、一部のボイラを台数制御の対象から外して残りのボイラのみで台数制御を行う燃焼パターンであるパターンBを設定している。パターンAは、6台のボイラで台数制御を行うものであり、蒸気圧力値を13の圧力区分に分割しておき、区分ごとにボイラの燃焼状態を定めている。蒸気圧力制御範囲内での各圧力区分の幅は0.01MPa分であり、蒸気圧力値が0.01MPa変化するごとに燃焼量の変更を行う。パターンBは、低負荷時におけるハンチングを防止する台数制御であり、6台設置しているボイラのうち、半分のボイラを台数制御対象から切り離し、残り3台のボイラで台数制御を行うものである。蒸気圧力値を7つの圧力区分に分割しておき、区分ごとにボイラの燃焼状態を定めている。この場合の圧力区分幅は0.02MPa分であり、蒸気圧力値が0.02MPa変化するごとに燃焼量の変更を行う。台数制御対象外のボイラは「×」で示しており、優先順位が第4位以降のボイラは蒸気圧力値に関係なく燃焼は行わない。
【0015】
台数制御はパターンAとパターンBのいずれかに基づいて行い、パターンAとパターンBは負荷状況によって切り替える。パターンAからパターンBへ切り替える台数制限用設定値は0.82MPaとしておき、パターンAにて台数制御を行っている場合に蒸気圧力値が0.82MPaを上回ると、パターンBによる台数制御へ切り替える。また、パターンBからパターンAへ切り替える台数制限解除用設定値は0.77MPaとしておき、パターンBにて台数制御を行っている場合に蒸気圧力値が0.77MPaを下回ると、パターンAによる台数制御へ切り替える。そのため、パターンAにおける蒸気圧力値が0.82MPa以上の領域と、パターンBにおける0.77MPa以下の領域は使用しないことになる。なお、本実施例では従来例と比較しやすくするために使用しない圧力区分の領域であっても燃焼状態を記載しているが、実際の台数制御装置3には使用しない領域では燃焼状態を設定する必要はない。
【0016】
以下、更に具体的に説明する。パターンAによって台数制御を行っている場合、蒸気圧力値が0.81MPaから0.82MPaの圧力区分内にあれば、ボイラの燃焼状態は「LLLL」であり、4台のボイラが低燃焼を行う。その後に蒸気圧力値が上昇し、0.82MPaを越える圧力区分になるとき、パターンBの台数制御へ移行する。パターンBへ移行した時点では0.81MPaから0.83MPaの圧力区分に入り、該圧力区分におけるボイラの燃焼状態は低燃焼が2台であるため、優先順位が第3位のボイラと第4位のボイラを停止し、優先順位が第1位と第2位のボイラは低燃焼を継続する。蒸気圧力値が更に上昇し、蒸気圧力値が0.83MPaから0.85MPaの圧力区分に入ると、優先順位が第2位のボイラを停止し、逆に蒸気圧力値が低下して0.79MPaから0.81MPaの圧力区分内に入ると、優先順位が第3位のボイラを低燃焼とする。
【0017】
その後も蒸気圧力値が台数制限解除用設定値へ低下するまでは、パターンBによる台数制御を行う。パターンBの圧力区分に基づいてボイラの台数制御を行っている場合に、蒸気圧力値が0.77MPaより低くなると、パターンAによる台数制御へ切り替える。パターンBの0.77MPaから0.79MPaの圧力区分におけるボイラの燃焼状態は「HLL」であるが、パターンAの0.76MPaから0.77MPaの圧力区分におけるボイラの燃焼状態は「HHHLLL」であるため、高燃焼のボイラを2台と低燃焼のボイラを1台追加する。その後はパターンAに基づいて台数制御を行い、蒸気圧力値が更に低下し、蒸気圧力値が0.75MPaから0.76MPaの圧力区分に入ると、低燃焼を行っていた優先順位が第4位のボイラを高燃焼とし、逆に蒸気圧力値が上昇して0.77MPaから0.78MPaの圧力区分内に入ると、高燃焼を行っていた優先順位が第3位のボイラを低燃焼とする。以降も蒸気圧力値が台数制限用設定値である0.82MPaを上回るまでは、パターンAに基づいてボイラの台数制御を行う。
【0018】
パターンAに基づいて台数制御を行う場合、すべてのボイラが低燃焼以上の燃焼状態である高負荷時には、低燃焼のボイラを高燃焼とすることで燃焼量を増加することができるため、燃焼量の増加は短時間で行うことができ、圧力区分の幅が狭くてもハンチングを発生することはない。しかし同じパターンAに基づく台数制御であっても、停止しているボイラを低燃焼とすることで蒸発量を増加する場合には比較的長い時間が必要であるため、圧力区分の幅が狭ければハンチングを引き起こすことがある。特に燃焼台数が少ない低負荷の場合、1台のボイラの発停でも蒸気圧力値に大きな影響を与えることになるためハンチングを発生しやすい。
【0019】
低負荷の場合には、台数制御の対象とするボイラの台数を制限し、圧力区分の幅を広げたパターンBとすることでハンチングの発生を防止することができる。パターンBにおける各圧力区分の幅はパターンAの場合の2倍であり、圧力区分の幅が広ければ蒸気圧力値が変化している時に、蒸気圧力値が1つの圧力区分内にとどまる時間が長くなる。つまりパターンBの場合は、わずかな圧力変動では燃焼量の変更を行わず、蒸気圧力値が一様に低下していたとしても、次の圧力区分に入るまでの時間が長くなる。そのため、短時間に必要台数以上のボイラに対して燃焼開始を指示することによって発生するハンチングは起こりにくくなる。ただし、ボイラの運転台数を制限することによって蒸気供給量が不足してはならないため、パターンBによる台数制御で蒸気圧力値がある程度以下にまで低下した場合には、パターンAによる台数制御に切り替え、蒸気圧力値を上昇させることができるようにしておく。
【0020】
なお、台数制限用設定値と台数制限解除用設定値は任意の値に定めることができるが、台数制限用設定値は台数制御対象としているボイラの負荷で25%程度、台数制限解除用設定値は台数制御対象としているボイラの負荷で80%程度をめどに設定すると、蒸気圧力を安定させることができる。
【0021】
次に図3に基づき、第2の実施例に関する説明を行う。第2の実施例の場合、第1の実施例で説明したパターンBに代えて、台数制御対象ボイラ減少後における蒸気圧力制御範囲を、台数制御対象ボイラ減少前における蒸気圧力制御範囲より高くした燃焼パターンであるパターンCを設定している。パターンCの蒸気圧力制御範囲が高くなっていることと、パターンCからパターンAへ切り替える台数制限解除用設定値が0.79MPaになったこと以外は第1の実施例と同じである。
【0022】
パターンAによって台数制御を行っている場合、蒸気圧力値が0.81MPaから0.82MPaの圧力区分内にあれば、ボイラの燃焼状態は「LLLL」であり、4台のボイラを低燃焼とする。蒸気圧力値が上昇し、0.82MPaを越える圧力区分になるとき、パターンCの台数制御へ移行する。パターンCへ移行した時点では0.81MPaから0.83MPaの圧力区分に入り、該圧力区分におけるボイラの燃焼状態は低燃焼が3台であるため、優先順位が第4位のボイラを停止し、優先順位が第1位から第3位のボイラは低燃焼を継続する。その後はパターンCに基づき、蒸気圧力値が上昇するとボイラの燃焼台数を少なくし、蒸気圧力値が低下するとボイラの燃焼台数を多くする制御を行う。
【0023】
パターンCの圧力区分に基づいてボイラの台数制御を行っている場合に、蒸気圧力値が0.79MPaより低くなると、パターンAによる台数制御へ切り替える。パターンCの0.79MPaから0.81MPaの圧力区分におけるボイラの燃焼状態は「HLL」であるが、パターンAの0.78MPaから0.79MPaの圧力区分におけるボイラの燃焼状態は「HLLLLL」であるため、低燃焼のボイラを3台追加する。以降は蒸気圧力値が台数制限用設定値である0.82MPaを上回るまでは、パターンAに基づいてボイラの台数制御を行う。2つの燃焼パターンを切り替える場合、圧力区分の取り方が異なるためにボイラの燃焼状態は必ず変更しなければならないが、パターンCの蒸気圧力制御範囲を高めたことにより、燃焼パターン切替え時に必要となるボイラの燃焼状態変更量を少なくすることができる。
【0024】
【発明の効果】
本発明を実施することで、燃焼の発停を繰り返すハンチングの発生を防止でき、蒸気供給の安定、ボイラの効率向上、機器寿命の延長などの効果を得ることができる。
【図面の簡単な説明】
【図1】本発明を実施するボイラ多缶設置システムの設置例
【図2】第1実施例における圧力区分とボイラの燃焼状態の説明図
【図3】第2実施例における圧力区分とボイラの燃焼状態の説明図
【図4】従来の場合の圧力区分とボイラの燃焼状態の説明図
【符号の説明】
1 ボイラ
2 蒸気使用部
3 台数制御装置
4 スチームヘッダ
5 蒸気配管
6 圧力検出器
7 運転制御装置
[0001]
[Industrial applications]
TECHNICAL FIELD The present invention relates to a multi-can boiler for controlling the number of units.
[0002]
[Prior art]
2. Description of the Related Art A boiler multi-can installation system is known in which a plurality of boilers are installed, and the combustion state of each boiler is adjusted to control the amount of steam supplied to the entire boiler. In the case of a steam boiler multi-can installation system, the steam generated by each boiler is collected in a steam header and supplied to the steam use section, and each steam is supplied based on the steam pressure value detected by a pressure detection device provided in the steam header. Unit control is performed to determine the combustion state of the boiler. In unit control, the steam pressure control range is divided into a plurality of pressure categories, and a combustion pattern that defines the boiler combustion state is set for each pressure category, and the steam pressure value detected by the steam header is assigned to which pressure category. The combustion state of each boiler is determined depending on whether it corresponds, and the evaporation amount of the boiler is controlled. The pressure section is set to have a certain width, and the boiler combustion amount is reduced as the steam pressure value moves to the high pressure side pressure section, and conversely, the boiler combustion amount is increased as the steam pressure value moves to the low pressure side pressure section.
[0003]
In the case of a multi-can installation, each boiler controls the combustion in three positions of high combustion, low combustion, and stop, and the low combustion generally uses a boiler having an evaporation amount of about half that of the high combustion. FIG. 4 shows an example of conventional unit control, in which six three-position combustion control boilers for controlling combustion in high combustion, low combustion, and stop are installed, and the steam pressure control range is set to 0.74 MPa to 0.85 MPa. The combustion pattern in the case is shown. The value of the amount of evaporation per boiler is set to 1 for low combustion and 2 for high combustion. Eleven pressure divisions are set within the steam pressure control range of 0.74 MPa to 0.85 MPa, and two pressure divisions are set above and below the steam pressure control range, and a total of 13 pressure divisions are determined. Determines the combustion state. The priorities of combustion are determined for the six boilers, and combustion is performed in order from the one with the highest priority. The combustion state of the boiler is indicated by "H" for high combustion, "L" for low combustion, and "-" for stop, and indicates the value of the evaporation amount of the entire boiler in each combustion state. are doing.
[0004]
If the steam pressure value is in the pressure section higher than 0.85 MPa, all the boilers are stopped, and the value of the evaporation amount is 0, and if the steam pressure value is in the pressure section of 0.84 MPa to 0.85 MPa, Only the boiler with the highest priority is low combustion and the other boilers are stopped. The evaporation amount is 1, and when the steam pressure value is in the pressure category of 0.83 MPa to 0.84 MPa, the priority is the first. And the second boiler is set to low combustion and the value of the evaporation amount is set to 2. Similarly, until the steam pressure value becomes less than 0.74 MPa, all the boilers are set to the high combustion, and the evaporation amount value becomes 12. Determines the combustion state.
[0005]
By changing the stopped boiler to low combustion or changing the boiler performing low combustion to high combustion, the amount of evaporation increases, and conversely, the boiler performing low combustion is stopped or performing high combustion. Changing the boiler to low combustion reduces the amount of evaporation. When changing the combustion state of the boiler between low combustion and high combustion, or when stopping the combustion, the amount of evaporation can be changed in a short time.However, when starting the combustion of the stopped boiler, prepurge etc. Since the time required for the preparation is required, it takes a relatively long time from the start of combustion command to the start of actual generation of steam. When the steam pressure value is 0.80 MPa or less and the amount of evaporation is increased by changing the boiler of low combustion to high combustion, the change of the amount of combustion can be performed in a very short time. However, when the steam pressure value is 0.80 MPa or more, and the increase in the amount of evaporation is performed by changing the stopped boiler to low combustion, it takes time to change the amount of evaporation. .
[0006]
In addition, when the number of pressure segments that divide the steam pressure control range increases, the pressure width of each pressure segment becomes narrower, and when the steam pressure value changes, the process shifts to the next pressure segment in a short time. . If it takes a long time from the output of the start of combustion to the actual generation of steam and the pressure range of the pressure section is narrow, the steam pressure value decreases during preparation for steam generation, and the pressure on the lower pressure side further decreases. In some cases, boilers that do not need to be burned may start burning. For example, if the steam pressure should have stabilized by merely increasing the number of combustion units by one, but if the combustion instruction is sent and the combustion instruction is sent to two or more boilers assuming that the steam pressure is further reduced, When the steam supply is started, the vapor pressure is rapidly increased because the evaporation amount is too large. In this case, an output for reducing the number of combustion units must be performed immediately after the start of combustion, and hunting may repeatedly occur in which a sudden decrease in the amount of evaporation causes a decrease in steam pressure again.
[0007]
If hunting occurs, the stability of the steam supply will deteriorate, and if the boiler starts and stops frequently, the efficiency of the boiler will decrease, and if the number of starts and stops increases, the life of the equipment will shorten. Problem.
[0008]
[Problems to be solved by the invention]
A problem to be solved by the present invention is to prevent hunting from occurring in a boiler multi-can installation system and to stabilize steam supply.
[0009]
[Means for Solving the Problems]
According to the first aspect of the present invention, a plurality of boilers installed in parallel, a pressure detection device for detecting the pressure of steam generated by the boiler, and a number control device for controlling the number of boilers to be burned based on the detected steam pressure value In the multi-can boiler provided with, the number control device, the steam pressure control range is divided into a plurality of pressure categories, and a combustion pattern that determines the combustion state of the boiler for each pressure category is set. Based on the steam pressure value detected by the pressure detection device and the combustion pattern, in a multi-can boiler that controls the number of boilers to control the combustion state of each boiler, the set value for the number limit is set within the steam pressure control range. When the steam pressure value becomes higher than the set value, the number of boilers to be controlled and the number of pressure classes are reduced based on the combustion pattern. Performs installation control, the steam pressure value is lower than the number limitation canceling set value, and performs the number control based on the combustion pattern to increase the number of number and pressure divided boiler to be subjected to volume control.
[0010]
According to a second aspect of the present invention, in the multi-can boiler for performing the above-mentioned number control, the steam pressure control range after the number of controlled boilers is reduced is higher than the steam pressure control range before the number of controlled boilers is reduced. It is characterized by the following.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an installation example of a multi-can installation boiler embodying the present invention, FIG. 2 is an explanatory diagram showing a relationship between a pressure class and a boiler combustion state in the first embodiment, and FIG. 3 is a pressure diagram in a second embodiment. It is explanatory drawing which showed the relationship between a division and the combustion state of a boiler. A plurality of boilers for performing combustion control at three positions of high combustion, low combustion, and stop are provided, and a steam header 4 for collecting steam generated by each boiler 1 is provided. The boiler 1 and the steam header 4 are connected by a steam pipe 5, and the generated steam is collected in the steam header 4 and sent to the steam use section 2. The steam header 4 is provided with a pressure detector 6 for detecting a steam pressure, and the steam pressure value detected by the pressure detector 6 is sent to the number control device 3. Each of the boilers is provided with an operation control device 7, and the operation control device 7 receives the combustion request signal from the number control device 3 and controls the boiler combustion.
[0012]
The number control of the boilers performed by the number control device 3 is performed based on the combustion pattern set in the number control device 3, and the lower the steam pressure value detected by the pressure detector 6, the greater the amount of combustion, and The higher the value, the less the amount of combustion. If the amount of steam generated is larger than the amount of steam used, the steam pressure will increase.If the amount of steam generated is smaller than the amount of steam used, the steam pressure will decrease. Control the boiler combustion rate to keep
[0013]
First, a description will be given based on the first embodiment shown in FIG. In this embodiment, six three-position combustion control boilers for controlling combustion in high combustion, low combustion, and stop are installed, and the steam pressure control range is set to 0.74 MPa to 0.85 MPa. The value of the amount is set to 1 for low combustion and 2 for high combustion, which is the same as the condition described in the section of the prior art. Also in FIG. 2, the high combustion state is represented by “H”, the low combustion state is represented by “L”, and the stopped state is represented by “−”, and the total amount of evaporation in each combustion state is numerically described. .
[0014]
The number control device 3 includes a pattern A that is a combustion pattern in which the number control is performed using all the boilers, and a combustion pattern in which some boilers are excluded from the target of the number control and the number control is performed only with the remaining boilers. Pattern B is set. In the pattern A, the number of units is controlled by six boilers, and the steam pressure value is divided into 13 pressure divisions, and the combustion state of the boiler is determined for each division. The width of each pressure section within the steam pressure control range is 0.01 MPa, and the combustion amount is changed every time the steam pressure value changes by 0.01 MPa. Pattern B is a unit number control for preventing hunting at the time of a low load, in which half of the six installed boilers are separated from the unit number to be controlled, and the unit number is controlled by the remaining three boilers. . The steam pressure value is divided into seven pressure sections, and the combustion state of the boiler is determined for each section. The pressure division width in this case is 0.02 MPa, and the combustion amount is changed every time the steam pressure value changes by 0.02 MPa. Boilers that are not controlled by the number of units are indicated by “x”, and boilers of the fourth and subsequent priorities do not burn regardless of the steam pressure value.
[0015]
The number control is performed based on either the pattern A or the pattern B, and the pattern A and the pattern B are switched according to the load condition. The set value for limiting the number of units to be switched from the pattern A to the pattern B is set to 0.82 MPa. When the unit pressure is controlled in the pattern A and the steam pressure value exceeds 0.82 MPa, the unit is switched to the unit control by the pattern B. Further, the set value for canceling the limitation of the number of units to be switched from the pattern B to the pattern A is set to 0.77 MPa, and when the number of units is controlled in the pattern B and the steam pressure value falls below 0.77 MPa, the unit control by the pattern A is performed. Switch to Therefore, the region where the vapor pressure value in pattern A is 0.82 MPa or more and the region where the vapor pressure value is 0.77 MPa or less in pattern B are not used. In the present embodiment, the combustion state is described even in the area of the pressure division that is not used for easy comparison with the conventional example. However, the combustion state is set in the area that is not used in the actual number control device 3. do not have to.
[0016]
Hereinafter, a more specific description will be given. When the number control is performed according to the pattern A, if the steam pressure value is within the pressure range of 0.81 MPa to 0.82 MPa, the combustion state of the boiler is “LLLL”, and the four boilers perform low combustion. . Thereafter, when the steam pressure value rises and reaches a pressure section exceeding 0.82 MPa, the control is shifted to the pattern B number control. At the time of shifting to the pattern B, the pressure enters the pressure section of 0.81 MPa to 0.83 MPa, and the combustion state of the boiler in the pressure section is low combustion, so that the boiler having the third priority and the fourth are the priority. Are stopped, and the boilers having the first and second priorities continue low combustion. When the steam pressure value further increases and enters the pressure category of 0.83 MPa to 0.85 MPa, the boiler of the second priority is stopped, and conversely, the steam pressure value decreases to 0.79 MPa. And within the pressure section of 0.81 MPa, the boiler having the third priority is set to low combustion.
[0017]
After that, until the steam pressure value falls to the set value for releasing the restriction on the number of units, the number of units is controlled according to the pattern B. When the number of boilers is controlled based on the pressure classification of the pattern B and the steam pressure value becomes lower than 0.77 MPa, the control is switched to the number control of the pattern A. The combustion state of the boiler in the pressure section of 0.77 MPa to 0.79 MPa of pattern B is “HLL”, whereas the combustion state of the boiler in the pressure section of 0.76 MPa to 0.77 MPa of pattern A is “HHHLLLL”. Therefore, two high boilers and one low boiler are added. After that, the number control is performed based on the pattern A, and when the steam pressure value further decreases and the steam pressure value enters the pressure category from 0.75 MPa to 0.76 MPa, the priority order for performing low combustion is fourth. When the steam pressure rises and falls within the pressure range from 0.77 MPa to 0.78 MPa, the boiler having the third highest priority in performing high combustion is set to low combustion. . Thereafter, the number of boilers is controlled based on the pattern A until the steam pressure value exceeds the set value for number limitation of 0.82 MPa.
[0018]
When controlling the number of units based on the pattern A, when all the boilers are in a high combustion state in which the combustion state is equal to or higher than the low combustion state, the combustion amount can be increased by setting the low combustion boiler to the high combustion state. Can be increased in a short time, and hunting does not occur even if the width of the pressure section is narrow. However, even if the number of units is controlled based on the same pattern A, if the amount of evaporation is increased by making the stopped boiler low in combustion, a relatively long time is required. May cause hunting. In particular, when the number of combustion units is small and the load is low, even if one boiler is started and stopped, hunting is likely to occur since the steam pressure value is greatly affected.
[0019]
In the case of a low load, hunting can be prevented by limiting the number of boilers to be subjected to the number control and setting the pattern B to have a wider pressure section. The width of each pressure section in the pattern B is twice as large as that of the pattern A. If the width of the pressure section is wide, the time during which the steam pressure value remains within one pressure section when the steam pressure value changes is longer. Become. That is, in the case of the pattern B, the combustion amount is not changed by a slight pressure fluctuation, and even if the steam pressure value is uniformly reduced, the time until entering the next pressure section becomes long. Therefore, hunting caused by instructing the start of combustion to the required number or more boilers in a short time is less likely to occur. However, since the steam supply amount must not be insufficient by limiting the number of operating boilers, if the steam pressure value decreases to a certain level or less by the pattern B number control, the control is switched to the pattern A number control, Be prepared to increase the steam pressure value.
[0020]
The set value for limiting the number of units and the set value for canceling the number of units can be set to arbitrary values. However, the set value for limiting the number of units is about 25% depending on the load of the boiler to be controlled, and the set value for canceling the number of units. is set to prospect for about 80 percent at a load of the boiler being the number controlled object, it is possible to stabilize the vapor pressure.
[0021]
Next, a second embodiment will be described with reference to FIG. In the case of the second embodiment, instead of the pattern B described in the first embodiment, the combustion pressure control range after the reduction in the number of controlled boilers is set higher than the steam pressure control range before the reduction in the number of controlled boilers. Pattern C, which is a pattern, is set. This is the same as the first embodiment except that the steam pressure control range of the pattern C is increased and the set value for canceling the restriction on the number of units switched from the pattern C to the pattern A is 0.79 MPa.
[0022]
When the number control is performed according to the pattern A, if the steam pressure value is within the pressure range of 0.81 MPa to 0.82 MPa, the combustion state of the boiler is “LLLL” and the four boilers are set to low combustion. . When the steam pressure value rises and becomes a pressure section exceeding 0.82 MPa, the control is shifted to the pattern C number control. At the time of shifting to pattern C, the boiler enters the pressure section of 0.81 MPa to 0.83 MPa, and the combustion state of the boiler in the pressure section is three low combustion, so the boiler of the fourth priority is stopped, The boilers with the first to third priorities continue low combustion. After that, based on the pattern C, control is performed to decrease the number of boilers to be burned when the steam pressure value increases, and to increase the number of boilers to be burned when the steam pressure value decreases.
[0023]
In the case where the number of boilers is controlled based on the pressure classification of pattern C, when the steam pressure value becomes lower than 0.79 MPa, the control is switched to the control of number of boilers. The combustion state of the boiler in the pressure section of 0.79 MPa to 0.81 MPa of pattern C is “HLL”, but the combustion state of the boiler in the pressure section of 0.78 MPa to 0.79 MPa of pattern A is “HLLLL”. Therefore, three low combustion boilers will be added. Thereafter, the number of boilers is controlled based on the pattern A until the steam pressure value exceeds the set value for the number limit of 0.82 MPa. When switching between two combustion patterns, the combustion state of the boiler must be changed due to the difference in the way of pressure division. However, since the steam pressure control range of the pattern C is increased, it becomes necessary when the combustion pattern is switched. The amount of change in the combustion state of the boiler can be reduced.
[0024]
【The invention's effect】
By implementing the present invention, it is possible to prevent the occurrence of hunting that repeats the start and stop of combustion, and to obtain effects such as stable steam supply, improved boiler efficiency, and extended equipment life.
[Brief description of the drawings]
FIG. 1 is an installation example of a boiler multi-can installation system embodying the present invention. FIG. 2 is an explanatory diagram of pressure divisions and a boiler combustion state in a first embodiment. FIG. FIG. 4 is an explanatory view of a combustion state. FIG. 4 is an explanatory view of a pressure state and a boiler combustion state in a conventional case.
DESCRIPTION OF SYMBOLS 1 Boiler 2 Steam use part 3 Number control device 4 Steam header 5 Steam piping 6 Pressure detector 7 Operation control device

Claims (2)

並列に設置した複数台のボイラ、ボイラで発生した蒸気の圧力を検出する圧力検出装置、検出した蒸気圧力値に基づいてボイラの燃焼台数を制御する台数制御装置を備えている多缶設置ボイラであって、前記台数制御装置には、蒸気圧力制御範囲を複数の圧力区分に分割し、圧力区分ごとにボイラの燃焼状態を定めた燃焼パターンを設定しておき、前記圧力検出装置にて検出した蒸気圧力値と前記燃焼パターンに基づき、各ボイラの燃焼状態を制御する台数制御を行っている多缶設置ボイラにおいて、蒸気圧力制御範囲内に台数制限用設定値と台数制限解除用設定値を定めておき、蒸気圧力値が台数制限用設定値よりも高くなると、台数制御の対象とするボイラの台数と圧力区分数を少なくした燃焼パターンに基づく台数制御を行い、蒸気圧力値が台数制限解除用設定値より低くなると、台数制御の対象とするボイラの台数と圧力区分数を多くした燃焼パターンに基づく台数制御を行うことを特徴とする台数制御を行う多缶設置ボイラ。A multi-can boiler equipped with multiple boilers installed in parallel, a pressure detection device that detects the pressure of steam generated by the boiler, and a number control device that controls the number of boilers to be burned based on the detected steam pressure value In the number control device, the steam pressure control range is divided into a plurality of pressure sections, and a combustion pattern that defines the combustion state of the boiler is set for each pressure section, and detected by the pressure detection device. Based on the steam pressure value and the combustion pattern, in a multi-can boiler that controls the number of boilers to control the combustion state of each boiler, a set value for limiting the number of units and a set value for canceling the number of units are determined within the steam pressure control range. In addition, when the steam pressure value becomes higher than the set value for limiting the number of units, unit number control is performed based on the combustion pattern with the number of boilers to be controlled and the number of pressure classes reduced, and the steam pressure is reduced. When the value is lower than the limited number canceling set value, multi cans installed boilers performing units control which is characterized in that the number control based on the combustion pattern to increase the number of number and pressure divided boiler to be subjected to volume control. 請求項1に記載の台数制御を行う多缶設置ボイラにおいて、台数制御対象ボイラ減少後における蒸気圧力制御範囲を、台数制御対象ボイラ減少前における蒸気圧力制御範囲より高くしていることを特徴とする台数制御を行う多缶設置ボイラ。2. The multi-can installation boiler according to claim 1, wherein the steam pressure control range after the number of controlled boilers is higher than the steam pressure control range before the number of controlled boilers is reduced. Multi-can boiler that controls the number of units.
JP2002175257A 2002-06-17 2002-06-17 Multi-can installation boiler with unit control Expired - Fee Related JP3975127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002175257A JP3975127B2 (en) 2002-06-17 2002-06-17 Multi-can installation boiler with unit control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002175257A JP3975127B2 (en) 2002-06-17 2002-06-17 Multi-can installation boiler with unit control

Publications (2)

Publication Number Publication Date
JP2004020041A true JP2004020041A (en) 2004-01-22
JP3975127B2 JP3975127B2 (en) 2007-09-12

Family

ID=31173969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002175257A Expired - Fee Related JP3975127B2 (en) 2002-06-17 2002-06-17 Multi-can installation boiler with unit control

Country Status (1)

Country Link
JP (1) JP3975127B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120784A (en) * 2005-10-25 2007-05-17 Samson Co Ltd Multi-can installed boiler for performing number control
JP2007278539A (en) * 2006-04-03 2007-10-25 Samson Co Ltd Boiler and combustion control method for boiler
JP2010286180A (en) * 2009-06-12 2010-12-24 Samson Co Ltd Boiler multi-can installation system
JP2012149840A (en) * 2011-01-20 2012-08-09 Samson Co Ltd Boiler multiple-can installation system
JP2015117840A (en) * 2013-12-16 2015-06-25 株式会社サムソン Multi-can installation boiler

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120784A (en) * 2005-10-25 2007-05-17 Samson Co Ltd Multi-can installed boiler for performing number control
JP4632361B2 (en) * 2005-10-25 2011-02-16 株式会社サムソン Multi-can installation boiler with unit control
JP2007278539A (en) * 2006-04-03 2007-10-25 Samson Co Ltd Boiler and combustion control method for boiler
JP2010286180A (en) * 2009-06-12 2010-12-24 Samson Co Ltd Boiler multi-can installation system
JP2012149840A (en) * 2011-01-20 2012-08-09 Samson Co Ltd Boiler multiple-can installation system
JP2015117840A (en) * 2013-12-16 2015-06-25 株式会社サムソン Multi-can installation boiler

Also Published As

Publication number Publication date
JP3975127B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
JP3883800B2 (en) Number control method of boiler
JP2004020041A (en) Multi-can type boiler controlling number of boilers
JP2007120785A (en) Multi-can installed boiler for performing number control
JP4148514B2 (en) Number control device in boiler multi-can installation system
JP4632361B2 (en) Multi-can installation boiler with unit control
JP5916194B2 (en) Multi-can boiler
JP2006317104A (en) Multiple can boiler system
JP5692807B2 (en) Multi-can boiler
JP5302078B2 (en) Boiler multi-can installation system
JP2004069086A (en) Multi-boiler installation boiler
JP4341065B2 (en) Number control method of boiler
JP2005055014A (en) Method of controlling number of boilers
JP6550999B2 (en) Boiler system
JP2008107021A (en) Multi-can installation system for boiler
JP5045914B2 (en) Boiler unit controller
JP6220256B2 (en) Multi-can boiler
JP3998812B2 (en) How to control the number of boilers with multiple cans
JPH0641801B2 (en) Boiler automatic number control system
JP3357573B2 (en) Boiler unit control device
JP2007192435A (en) Multitubular installation system for boiler
JP2010286180A (en) Boiler multi-can installation system
JP2006234359A (en) Boiler control method
JP2004101095A (en) Multi-can installation system allowing individual operation of boiler
JP2000146103A (en) Multiple boilers controller and control method
JP2008224084A (en) Boiler multi-can installation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3975127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees