JP3974215B2 - Packaging materials - Google Patents

Packaging materials Download PDF

Info

Publication number
JP3974215B2
JP3974215B2 JP05770697A JP5770697A JP3974215B2 JP 3974215 B2 JP3974215 B2 JP 3974215B2 JP 05770697 A JP05770697 A JP 05770697A JP 5770697 A JP5770697 A JP 5770697A JP 3974215 B2 JP3974215 B2 JP 3974215B2
Authority
JP
Japan
Prior art keywords
film
inorganic oxide
oxide film
packaging material
polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05770697A
Other languages
Japanese (ja)
Other versions
JPH10249976A (en
Inventor
茂樹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP05770697A priority Critical patent/JP3974215B2/en
Priority to PCT/JP1998/001013 priority patent/WO1998040208A1/en
Publication of JPH10249976A publication Critical patent/JPH10249976A/en
Application granted granted Critical
Publication of JP3974215B2 publication Critical patent/JP3974215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon

Description

【0001】
【発明の属する技術分野】
本発明は、包装材料に関し、食品、工業用部品等の高いガスバリア性と強度が要求される物品の包装材料として使用できる。具体的包装材としては、例えばバッグインボックス(BIB)、スタンディングパウチ、レトルト用包装材、容器蓋、ピロー袋、ガゼット袋、3方袋、4方袋、等である。
【0002】
【背景技術及び発明が解決しようとする課題】
近年、無機酸化物膜が被着されたプラスチックフィルムよりなる包装材料が、その高いガスバリア性、無公害性、利便性、コストダウン等の見地から幅広く使用されるようになってきている。従来のフィルム材料は、通常、ポリエステル系樹脂である。また、無機酸化物膜の被着は、真空蒸着で行っている。
しかし、ポリエステル系樹脂フィルムは、強度的に不十分なところもあり、液体等の重量物の包装材料としては、耐ピンホール性、等包装材料として要求される性能に問題があるため、代わりに強度的に優れたナイロン6等のポリアミド系フィルムの使用が提案されている。
【0003】
一方、ポリアミド系樹脂フィルムとすることにより、強度面の改善は図れるが、このフィルムへの無機酸化物膜の被着を真空蒸着で行った場合、無機酸化物膜とフィルムとの接着強度が弱いため、無機酸化物膜の剥離が生じることもあった。しかも、ポリアミド系樹脂フィルム自体は、吸湿による寸法変化が比較的大きいため、フィルムが吸湿した場合には、余計無機酸化物膜の剥離が生じ易く、包装材料としての耐久性に大きな問題があった。
【0004】
そこで、本発明は、ガスバリア性が高く、かつ接着強度の大きな無機酸化物膜を有する包装材料を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の第1発明に係る包装材料は、ポリアミド系フィルムと、プラズマCVD法により形成された、ケイ素、酸素及び炭素を主成分とする無機酸化物膜とを有する包装材料であって、前記無機酸化物膜中の炭素の元素組成比が10〜35wt%であり、前記ポリアミド系フィルムの前記無機酸化物膜の被着される表面は、コロナ処理により調製された濡れ性が44〜56mN/mであり、前記無機酸化物膜の表面は、その濡れ性が45〜70mN/mであることを特徴とする。
【0006】
前記ポリアミドとしては、ナイロン6、ナイロン66、芳香族ナイロン(例えばMXD6)等を使用できる。これらの単体、両者の共重合体、又はこれらの単体と共重合体との混合物としてもよい。
前記プラズマCVD法は、反応ガスに高周波電界を印可し、その電気的エネルギーを利用してガスを活性化し、低温プラズマ条件で薄膜を形成する技術である。
【0007】
本発明においては、反応ガス原料としてSi-O-C結合を有する有機シラン系化合物である、例えば1,1,3,3-テトラメチルジシロキサン、ヘキサメチルジシロキサン、テトラエトキシシラン、テトラメトキシシラン、ビニルトリメトキシシラン、ヘキサメチルジシラザン、等を使用できる。
【0008】
このプラズマCVDによって、ケイ素(Si)、酸素(O)及び炭素(C)の3種の元素が互いに共有結合することにより生成した無機酸化物膜がポリアミド系フィルムの表面に被着する。
本発明においては、包装材料中にポリアミド系フィルムと無機酸化物膜が含まれていればよく、フィルムが前記ポリアミド系フィルムを有する多層構造であってもよい。
本発明によって形成された無機酸化物膜は、透明性に優れ、2cc/m3/24hr以下の酸素透過度を有するものである。
【0010】
また、前記炭素の組成比が10wt%未満の場合には、フィルムが吸湿した際の寸法変化、実使用時の機械的ストレスによりガスバリア性の著しい低下が見られる。一方、35wt%を超えると、無機酸化物膜の黄変が激しくなって透明性が損なわれと同時にフィルムのガスバリア性も低下する。好ましくは、炭素の組成比を10〜30wt%とする。
この炭素の元素組成比は、プラズマCVD装置に供給する原料ガスの混合比を変えることにより調整できる。
前記ポリアミド系フィルム表面の濡れ性が 44mN/m 未満の場合には、無機酸化物膜のポリアミド系フィルム表面への密着性が低下して、耐久性が劣るようになり、実使用状況下で充分なガスバリア性が得られなくなる。一方、 56mN/m を超えると、高湿条件下での無機酸化物膜の剥離が起こり易くなって、ガスバリア性能が低下する。好ましくは、濡れ性を 44 54mN/m とする。前記ポリアミド系フィルム表面の濡れ性は、例えばコロナ処理、コーティング等でフィルム表面を処理することにより調整することができる。
前記無機酸化物膜表面の濡れ性が 45mN/m 未満の場合には、印刷、積層時のラミネートの際に充分な接着強度が得られず、包装材料としての実用性が低くなる。一方、 70mN/m を超えると、処理時に無機酸化物膜にクラック等の構造欠陥が生じてガスバリア性が著しく低下する。好ましくは、濡れ性を 50 70mN/m とする。
表面の濡れ性は、酸素プラズマ処理等によって調整できる。
【0014】
本発明の第発明に係る包装材料は、第1発の包装材料を積層構造中の少なくとも1層として含むことを特徴とする。
【0015】
前記積層構造において、前記第1発の包装材料よりなる層の無機酸化物膜上に積層されるフィルムは、無機酸化物膜の耐久性向上と、積層体の防湿性、耐熱性向上を目的とするものである。
この積層されるフィルムとしては、ポリエステル系フィルム、ポリオレフィン系フィルム、金属箔、等とすることができる。
前記積層されるフィルムと無機酸化物膜との接着強度は、接着強度の点から4N/15mm以上が好ましく、より好ましくは7N/15mm以上である。
【0016】
【発明の実施の形態】
図1、2を参照して本発明の一実施形態に係る包装材料をその製造方法と共に説明する。
先ず、図1に示すように、ポリアミド系フィルム11の一方の面11Aにコロナ処理を施してその表面の濡れ性を42〜56mN/m2に調整する。
【0017】
次に、このポリアミド系フィルム11をプラズマCVD装置内に入れ、反応ガス原料として有機シラン系化合物、酸素及び不活性ガスを供給しながらプラズマCVDによって、ケイ素(Si)、酸素(O)及び炭素(C)よりなる無機酸化物膜12をコロナ処理が施された面11Aに被着する。この無機酸化物膜12を形成する際、炭素の元素組成比が2〜35wt%となるようにガス流量比を制御する。
【0018】
次に、前記無機酸化物膜12に対して、酸素プラズマ処理によりその表面12Aの濡れ性を45〜70mN/m2に調整する。
次に、図2に示すように、前記ポリアミド系フィルム11の無機酸化物膜12の上に接着剤13を介してポリオレフィン系フィルム14を積層することにより本実施形態に係る包装材料15を作製する。このポリアミド系フィルム11とポリオレフィン系フィルム14との接着強度は、4N/15mm以上とする。
【0019】
【実施例】
〔実施例1〜3〕
上記実施形態において、ポリオレフィン系フィルムとポリアミド(PA)系フィルムの樹脂種を下記の通りとし、また無機酸化物膜中の炭素の含有量、ポリアミド系フィルム表面の濡れ性及び無機酸化物膜の表面濡れ性を表1の通りとして各実施例の包装材料を作製した。
ポリオレフィン系フィルム…L-LDPEフィルム(LS-711C、出光石油化学株式会社製、厚さ60μm)。
ポリアミド系フィルム…二軸延伸ナイロンナイロン6フィルム(ユニロンG-100、出光石油化学株式会社製、厚さ15μm)。
【0020】
【表1】

Figure 0003974215
【0021】
〔比較例1〜8〕
上記実施形態において、ポリオレフィン系フィルムとポリアミド系フィルムの樹脂種は実施例と同様にしたが、無機酸化物膜中の炭素の含有量、ポリアミド系フィルム表面の濡れ性及び無機酸化物膜の表面濡れ性を表2の通りとして各実施例の包装材料を作製した。
前記無機酸化物膜中の炭素の元素組成比は、アルバックファイ社製XPS装置により測定した。
前記表面濡れ性に関して、和光純薬株式会社製の表面濡れ指数標準試薬、又は接触角測定装置を使用して表面濡れ性を測定した。
【0022】
【表2】
Figure 0003974215
【0023】
〔特性の測定〕
前記実施例1〜3と比較例1、2の包装材料について、ポリアミド系フィルム表面の濡れ性を制御した結果を酸素透過度、無機酸化物膜の接着強度、包装材料伸長時(4%)の酸素透過度に関して測定した。また、これらの測定結果に基づいて総合評価も行った。これらを表3に示す。
【0024】
前記酸素透過度は、MOCON社製OXTRAN-1000型測定器を使用し、23℃、0%RHの条件で測定した。
前記無機酸化物膜の接着強度は、テープ剥離法で測定した。
前記包装材料伸長時の酸素透過度は、引張り試験器を使用して100mm×200mmのフィルムを100mm/minの速度で4%引き伸ばした後、酸素透過度を測定した。
総合評価の欄の評価基準は、下記の通りである。
○…充分な性能を有しているため、実用に耐えられる。△…特性に一部問題があるため、実用上の用途が限定される。×…性能全般に問題があるため、実用化が困難である。
【0025】
【表3】
Figure 0003974215
【0026】
表3より、実施例1〜3の包装材料によれば、ポリアミド系フィルムとプラズマCVD法により形成された無機酸化物膜とを有し、無機酸化物膜中の炭素の元素組成比、及びポリアミド系フィルムの前記無機酸化物膜の被着される表面の濡れ性が本発明に係る所定範囲であるため、酸素透過度、無機酸化物膜の接着強度及び包装材料伸長時の酸素透過度がいずれも良好であることがわかる。
一方、表3より、比較例1、2の包装材料によれば、実施例1、2と同様の組成を有しているが、ポリアミド系フィルムの前記無機酸化物膜の被着される表面の濡れ性が本発明に係る所定範囲を外れているため、酸素透過度と包装材料伸長時の酸素透過度に問題があった。
【0027】
次に、前記実施例1〜3と比較例3、4、7の包装材料について、無機酸化物膜の炭素の元素組成比を制御した結果を、黄色度、酸素透過度、包装材料伸長時(4%)の酸素透過度に関して測定した。また、これらの測定結果に基づいて総合評価も行った。これらを表4に示す。
前記黄色度は、YI測定器で測定した。
【0028】
【表4】
Figure 0003974215
【0029】
表4より、実施例1〜3の包装材料によれば、無機酸化物膜の炭素の元素組成比が本発明の範囲内にあるため、黄色度について問題がなく、酸素透過度、包装材料伸長時の酸素透過度、及びポリアミド系フィルムとポリオレフィン系フィルムとの接着強度が良好であることがわかる。
【0030】
一方、比較例3の包装材料によれば、無機酸化物膜中に炭素が含まれていないため、包装材料伸長時の寸法変化によりガスバリア性の著しい低下が見られた。また、比較例4の包装材料によれば、無機酸化物膜の炭素の元素組成比が本発明の範囲を上回っているため、黄変が激しく、透明性が損なわれていた。
【0031】
次に、実施例1〜3と比較例3、5、6、8の包装材料について、無機酸化物膜表面の濡れ性を制御した結果を、黄色度、酸素透過度、及びポリオレフィン(P0)系フィルムとの接着強度に関して測定した。また、これらの測定結果に基づいて総合評価も行った。これらを表5に示す。前記ポリオレフィン系フィルムとの接着強度は、15mm幅の試験片を90度剥離法で測定した。
【0032】
【表5】
Figure 0003974215
【0033】
表5より、実施例1〜3の包装材料によれば、無機酸化物膜表面の濡れ性が本発明の範囲内にあるため、無機酸化物膜上に積層されたフィルムとの接着強度が良好であることがわかる。
一方、比較例3、5、6、8の包装材料によれば、無機酸化物膜表面の濡れ性が本発明の範囲を下回っているため、無機酸化物膜とポリオレフィン系フィルムとの接着強度が不良である。
【0034】
次に、前記実施形態に係る実施例2と、真空蒸着法を用いて作製した比較例9の包装材料について耐歪性(ラミネート加工適性)を測定して比較した。この耐歪性は、包装材料の伸び率に対する酸素透過度に関して測定したものである。それらの結果を図3に示す。
【0035】
実施例2はプラズマCVD法により形成された無機酸化物膜を有する包装材料、比較例9は真空蒸着により形成されたシリカ膜を有する包装材料である。その特性を表6に示す。
【0036】
【表6】
Figure 0003974215
【0037】
表6より、本実施例2の包装材料は、プラズマCVD法により形成された無機酸化物膜を有しているため、比較例9の包装材料と比べて、包装材料の伸長によるガスバリア性能の変化が少ないことがわかる。
【0038】
次に、実施例2と比較例9の包装材料について実用バリア性能(ラミネーション、製袋、充填、運搬時の外力に対するガスバリア性能の安定性)を測定して比較した。この実用バリア性能は、ゲルボ試験回数に対する酸素透過度に関して測定したものである。それらの結果を図4に示す。
図4より、本実施例6の包装材料は、プラズマCVD法により形成された無機酸化物膜を有しているため、比較例9の包装材料と比べて、包装材料の伸長による実用バリア性能の変化が少ないことがわかる。
【0039】
次に、実施例2と比較例9の包装材料を使用して作製した袋製品について、落盤衝撃試験を行った後の酸素透過度を測定した。その結果を図5に示す。
この袋の製袋条件は下記の通りである。
接着剤:脂肪族ポリエステル系接着剤
袋形態:130×150mm(内寸110×110mm)、3方シール:シール幅10mm。
シール温度:130℃/130℃/140℃。
シール圧力:9.8N/cm。
内容物:水(120cc)。
【0040】
図5より、本実施例2の包装材料よりなる袋製品は、本実施形態により形成された無機酸化物膜を有しているため、比較例9の包装材料よりなる袋製品と比べて、落盤衝撃試験後の酸素透過度の変化が少なく、優れた耐衝撃性を有していることがわかる。
【0041】
【発明の効果】
本発明によれば、ガスバリア性能が高くて実用時にそのガスバリア性能が低下しにくく、かつ接着強度の大きな無機酸化物膜を有する包装材料が得られる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る包装材料の断面図である。
【図2】本発明の一実施形態に係る積層構造の包装材料の断面図である。
【図3】実施例2と比較例9の包装材料について、伸び率に対する酸素透過度を測定したグラフである。
【図4】実施例2と比較例9の包装材料について、ゲルボ試験回数に対する酸素透過度を測定したグラフである。
【図5】実施例2と比較例9の包装材料について、落盤衝撃回数に対する酸素透過度を測定したグラフである。
【符号の説明】
11 ポリアミド系フィルム
12 無機酸化物膜
13 接着剤
14 ポリオレフィン系フィルム
15 包装材料[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a packaging material and can be used as a packaging material for articles requiring high gas barrier properties and strength such as food and industrial parts. Specific packaging materials include, for example, bag-in-box (BIB), standing pouches, retort packaging materials, container lids, pillow bags, gusset bags, three-side bags, four-side bags, and the like.
[0002]
[Background Art and Problems to be Solved by the Invention]
In recent years, packaging materials made of a plastic film coated with an inorganic oxide film have been widely used from the viewpoint of its high gas barrier property, non-pollution property, convenience, and cost reduction. Conventional film materials are usually polyester resins. The inorganic oxide film is deposited by vacuum deposition.
However, polyester-based resin films are not sufficient in strength, and as packaging materials for heavy materials such as liquids, there are problems with performance required for packaging materials such as pinhole resistance, so instead The use of a polyamide-based film such as nylon 6 having excellent strength has been proposed.
[0003]
On the other hand, the polyamide resin film can improve the strength, but when the inorganic oxide film is deposited on the film by vacuum deposition, the adhesive strength between the inorganic oxide film and the film is weak. Therefore, the inorganic oxide film may be peeled off. Moreover, since the dimensional change due to moisture absorption is relatively large, the polyamide resin film itself is prone to exfoliation of the extra inorganic oxide film when the film absorbs moisture, which has a great problem in durability as a packaging material. .
[0004]
Therefore, an object of the present invention is to provide a packaging material having an inorganic oxide film having high gas barrier properties and high adhesive strength.
[0005]
[Means for Solving the Problems]
A packaging material according to a first aspect of the present invention is a packaging material comprising a polyamide-based film and an inorganic oxide film mainly composed of silicon, oxygen, and carbon, formed by a plasma CVD method, wherein the inorganic material The elemental composition ratio of carbon in the oxide film is 10 to 35 wt%, and the surface of the polyamide film to which the inorganic oxide film is deposited has a wettability prepared by corona treatment of 44 to 56 mN / m. The surface of the inorganic oxide film has a wettability of 45 to 70 mN / m.
[0006]
As the polyamide, nylon 6, nylon 66, aromatic nylon (for example, MXD6) or the like can be used. These simple substances, copolymers of both, or a mixture of these simple substances and copolymers may be used.
The plasma CVD method is a technique in which a high-frequency electric field is applied to a reaction gas, the gas is activated using the electric energy, and a thin film is formed under low-temperature plasma conditions.
[0007]
In the present invention, it is an organic silane compound having a Si—O—C bond as a reaction gas raw material, such as 1,1,3,3-tetramethyldisiloxane, hexamethyldisiloxane, tetraethoxysilane, tetramethoxysilane. , Vinyltrimethoxysilane, hexamethyldisilazane, etc. can be used.
[0008]
By this plasma CVD, an inorganic oxide film formed by covalently bonding three elements of silicon (Si), oxygen (O) and carbon (C) to each other is deposited on the surface of the polyamide film.
In the present invention, a polyamide film and an inorganic oxide film may be included in the packaging material, and the film may have a multilayer structure having the polyamide film.
Inorganic oxide film formed by the present invention is excellent in transparency and has the following oxygen permeability 2cc / m 3 / 24hr.
[0010]
Further, when the carbon composition ratio is less than 10 wt%, the gas barrier property is remarkably lowered due to dimensional change when the film absorbs moisture and mechanical stress during actual use. On the other hand, if it exceeds 35 wt%, the yellowing of the inorganic oxide film becomes severe, the transparency is impaired, and at the same time, the gas barrier property of the film is lowered. Preferably, the carbon composition ratio is 10 to 30 wt%.
This elemental composition ratio of carbon can be adjusted by changing the mixing ratio of the source gases supplied to the plasma CVD apparatus.
If the wettability of the polyamide film surface is less than 44 mN / m , the adhesion of the inorganic oxide film to the polyamide film surface will be reduced, and the durability will be inferior. Gas barrier properties cannot be obtained. On the other hand, when it exceeds 56 mN / m , the inorganic oxide film is easily peeled off under a high humidity condition, and the gas barrier performance is deteriorated. Preferably, the wettability is 44 to 54 mN / m . The wettability of the polyamide film surface can be adjusted by treating the film surface with, for example, corona treatment or coating.
When the wettability of the surface of the inorganic oxide film is less than 45 mN / m , sufficient adhesive strength cannot be obtained at the time of printing and laminating, and the practicality as a packaging material is lowered. On the other hand, when it exceeds 70 mN / m , structural defects such as cracks are generated in the inorganic oxide film during processing, and the gas barrier property is remarkably lowered. Preferably, the wettability is 50 to 70 mN / m .
The wettability of the surface can be adjusted by oxygen plasma treatment or the like.
[0014]
Packaging material according to the second aspect of the present invention is characterized by including a first shot Ming packaging material as at least one layer in the laminate structure.
[0015]
In the laminated structure, the film laminated on the inorganic oxide layer on the first shot Ming consisting packaging material layer comprises a durability of an inorganic oxide film, moisture resistance of the laminate, the heat resistance improving It is the purpose.
The laminated film can be a polyester film, a polyolefin film, a metal foil, or the like.
The adhesive strength between the laminated film and the inorganic oxide film is preferably 4 N / 15 mm or more, more preferably 7 N / 15 mm or more from the viewpoint of adhesive strength.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
A packaging material according to one embodiment of the present invention will be described with reference to FIGS.
First, as shown in FIG. 1, the corona treatment is applied to one surface 11A of the polyamide film 11 to adjust the wettability of the surface to 42 to 56 mN / m 2 .
[0017]
Next, the polyamide-based film 11 is placed in a plasma CVD apparatus, and silicon (Si), oxygen (O), and carbon (by the plasma CVD while supplying an organosilane compound, oxygen, and an inert gas as a reaction gas raw material ( The inorganic oxide film 12 made of C) is deposited on the surface 11A that has been subjected to the corona treatment. When the inorganic oxide film 12 is formed, the gas flow ratio is controlled so that the elemental composition ratio of carbon is 2 to 35 wt%.
[0018]
Next, the wettability of the surface 12A of the inorganic oxide film 12 is adjusted to 45 to 70 mN / m 2 by oxygen plasma treatment.
Next, as shown in FIG. 2, a packaging material 15 according to this embodiment is produced by laminating a polyolefin film 14 on an inorganic oxide film 12 of the polyamide film 11 with an adhesive 13 interposed therebetween. . The adhesive strength between the polyamide film 11 and the polyolefin film 14 is 4 N / 15 mm or more.
[0019]
【Example】
[Examples 1-3]
In the above embodiment, the resin type of the polyolefin film and the polyamide (PA) film is as follows, the carbon content in the inorganic oxide film, the wettability of the polyamide film surface, and the surface of the inorganic oxide film The packaging material of each Example was produced with wettability as shown in Table 1.
Polyolefin film: L-LDPE film (LS-711C, manufactured by Idemitsu Petrochemical Co., Ltd., thickness 60 μm).
Polyamide film: Biaxially stretched nylon nylon 6 film (Unilon G-100, manufactured by Idemitsu Petrochemical Co., Ltd., thickness 15 μm).
[0020]
[Table 1]
Figure 0003974215
[0021]
[Comparative Examples 1-8]
In the above embodiment, the resin type of the polyolefin-based film and the polyamide-based film was the same as in the example, but the carbon content in the inorganic oxide film, the wettability of the polyamide-based film surface, and the surface wetness of the inorganic oxide film The packaging material of each Example was produced as shown in Table 2.
The elemental composition ratio of carbon in the inorganic oxide film was measured with an XPS apparatus manufactured by ULVAC-PHI.
Regarding the surface wettability, the surface wettability was measured using a surface wetness index standard reagent or a contact angle measuring device manufactured by Wako Pure Chemical Industries, Ltd.
[0022]
[Table 2]
Figure 0003974215
[0023]
[Measurement of characteristics]
Regarding the packaging materials of Examples 1 to 3 and Comparative Examples 1 and 2, the results of controlling the wettability of the polyamide-based film surface are the oxygen permeability, the adhesive strength of the inorganic oxide film, and the packaging material stretched (4%). The oxygen permeability was measured. Moreover, comprehensive evaluation was also performed based on these measurement results. These are shown in Table 3.
[0024]
The oxygen permeability was measured using an OXTRAN-1000 type measuring instrument manufactured by MOCON under the conditions of 23 ° C. and 0% RH.
The adhesive strength of the inorganic oxide film was measured by a tape peeling method.
The oxygen permeability when the packaging material was stretched was measured by stretching a 100 mm × 200 mm film at a rate of 100 mm / min by 4% using a tensile tester and then measuring the oxygen permeability.
The evaluation criteria in the comprehensive evaluation column are as follows.
○… Since it has sufficient performance, it can withstand practical use. Δ: Since there are some problems in characteristics, practical applications are limited. X: Practical use is difficult due to problems in overall performance.
[0025]
[Table 3]
Figure 0003974215
[0026]
From Table 3, according to the packaging material of Examples 1-3, it has a polyamide-type film and the inorganic oxide film formed by plasma CVD method, the elemental composition ratio of the carbon in an inorganic oxide film, and polyamide Since the wettability of the surface of the inorganic film to which the inorganic film is deposited is within the predetermined range according to the present invention, the oxygen permeability, the adhesive strength of the inorganic oxide film, and the oxygen permeability when the packaging material is stretched It turns out that it is also favorable.
On the other hand, from Table 3, according to the packaging materials of Comparative Examples 1 and 2, it has the same composition as in Examples 1 and 2, but the surface of the polyamide-based film to which the inorganic oxide film is deposited is Since the wettability is out of the predetermined range according to the present invention, there is a problem in oxygen permeability and oxygen permeability when the packaging material is stretched.
[0027]
Next, for the packaging materials of Examples 1 to 3 and Comparative Examples 3, 4, and 7, the results of controlling the elemental composition ratio of carbon in the inorganic oxide film are shown as yellowness, oxygen permeability, and packaging material elongation ( 4%) oxygen permeability was measured. Moreover, comprehensive evaluation was also performed based on these measurement results. These are shown in Table 4.
The yellowness was measured with a YI measuring device.
[0028]
[Table 4]
Figure 0003974215
[0029]
From Table 4, according to the packaging materials of Examples 1 to 3, since the elemental composition ratio of carbon in the inorganic oxide film is within the scope of the present invention, there is no problem with yellowness, oxygen permeability, and packaging material elongation. It can be seen that the oxygen permeability at the time and the adhesive strength between the polyamide film and the polyolefin film are good.
[0030]
On the other hand, according to the packaging material of Comparative Example 3, since the inorganic oxide film did not contain carbon, the gas barrier property was significantly reduced due to the dimensional change when the packaging material was elongated. Moreover, according to the packaging material of Comparative Example 4, since the elemental composition ratio of carbon in the inorganic oxide film exceeded the range of the present invention, yellowing was severe and transparency was impaired.
[0031]
Next, for the packaging materials of Examples 1 to 3 and Comparative Examples 3, 5, 6, and 8, the results of controlling the wettability on the surface of the inorganic oxide film are shown as yellowness, oxygen permeability, and polyolefin (P0) series. It measured about the adhesive strength with a film. Moreover, comprehensive evaluation was also performed based on these measurement results. These are shown in Table 5. The adhesion strength with the polyolefin film was measured by a 90-degree peeling method on a test piece having a width of 15 mm.
[0032]
[Table 5]
Figure 0003974215
[0033]
From Table 5, according to the packaging materials of Examples 1 to 3, since the wettability of the inorganic oxide film surface is within the scope of the present invention, the adhesive strength with the film laminated on the inorganic oxide film is good. It can be seen that it is.
On the other hand, according to the packaging materials of Comparative Examples 3, 5, 6, and 8, since the wettability of the inorganic oxide film surface is below the range of the present invention, the adhesive strength between the inorganic oxide film and the polyolefin film is high. It is bad.
[0034]
Next, the packaging material of Example 2 according to the embodiment and Comparative Example 9 produced by using the vacuum deposition method was measured and compared with the strain resistance (laminating suitability). This strain resistance is measured with respect to the oxygen permeability with respect to the elongation rate of the packaging material. The results are shown in FIG.
[0035]
Example 2 is a packaging material having an inorganic oxide film formed by plasma CVD, and Comparative Example 9 is a packaging material having a silica film formed by vacuum deposition. The characteristics are shown in Table 6.
[0036]
[Table 6]
Figure 0003974215
[0037]
From Table 6, since the packaging material of this Example 2 has the inorganic oxide film formed by plasma CVD method, compared with the packaging material of the comparative example 9, the change of gas barrier performance by the expansion | extension of packaging material It can be seen that there are few.
[0038]
Next, the practical barrier performances (stability of gas barrier performance against external force during lamination, bag making, filling, and transportation) of the packaging materials of Example 2 and Comparative Example 9 were measured and compared. This practical barrier performance is measured with respect to the oxygen permeability with respect to the number of gelbo tests. The results are shown in FIG.
From FIG. 4, since the packaging material of this Example 6 has the inorganic oxide film formed by plasma CVD method, compared with the packaging material of the comparative example 9, practical barrier performance by the expansion | extension of a packaging material is shown. It turns out that there is little change.
[0039]
Next, the oxygen permeability after performing the falling-clad impact test was measured for bag products produced using the packaging materials of Example 2 and Comparative Example 9. The result is shown in FIG.
The bag making conditions for this bag are as follows.
Adhesive: Aliphatic polyester-based adhesive bag Form: 130 × 150 mm (inner dimensions 110 × 110 mm), 3-way seal: seal width 10 mm.
Sealing temperature: 130 ° C / 130 ° C / 140 ° C.
Seal pressure: 9.8 N / cm.
Contents: Water (120cc).
[0040]
From FIG. 5, the bag product made of the packaging material of Example 2 has the inorganic oxide film formed according to the present embodiment, and therefore, compared with the bag product made of the packaging material of Comparative Example 9, It can be seen that there is little change in oxygen permeability after the impact test and it has excellent impact resistance.
[0041]
【The invention's effect】
According to the present invention, it is possible to obtain a packaging material having an inorganic oxide film having a high gas barrier performance, a gas barrier performance that is unlikely to deteriorate during practical use, and a high adhesive strength.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a packaging material according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a packaging material having a laminated structure according to an embodiment of the present invention.
FIG. 3 is a graph obtained by measuring oxygen permeability with respect to elongation for the packaging materials of Example 2 and Comparative Example 9.
4 is a graph obtained by measuring oxygen permeability with respect to the number of gelbo tests for the packaging materials of Example 2 and Comparative Example 9. FIG.
5 is a graph obtained by measuring oxygen permeability with respect to the number of falling impacts for the packaging materials of Example 2 and Comparative Example 9. FIG.
[Explanation of symbols]
11 Polyamide film
12 Inorganic oxide film
13 Adhesive
14 Polyolefin film
15 Packaging materials

Claims (2)

ポリアミド系フィルムと、プラズマCVD法により形成された、ケイ素、酸素及び炭素を主成分とする無機酸化物膜とを有する包装材料であって、
前記無機酸化物膜中の炭素の元素組成比が10〜35wt%であり、
前記ポリアミド系フィルムの前記無機酸化物膜の被着される表面は、コロナ処理により調製された濡れ性が44〜56mN/mであり、
前記無機酸化物膜の表面は、その濡れ性が45〜70mN/mであることを特徴とする包装材料。
A packaging material having a polyamide-based film and an inorganic oxide film mainly composed of silicon, oxygen and carbon formed by a plasma CVD method,
The elemental composition ratio of carbon in the inorganic oxide film is 10 to 35 wt%,
The surface on which the inorganic oxide film of the polyamide film is deposited has a wettability prepared by corona treatment of 44 to 56 mN / m,
A packaging material characterized in that the surface of the inorganic oxide film has a wettability of 45 to 70 mN / m.
請求項1に記載の包装材料を積層構造中の少なくとも1層として含むことを特徴とする包装材料。A packaging material comprising the packaging material according to claim 1 as at least one layer in a laminated structure.
JP05770697A 1997-03-12 1997-03-12 Packaging materials Expired - Fee Related JP3974215B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP05770697A JP3974215B2 (en) 1997-03-12 1997-03-12 Packaging materials
PCT/JP1998/001013 WO1998040208A1 (en) 1997-03-12 1998-03-11 Packaging material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05770697A JP3974215B2 (en) 1997-03-12 1997-03-12 Packaging materials

Publications (2)

Publication Number Publication Date
JPH10249976A JPH10249976A (en) 1998-09-22
JP3974215B2 true JP3974215B2 (en) 2007-09-12

Family

ID=13063398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05770697A Expired - Fee Related JP3974215B2 (en) 1997-03-12 1997-03-12 Packaging materials

Country Status (2)

Country Link
JP (1) JP3974215B2 (en)
WO (1) WO1998040208A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4885340B2 (en) * 1998-10-27 2012-02-29 大日本印刷株式会社 Barrier film and laminated material using the same
JP4949542B2 (en) * 1998-12-07 2012-06-13 大日本印刷株式会社 Transparent barrier film, laminated material using the same, and packaging container
JP4879377B2 (en) * 1998-12-08 2012-02-22 大日本印刷株式会社 Transparent barrier film, laminated material using the same, and packaging container
SE520491C2 (en) * 1999-04-07 2003-07-15 Tetra Laval Holdings & Finance Packaging laminate with barrier properties against gas and flavorings

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3349545B2 (en) * 1993-04-21 2002-11-25 出光石油化学株式会社 Packaging material
JP3070404B2 (en) * 1994-09-08 2000-07-31 凸版印刷株式会社 Gas barrier laminate film having a transparent printed layer

Also Published As

Publication number Publication date
WO1998040208A1 (en) 1998-09-17
JPH10249976A (en) 1998-09-22

Similar Documents

Publication Publication Date Title
JP5112506B2 (en) Laminated product for packaging, method for producing laminated product for packaging, and packaging container produced therefrom
US8597746B2 (en) Peelable vacuum skin packages
US5830545A (en) Multilayer, high barrier laminate
CN110621501B (en) Polyethylene laminate for flexible packaging
JPH0848369A (en) Transparent gas barrier material
JP3974215B2 (en) Packaging materials
JP2023118799A (en) Polyethylene laminate and packaging material using the same
JP2000263725A (en) Laminated material and packaging container using the same
JP4402414B2 (en) Laminate and sachet for liquid filling packaging using the same
JP4402412B2 (en) Laminate and packaging bag using the same
JP4857482B2 (en) Retort pouch
JP2005096275A (en) Barrier film
JP2006224408A (en) Barrier film
JP4357912B2 (en) Barrier film
JP6454130B2 (en) LAMINATED FILM AND METHOD FOR PRODUCING LAMINATED FILM
JPWO2004011252A1 (en) Laminated packaging materials and packaging bags
JP2006116704A (en) Barrier film and laminated material using it
JP2006116703A (en) Barrier film and laminated material using it
JP3575720B2 (en) Multilayer sealant film for lamination and laminate film using the same
JP2005145492A (en) Small bag package for liquid
JP6404165B2 (en) LAMINATED FILM AND METHOD FOR PRODUCING LAMINATED FILM
JP4139445B2 (en) Film for laminated tube
JP4811544B2 (en) Liquid paper container
JP4811545B2 (en) Liquid paper container
JP2000238174A (en) Laminated material and packaging container using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070703

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20071030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees