JP4059728B2 - Multi-can boiler - Google Patents
Multi-can boiler Download PDFInfo
- Publication number
- JP4059728B2 JP4059728B2 JP2002225276A JP2002225276A JP4059728B2 JP 4059728 B2 JP4059728 B2 JP 4059728B2 JP 2002225276 A JP2002225276 A JP 2002225276A JP 2002225276 A JP2002225276 A JP 2002225276A JP 4059728 B2 JP4059728 B2 JP 4059728B2
- Authority
- JP
- Japan
- Prior art keywords
- boiler
- combustion
- boilers
- steam
- steam pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、ハンチングを防止する多缶設置ボイラに関するものである。
【0002】
【従来の技術】
ボイラを複数台設置し、個々のボイラの燃焼状態を調節することでボイラ全体での蒸気供給量を制御するボイラの多缶設置システムが知られている。蒸気ボイラの多缶設置システムの場合、ボイラで発生した蒸気をいったん集合させ、その後に蒸気使用部への蒸気供給を行っており、蒸気集合部に設けた圧力検出装置によって検出した蒸気圧力値に基づいて各ボイラの燃焼状態を定める台数制御を行う。台数制御装置では、蒸気圧力制御範囲内を複数の圧力区分に分割し、圧力区分ごとにボイラの燃焼状態を定めた燃焼パターンを設定しておき、検出した蒸気圧力値がどの圧力区分に該当するかによって各ボイラの燃焼状態を定め、ボイラの蒸気供給量を制御する。圧力区分は一定の幅で定めておき、蒸気圧力値が高圧側の圧力区分に移るほどボイラ全体での燃焼量を少なくし、逆に低圧側の圧力区分に移るほどボイラ全体での燃焼量を多くする。
【0003】
各圧力区分には、図4に記載のようにボイラの燃焼量を多くする場合の蒸気圧力値と、少なくする場合の蒸気圧力値でディファレンシャルを設けておき、わずかな圧力変動で燃焼量の増減を繰り返すことがないようにしている。図4は4台のボイラを設置し、蒸気圧力値を0.70MPaから0.81MPaの範囲内に保つようにボイラの燃焼台数を制御する場合の、蒸気圧力値とボイラ燃焼台数の関係を示している。図5は蒸気圧力値変化の一例であり、蒸気圧力値の変化に対応して変更するボイラの運転状況を記載している。
【0004】
図5は稼働優先順位が第1位のボイラのみを燃焼させている状態から開始しており、第1位ボイラの燃焼による蒸気の発生によって蒸気圧力値は徐々に上昇している(a)。蒸気圧力値が0.81MPaよりも高くなると、台数制御装置は第1位ボイラの燃焼を停止する。ボイラの燃焼を停止すれば、蒸気の供給がなくなるために蒸気圧力値は低下していく(b)。蒸気圧力値が0.79MPaまで低下すると、台数制御装置は稼働優先順位の最も高い第1位のボイラに対して燃焼要求信号を出力する。ボイラは、燃焼待機時に燃料漏れを起こして炉内に未燃分が気化した状態で着火を行うと危険であるため、燃焼待機していたボイラの燃焼を開始する場合には、燃焼開始前にプレパージを行う必要があり、プレパージなどの燃焼準備工程終了後に燃焼を開始することになる。蒸気圧力値が0.79MPaまで停止して燃焼要求信号を出力しても、実際に燃焼を開始するのは燃焼準備工程後となるため、その間は蒸気圧力値が低下し続けることになる(c)。
【0005】
蒸気圧力が0.76MPaまで低下すると、台数制御装置は稼働優先順位が第2位のボイラに対しても燃焼要求信号を出力する。しかし、稼働優先順位の第1位及び第2位のボイラに対して燃焼要求信号を出力していても、2台のボイラが燃焼準備の工程を行っている間は蒸気の発生がないため、蒸気圧力値は低下し続ける(d)。第1位のボイラが燃焼準備工程を終了して燃焼を開始すると、蒸気圧力値は上昇に転じる(e)。さらに第2位のボイラも燃焼を開始すると、蒸気発生量が増加するため、蒸気圧力値の上昇速度が増加する(f)。2台のボイラによる蒸気供給によって蒸気圧力値が0.78MPaまで上昇すると、稼働優先順位が第2位であるボイラに対する燃焼要求信号を停止し、第2位ボイラの燃焼を停止して燃焼待機の状態とする。第2位ボイラを燃焼待機とすることで、ボイラの燃焼台数は1台になるため、蒸気圧力の上昇は緩やかとなり、蒸気圧力値が0.81MPaまで上昇すると第1位ボイラも燃焼を停止して燃焼待機とする(g)。
【0006】
図5の場合、蒸気使用量が少ないため1台のボイラが燃焼を行うだけでも蒸気圧力値は上昇するが、燃焼要求信号の出力から実際に燃焼を開始するまでの間に蒸気圧力が低下したため、本来なら燃焼の必要がない第2位のボイラに対しても燃焼要求信号を出力している。そのため、第2位のボイラが燃焼を開始すると蒸気圧力が急激に上昇し、第2位ボイラはごく短時間で燃焼を停止することになり、第2位ボイラの発停は不必要な発停である。不必要なボイラの発停を行うと、蒸気圧力の大きな増減を招くことになり、このことによってボイラを発停回数が増加するという悪循環を繰り返すと、ボイラは寿命が短くなり、エネルギーロスも増加するという問題がある。
【0007】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、低負荷時におけるボイラのハンチングを防止し、寿命の延長とエネルギーロスを低減することにある。
【0008】
【課題を解決するための手段】
請求項1に記載の発明は、並列に設置した複数台のボイラ、ボイラで発生した蒸気の圧力を検出する圧力検出装置、燃焼を行わせるボイラに対して燃焼要求信号を出力する台数制御装置をそれぞれ備えている多缶設置ボイラのシステムであって、前記台数制御装置は、前記圧力検出装置にて検出した蒸気圧力値から必要な燃焼台数を算出し、あらかじめ設定しておいた稼働優先順位の高い順に、算出した燃焼台数分のボイラに対して燃焼要求信号を出力して必要台数分のボイラを燃焼させ、残りのボイラは燃焼待機とすることで蒸気発生量を調節している多缶設置ボイラにおいて、稼働優先順位の最も高いボイラは、燃焼待機中も炉内への送風を継続する連続パージを行い、稼働優先順位が最も高いボイラ以外のボイラは、燃焼待機中には連続パージを行わずにボイラの運転を停止する制御を行う多缶設置ボイラにおいて、台数制御装置では、ボイラの燃焼台数を増加する蒸気圧力値とボイラの燃焼台数を減少する蒸気圧力値でディファレンシャルを設けて設定しておき、稼働優先順位が最も高いボイラの燃焼を開始する蒸気圧力値と停止する蒸気圧力値のディファレンシャルを、ほかのボイラにおける燃焼を開始する蒸気圧力値と停止する蒸気圧力値のディファレンシャルよりも、大きくしていることを特徴とする多缶設置ボイラである。
【0010】
請求項2に記載の発明は、前記の多缶設置ボイラにおいて、稼働優先順位の最も高いボイラを複数台に設定している場合、連続パージを行うボイラの台数は、1台以上であって稼働優先順位の最も高いボイラの台数以下の任意台数に設定することを特徴とする多缶設置ボイラである。
【0011】
請求項3に記載の発明は、前記の多缶設置ボイラにおいて、稼働優先順位の最も高いボイラは運転を行うことができない場合、連続パージを行うボイラは稼働優先順位が次に高いボイラに一時的に変更し、稼働優先順位の最も高いボイラが運転を行えるようになると、稼働優先順位が最も高いボイラで連続パージを行う制御に戻すことを特徴とする多缶設置ボイラである。
【0012】
【発明の実施の形態】
本発明の一実施例を図面を用いて説明する。図1はボイラの設置状態説明図。図2は蒸気圧力値の変化とボイラの運転状態を示したボイラ運転状態説明図、図3は蒸気圧力値とボイラの燃焼台数の関係を示した説明図である。まず図1に基づき、ボイラの設置状態を説明する。4台のボイラを並列に設置しておき、ボイラ1は蒸気配管5でスチームヘッダ4と接続する。各ボイラ1で発生した蒸気はスチームヘッダ4に集合し、スチームヘッダ4から蒸気使用部2へ蒸気の供給を行う。スチームヘッダ4には蒸気圧力を検出する圧力検出器6を設け、圧力検出器6で検出した蒸気圧力は台数制御装置3へ出力する。各ボイラ1にはそれぞれに運転制御装置7を設け、各運転制御装置7は台数制御装置3と接続しておく。ボイラの運転は、台数制御装置3から各ボイラの運転制御装置7へ出力する燃焼要求信号に基づいて行う。
【0013】
台数制御装置3には、蒸気圧力値に応じてボイラの燃焼台数を定めた燃焼パターンを設定しておき、圧力検出器6で検出した蒸気圧力値に基づいて必要な燃焼台数を算出し、算出した燃焼台数分のボイラに対して燃焼要求信号を出力する。台数制御装置3は、蒸気圧力値が上昇すれば燃焼要求信号の出力を行うボイラの台数を減少し、蒸気圧力値が低下すれば燃焼要求信号の出力を行うボイラの台数を増加する。
【0014】
蒸気圧力値が0.70MPa以下に低下するとボイラの燃焼台数は4台とし、蒸気圧力値が0.72MPaまで上昇すると燃焼台数を3台、蒸気圧力値が0.75MPaまで上昇すると燃焼台数を2台、蒸気圧力値が0.78MPaまで上昇すると燃焼台数を1台、蒸気圧力値が0.81MPaまで上昇すると燃焼台数を0台とするように設定する。燃焼台数増加の場合は、蒸気圧力値が0.78MPaまで低下すれば燃焼台数を1台、蒸気圧力値が0.76MPaまで低下すれば燃焼台数を2台、蒸気圧力値が0.73MPaまで低下すれば燃焼台数を3台、蒸気圧力値が0.70MPaまで低下すれば燃焼台数を4台とする。
【0015】
また台数制御装置3には、4台のボイラに対して稼働優先順位を第1位から第4位としてそれぞれに定めておき、燃焼要求信号は、稼働優先順位の高いボイラから順に燃焼台数分出力する。台数制御装置3は、稼働優先順位が最も高いボイラに対しては、燃焼要求信号又は連続パージ信号を出力し、稼働優先順位が最も高いボイラ以外のボイラに対しては、燃焼要求信号を出力するか否かのみとして連続パージ信号は出力しないように設定しておく。
【0016】
次に図2に記載の蒸気圧力値変化に基づいてボイラの運転状態を説明する。図2は稼働優先順位が第1位のボイラが燃焼を行っている状態から開始している。台数制御装置3は第1位ボイラに燃焼要求信号を出力し、第1位ボイラは燃焼を行っており、第1位ボイラによる蒸気の発生によって蒸気圧力値は徐々に上昇している(A)。この時台数制御装置3は、稼働優先順位が第2位から第4位のボイラに対しては燃焼要求信号を出力しておらず、第2位から第4位のボイラは燃焼待機の状態にある。連続パージを行うのは稼働優先順位の最も高いボイラのみであり、台数制御装置3は連続パージ信号の出力を行っていないため、第2位から第4位のボイラは連続パージも行っていない。
【0017】
蒸気圧力値が0.81MPaよりも高くなると、台数制御装置3は第1位ボイラに対する燃焼要求信号を停止し、代わりに第1位ボイラへ連続パージ信号の出力を行う。燃焼要求信号に代えて連続パージ信号を受信した第1位ボイラでは、燃料供給を停止することで燃焼を停止して燃焼停止の工程を行うが、炉内への送風は継続しておき、次回燃焼開始時まで送風のみを継続する連続パージ(連続P)を行う。連続パージを行っているボイラの場合、炉内へ供給する風量はボイラ着火時用の風量としておき、次回の燃焼開始時には短時間で燃焼を開始できるようにしておく。
【0018】
第1位ボイラの燃焼を停止すれば、スチームヘッダ4への蒸気供給も停止するため、蒸気圧力値は低下していく(B)。蒸気圧力値が0.78MPaまで低下すると、台数制御装置3は第1位ボイラに対して燃焼要求信号の出力を行う。燃焼要求信号を受信した第1位ボイラは、連続パージから燃焼の工程へ運転を切り換え、蒸気の供給を開始する。第1位ボイラは燃焼を行っていない間に連続パージを行っていたため、既にプレパージは完了しており、燃焼要求信号を受信すればすぐに燃焼を開始することができる。プレパージ時間分の遅れを無くすことで、蒸気圧力値が0.78MPaから大きく低下する前に蒸気圧力値を上昇に変えることができ、蒸気供給を行うことで蒸気圧力値は上昇していく(C)。蒸気圧力値が0.78MPaから大きく低下する前に蒸気圧力が上昇に転じるため、稼働優先順位が第2位以下のボイラを無駄に燃焼させることをなくすことができる。
【0019】
稼働優先順位の最も高いボイラのみ連続パージを行い、他順位のボイラは連続パージを行わせないのは、燃焼待機から確実に燃焼へ移行するボイラは稼働優先順位の最も高いボイラのみであることによる。稼働優先順位の最も高いボイラの場合、蒸気使用量が少なくても、いずれは蒸気圧力の低下によって燃焼を再開する。しかし他順位のボイラの場合、図2に記載のように蒸気使用量が1台のボイラで発生する蒸気量より少なければ、燃焼を行わないことになる。連続パージ中は送風機を稼働し続けることになるため、燃焼を再開しない可能性のある稼働優先順位の低いボイラで連続パージを行った場合、燃焼を行わなければ送風機稼働分のエネルギーが無駄になる。そのため、稼働優先順位の最も高いボイラのみ連続パージを行うことでエネルギーのロスを低減することができる。
【0020】
また、ボイラの燃焼台数を増加する蒸気圧力値とボイラの燃焼台数を減少する蒸気圧力値ではディファレンシャルを設けいるが、第1位ボイラの燃焼を開始する蒸気圧力値と停止する蒸気圧力値のディファレンシャルを、他稼働優先順位のボイラにおける燃焼を開始する蒸気圧力値と停止する蒸気圧力値のディファレンシャルより大きくしたのは、第1位ボイラが燃焼開始後に短時間で燃焼を停止することを防ぐためである。
【0021】
連続パージを行わない台数制御の場合、燃焼要求信号出力後にプレパージを実施してから蒸気供給を開始しており、その間に蒸気圧力が低下していくため、燃焼要求信号を出力したボイラとその下位ボイラにおける燃焼要求出力開始圧力の間隔を広くしておく必要がある。これに対し、連続パージを行っている場合、燃焼要求信号出力から蒸気供給開始までの時間が短いため、その間に低下する蒸気圧力値は小さく、下位ボイラの燃焼要求出力開始圧力までの間隔を広くする必要がなくなる。そして、燃焼要求信号出力から蒸気供給開始までの時間が短ければ、蒸気圧力の低下が少ない段階で蒸気圧力の上昇を開始することになるため、蒸気圧力値の低下後に蒸気圧力を上昇させる場合に比べて蒸気圧力を上昇させる幅が少なくなる。そのため、第1位ボイラの燃焼開始圧力を低くすることで、燃焼台数増加から燃焼台数減少までのディファレンシャルを大きくし、第1位ボイラを燃焼開始してから燃焼を停止するまでの間隔を大きくしている。
【0022】
なお、本実施例では稼働優先順位の最も高いボイラは1台のみの設定であるが、複数台のボイラに対して同じ稼働優先順位をつけておき、複数台のボイラを同時に起動及び停止する多缶設置システムもある。この場合、蒸気使用部2における通常時の蒸気使用量に基づいて連続パージを実施するボイラの台数を定め、必要台数分のボイラが連続パージを行うようにする。蒸気使用部2による蒸気使用量が少ない場合、稼働優先順位最上位のボイラの中から1台のボイラを選択し、選択した1台のボイラのみ連続パージを行い、蒸気使用量が多い場合、稼働優先順位の最も高い複数台のボイラすべてで連続パージを行い、蒸気使用量が上記の中間の値であれば、稼働優先順位の最も高い複数台のボイラ中から一定台数のボイラを選択して連続パージを行うように設定する。
【0023】
また、稼働優先順位の最も高いボイラに異常が発生するなどして、燃焼が行えなくなっている場合には、連続パージを行うボイラを稼働優先順位が次に高いボイラに一時的に変更し、稼働優先順位の最も高いボイラが燃焼を行えるようになると、稼働優先順位の最も高いボイラで連続パージを行う制御に戻す。
【0024】
【発明の効果】
本発明を実施することで、低負荷時に燃焼の必要がないボイラにまで燃焼要求信号を出力し、短時間で燃焼を終了するハンチングの発生を防止することができ、発停回数の減少による寿命の延長と、エネルギーロスの低減をすることができる。
【図面の簡単な説明】
【図1】 一実施例におけるボイラの設置状態説明図
【図2】 一実施例における蒸気圧力値の変化とボイラの運転状態説明図
【図3】 一実施例における蒸気圧力値とボイラの燃焼台数の関係を示した説明図
【図4】 従来技術における蒸気圧力値とボイラの燃焼台数の関係を示した説明図
【図5】 従来技術における蒸気圧力値の変化とボイラの運転状態説明図
【符号の説明】
1 ボイラ
2 蒸気使用部
3 台数制御装置
4 スチームヘッダ
5 蒸気配管
6 圧力検出器
7 運転制御装置[0001]
[Industrial application fields]
The present invention relates to a multi-can installation boiler for preventing hunting.
[0002]
[Prior art]
A boiler multi-can installation system is known in which a plurality of boilers are installed and the amount of steam supplied to the entire boiler is controlled by adjusting the combustion state of each boiler. In the case of a steam boiler multi-can installation system, the steam generated in the boiler is collected once, and then the steam is supplied to the steam using part, and the steam pressure value detected by the pressure detector installed in the steam collecting part is used. Based on the number control, the combustion state of each boiler is determined. In the number control device, the steam pressure control range is divided into a plurality of pressure categories, and a combustion pattern that determines the combustion state of the boiler is set for each pressure category, and the detected steam pressure value corresponds to which pressure category Thus, the combustion state of each boiler is determined, and the steam supply amount of the boiler is controlled. The pressure section should be set within a certain range.The more the steam pressure value moves to the pressure section on the high pressure side, the smaller the combustion amount in the entire boiler, and vice versa. Do more.
[0003]
As shown in FIG. 4, a differential is provided for each pressure category with the steam pressure value when the boiler combustion amount is increased and the steam pressure value when the boiler combustion amount is decreased. Is not repeated. Fig. 4 shows the relationship between the steam pressure value and the number of boiler combustions when four boilers are installed and the number of boiler combustions is controlled so that the steam pressure value is maintained within the range of 0.70 MPa to 0.81 MPa. . FIG. 5 is an example of a change in the steam pressure value, and describes the operation status of the boiler that is changed in response to the change in the steam pressure value.
[0004]
FIG. 5 starts from a state where only the first-ranked boiler is combusted, and the steam pressure value gradually increases due to the generation of steam due to combustion of the first-ranked boiler (a). When the steam pressure value becomes higher than 0.81 MPa, the unit control device stops the combustion of the first boiler. If the combustion of the boiler is stopped, the supply of steam is lost and the steam pressure value decreases (b). When the steam pressure value decreases to 0.79 MPa, the unit control device outputs a combustion request signal to the first boiler with the highest operation priority. The boiler is dangerous if it is ignited with the fuel leaking during combustion standby and the unburned portion is vaporized in the furnace. Pre-purge needs to be performed, and combustion is started after the completion of the combustion preparation step such as pre-purge. Even if the steam pressure value is stopped to 0.79 MPa and a combustion request signal is output, since the combustion actually starts after the combustion preparation step, the steam pressure value continues to decrease during that time (c) .
[0005]
When the steam pressure drops to 0.76 MPa, the unit control device outputs a combustion request signal to the boiler with the second highest operation priority. However, even if the combustion request signal is output to the first and second boilers in the operation priority order, steam is not generated while the two boilers are performing the combustion preparation process. The steam pressure value continues to decrease (d). When the first boiler finishes the combustion preparation process and starts combustion, the steam pressure value starts to rise (e). Furthermore, when the second boiler also starts to combust, the amount of steam generated increases, so the rate of increase in the steam pressure value increases (f). When the steam pressure rises to 0.78MPa due to steam supply by two boilers, the combustion request signal for the boiler with the second highest operating priority is stopped, the combustion of the second boiler is stopped, and the combustion standby state And By setting the second boiler to stand by, the number of boilers burned becomes one, so the steam pressure rises slowly, and when the steam pressure rises to 0.81 MPa, the first boiler also stops burning. Set to combustion standby (g).
[0006]
In the case of FIG. 5, since the amount of steam used is small, the steam pressure value rises even if only one boiler performs combustion, but the steam pressure has dropped between the output of the combustion request signal and the actual start of combustion. The combustion request signal is also output to the second-ranked boiler that normally does not require combustion. Therefore, when the 2nd boiler starts combustion, the steam pressure rises rapidly, the 2nd boiler stops combustion in a very short time, and the start and stop of the 2nd boiler is unnecessary. It is. Unnecessary boiler start / stop will cause a large increase / decrease in the steam pressure. Repeating the vicious cycle of increasing the number of start / stop of the boiler will shorten the life of the boiler and increase energy loss. There is a problem of doing.
[0007]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to prevent boiler hunting at low load, and to extend life and reduce energy loss.
[0008]
[Means for Solving the Problems]
The invention described in
[0010]
According to the second aspect of the present invention, in the multi-can installation boiler, when a plurality of boilers having the highest operation priority are set, the number of boilers that perform continuous purge is one or more. It is a multi-can installation boiler characterized in that it is set to an arbitrary number equal to or less than the number of boilers with the highest priority.
[0011]
According to the third aspect of the present invention, in the multi-can installation boiler, when the boiler having the highest operation priority cannot be operated, the boiler performing the continuous purge is temporarily assigned to the boiler having the next highest operation priority. When the boiler having the highest operation priority is able to be operated, the boiler can be set back to the control of continuously purging with the boiler having the highest operation priority.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram of a boiler installation state. FIG. 2 is an explanatory diagram of the boiler operation state showing the change of the steam pressure value and the operation state of the boiler, and FIG. 3 is an explanatory diagram showing the relationship between the steam pressure value and the number of boilers burned. First, the installation state of the boiler will be described with reference to FIG. Four boilers are installed in parallel, and the
[0013]
The
[0014]
When the steam pressure falls below 0.70MPa, the number of boilers burned is four. When the steam pressure rises to 0.72MPa, the number of burners becomes three. When the steam pressure rises to 0.75MPa, the number of burners becomes two. When the pressure value rises to 0.78 MPa, the number of combustion units is set to 1; when the steam pressure value rises to 0.81 MPa, the number of combustion units is set to 0. In the case of an increase in the number of combustion units, if the steam pressure value drops to 0.78 MPa, the number of combustion units will be one unit. If the steam pressure value decreases to 0.76 MPa, the number of combustion units will be two units. If the number of units drops to 3 and the steam pressure drops to 0.70 MPa, the number of burns will be 4 units.
[0015]
In the
[0016]
Next, the operation state of the boiler will be described based on the steam pressure value change shown in FIG. FIG. 2 starts from a state where the boiler with the first operating priority is burning. The
[0017]
When the steam pressure value becomes higher than 0.81 MPa, the
[0018]
If the combustion of the first boiler is stopped, the steam supply to the
[0019]
The reason why only the boiler with the highest operation priority is continuously purged and the boilers with the other priority are not continuously purged is because the boiler that reliably shifts from combustion standby to combustion is only the boiler with the highest operation priority. . In the case of the boiler having the highest operation priority, even if the amount of steam used is small, the combustion restarts due to a decrease in steam pressure. However, in the case of boilers of other ranks, combustion is not performed if the amount of steam used is less than the amount of steam generated in one boiler as shown in FIG. Since the blower will continue to operate during continuous purging, if continuous purging is performed with a low operating priority boiler that may not resume combustion, the energy for operating the blower will be wasted if combustion is not performed. . Therefore, energy loss can be reduced by performing continuous purge only on the boiler having the highest operation priority.
[0020]
Also, a differential is provided for the steam pressure value that increases the number of boilers burned and the steam pressure value that decreases the number of boilers burned, but the differential between the steam pressure value at which combustion of the first boiler starts and the steam pressure value at which it stops is differential. Is set to be larger than the differential between the steam pressure value at which combustion is started and the steam pressure value at which it is stopped in the other operation priority boiler in order to prevent the first boiler from stopping combustion in a short time after starting combustion. is there.
[0021]
In the case of unit control without continuous purge, steam supply is started after pre-purge is performed after the combustion request signal is output, and the steam pressure decreases during that time. It is necessary to widen the interval between the combustion demand output start pressures in the boiler. In contrast, when continuous purge is performed, the time from the combustion request signal output to the start of steam supply is short, so the steam pressure value that decreases during that time is small, and the interval from the lower boiler to the combustion request output start pressure is wide. There is no need to do it. And if the time from the combustion request signal output to the start of steam supply is short, the steam pressure starts to increase at a stage where the steam pressure decreases little, so when the steam pressure is increased after the steam pressure value decreases Compared to the increase in the steam pressure, the width is reduced. Therefore, by lowering the combustion start pressure of the first boiler, the differential from the increase in the number of combustion to the decrease in the number of combustion is increased, and the interval from the start of combustion of the first boiler to the stop of the combustion is increased. ing.
[0022]
In this embodiment, only one boiler has the highest operation priority. However, the same operation priority is assigned to a plurality of boilers, and a plurality of boilers are started and stopped simultaneously. There is also a can installation system. In this case, the number of boilers that perform continuous purging is determined based on the normal amount of steam used in the
[0023]
Also, if combustion cannot be performed due to an abnormality in the boiler with the highest operating priority, the boiler that performs continuous purge is temporarily changed to the boiler with the next highest operating priority, When the boiler with the highest priority is able to burn, the control is returned to the continuous purge with the boiler with the highest operation priority.
[0024]
【The invention's effect】
By implementing the present invention, it is possible to output a combustion request signal even to a boiler that does not require combustion at low load, and to prevent the occurrence of hunting that ends combustion in a short time, and the life due to the decrease in the number of start and stop And energy loss can be reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a boiler installation state in one embodiment. FIG. 2 is an explanatory diagram of changes in steam pressure values and boiler operation states in one embodiment. FIG. 3 is a steam pressure value in one embodiment and the number of boilers burned. Fig. 4 is an explanatory diagram showing the relationship between the steam pressure value and the number of boilers burned in the prior art. Fig. 5 is an explanatory diagram showing changes in the steam pressure value and boiler operating state in the prior art. Explanation of]
DESCRIPTION OF
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002225276A JP4059728B2 (en) | 2002-08-01 | 2002-08-01 | Multi-can boiler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002225276A JP4059728B2 (en) | 2002-08-01 | 2002-08-01 | Multi-can boiler |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004069086A JP2004069086A (en) | 2004-03-04 |
JP4059728B2 true JP4059728B2 (en) | 2008-03-12 |
Family
ID=32012997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002225276A Expired - Fee Related JP4059728B2 (en) | 2002-08-01 | 2002-08-01 | Multi-can boiler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4059728B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4870461B2 (en) * | 2006-04-03 | 2012-02-08 | 株式会社サムソン | Boiler and boiler combustion control method |
JP5541780B2 (en) * | 2010-02-27 | 2014-07-09 | 株式会社サムソン | Boiler multi-can installation system |
JP5541781B2 (en) * | 2010-02-27 | 2014-07-09 | 株式会社サムソン | Boiler multi-can installation system |
JP5647904B2 (en) * | 2011-01-20 | 2015-01-07 | 株式会社サムソン | Boiler multi-can installation system |
JP5924070B2 (en) * | 2012-03-28 | 2016-05-25 | 三浦工業株式会社 | Boiler system |
JP6314502B2 (en) * | 2014-01-29 | 2018-04-25 | 三浦工業株式会社 | Boiler system |
JP6528495B2 (en) * | 2015-03-23 | 2019-06-12 | 三浦工業株式会社 | Boiler system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3283153B2 (en) * | 1995-02-09 | 2002-05-20 | 三浦工業株式会社 | Control method in multi-can installation system of fluid heater |
JP3820621B2 (en) * | 1996-02-21 | 2006-09-13 | 三浦工業株式会社 | Control device for heat source system |
JP2933876B2 (en) * | 1996-06-25 | 1999-08-16 | 株式会社サムソン | Operation control method of multi-can boiler |
JP2000146103A (en) * | 1998-10-30 | 2000-05-26 | Miura Co Ltd | Multiple boilers controller and control method |
JP2002215203A (en) * | 2001-01-18 | 2002-07-31 | Miura Co Ltd | Control method for apparatus |
-
2002
- 2002-08-01 JP JP2002225276A patent/JP4059728B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004069086A (en) | 2004-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2004038199A1 (en) | Method and system for controlling gas turbine engine | |
JP4059728B2 (en) | Multi-can boiler | |
JP2013234775A (en) | System for controlling number of multi-boiler type through-flow boiler | |
JP5086145B2 (en) | Multi-can boiler | |
JP4148514B2 (en) | Number control device in boiler multi-can installation system | |
JP5465473B2 (en) | Boiler multi-can installation system | |
JP4118206B2 (en) | Number control device in boiler multi-can installation system | |
JP4529731B2 (en) | Boiler control method | |
JP5410849B2 (en) | Boiler multi-can installation system | |
JP2005055014A (en) | Method of controlling number of boilers | |
JP4059100B2 (en) | Boiler monitoring method and apparatus | |
JP2007192435A (en) | Multitubular installation system for boiler | |
JP2671246B2 (en) | Method of controlling the number of once-through boilers | |
JP2000329302A (en) | Number controller for multiple can installation boiler | |
JP2010236719A (en) | Multi-can installed boiler | |
JP3357573B2 (en) | Boiler unit control device | |
JP2017026200A (en) | Boiler system | |
JP5410921B2 (en) | Multi-can boiler | |
JP2002081604A (en) | Method for controlling number of thermal instruments | |
JP3795256B2 (en) | Combustion control device | |
JP5835842B2 (en) | Multi-can boiler | |
JP4533335B2 (en) | Control device for heat source system | |
JP4551038B2 (en) | Multi-can installation system for gas-fired boilers | |
JP2010133672A (en) | Boiler multi-can installation system | |
JP6399579B2 (en) | Multi-can boiler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070403 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070822 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071002 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071218 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101228 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4059728 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111228 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121228 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131228 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |