JP3973831B2 - Exhaust purification catalyst device and exhaust purification method - Google Patents

Exhaust purification catalyst device and exhaust purification method Download PDF

Info

Publication number
JP3973831B2
JP3973831B2 JP2000331163A JP2000331163A JP3973831B2 JP 3973831 B2 JP3973831 B2 JP 3973831B2 JP 2000331163 A JP2000331163 A JP 2000331163A JP 2000331163 A JP2000331163 A JP 2000331163A JP 3973831 B2 JP3973831 B2 JP 3973831B2
Authority
JP
Japan
Prior art keywords
porous material
diameter
exhaust
pores
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000331163A
Other languages
Japanese (ja)
Other versions
JP2002138816A (en
Inventor
剛司 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2000331163A priority Critical patent/JP3973831B2/en
Publication of JP2002138816A publication Critical patent/JP2002138816A/en
Application granted granted Critical
Publication of JP3973831B2 publication Critical patent/JP3973831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、触媒を用いた排気浄化技術において、特に、PM(粒子状物質)の浄化を可能にする技術に関する。
【0002】
【従来の技術】
従来から、内燃機関の排気を浄化するために、種々の排気浄化触媒装置が案出されてきた。排気浄化触媒装置の1つとして、例えば、特開平10−202107号公報に開示されるように、口径が0.7〜20.0nmの細孔を有する多孔質材に、貴金属からなる活性成分とIIA族金属からなる添加成分とを分散担持させたものが公知である。かかる排気浄化触媒装置では、多孔質材の細孔によるHC(炭化水素)のトラップ、貴金属による低温活性、IIA族金属によるCO(一酸化炭素)の浄化促進の相乗効果によって、炭素数の多いHC(炭素数6〜20)とCOとを比較的低温から浄化している。
【0003】
【発明が解決しようとする課題】
しかしながら、かかる排気浄化触媒装置では、多孔質材の細孔口径が0.7〜20.0nmに設定されているため、例えば、ディーゼルエンジンの排気に多く含まれる100nm前後のPMはトラップされず、その大部分が素通りしてしまっていた。
【0004】
そこで、本発明は以上のような従来の問題点に鑑み、触媒担体の構造を見直すことにより、HC及びCOの浄化だけではなく、PMの浄化も可能にした排気浄化触媒装置及び排気浄化方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
このため、請求項1記載の排気浄化触媒装置に係る発明では、内燃機関の排気通路に介装された触媒担体の基体表面に、口径0.7〜300nmの細孔を有する多孔質材であって、β型ゼオライト,メゾポアシリケート及び口径20〜300 nm の細孔を有するアルミナを略均一に混合して形成された多孔質材をコートすると共に、該多孔質材に、貴金属からなる活性成分と希土類金属からなる添加成分とを分散担持させたことを特徴とする。
【0006】
かかる構成によれば、内燃機関から排出された排気は、排気通路を通って触媒担体に導入されると、排気に含まれるHC,CO及びPMが多孔質材の細孔にトラップされる。このため、活性温度以下の酸化反応が十分行なわれない状態であっても、HC,CO及びPMがトラップされることで、これらが未浄化のまま排出されることが抑制される。一方、活性温度に達した後は、HC,CO及びPMのトラップに加えて、多孔質材に分散担持された貴金属からなる活性成分と希土類金属からなる添加成分により、HC,CO及びPMの酸化が行なわれる。このとき、多孔質材にトラップされたPMは、希土類金属からなる添加成分により、その酸化が促進される。
【0007】
また、長径口径0.7 nm,短径口径0.5〜0.6nmの細孔を有するβ型ゼオライトと、口径2.0nmの細孔を有するメゾポアシリケートと、口径20〜300nmの細孔を有するアルミナと、を略均一に混合することで、口径0.7〜300nmの細孔を有する多孔質材が容易に形成される。
【0008】
請求項2記載の発明では、前記貴金属は、白金Ptであり、前記希土類金属は、セリウムCe,ランタンLa,ネオジムNd,イットリウムY,プラセオジムPr,サマリウムSmから選ばれた少なくとも1つの金属であることを特徴とする。
かかる構成によれば、活性成分としての貴金属を白金Ptとすることで、HC,CO及びPMの酸化が効率的に行なわれる。また、添加成分としての希土類金属をセリウムCe,ランタンLa,ネオジムNd,イットリウムY,プラセオジムPr,サマリウムSmから選ばれた少なくとも1つの金属とすることで、多孔質材にトラップされたPMの酸化が効率的に促進される。
【0009】
請求項3記載の排気浄化方法に係る発明では、内燃機関の排気通路に、口径0.7〜300nmの細孔を有する多孔質材であって、β型ゼオライト,メゾポアシリケート及び口径20〜300 nm の細孔を有するアルミナを略均一に混合して形成された多孔質材に貴金属からなる活性成分と希土類金属からなる添加成分とを分散担持させた触媒担体を介装し、該触媒担体に内燃機関の排気を接触させて、該排気を浄化することを特徴とする。
かかる構成によれば、内燃機関から排出された排気は、排気通路を通って触媒担体に導入されると、排気に含まれるHC,CO及びPMが多孔質材の細孔にトラップされる。このため、活性温度以下の酸化反応が十分行なわれない状態であっても、HC,CO及びPMがトラップされることで、これらが未浄化のまま排出されることが抑制される、一方、活性温度に達した後は、HC,CO及びPMのトラップに加えて、多孔質材に分散担持された貴金属からなる活性成分と希土類金属からなる添加成分により、HC,CO及びPMの酸化が行なわれる。このとき、多孔質材にトラップされたPMは、希土類金属からなる添加成分により、その酸化が促進される。また、長径口径0.7 nm ,短径口径0.5〜0.6 nm の細孔を有するβ型ゼオライトと、口径2.0 nm の細孔を有するメゾポアシリケートと、口径20〜300 nm の細孔を有するアルミナと、を略均一に混合することで、口径0.7〜300 nm の細孔を有する多孔質材を容易に形成することができる。
【0010】
【発明の実施の形態】
以下、添付された図面を参照して本発明を詳述する。
図1は、本発明を適用したモノリスタイプの排気浄化触媒装置を示す。
内燃機関の排気通路10には、保持部材12を介して、ハニカム形状の横断面を有するモノリスタイプの触媒担体14が介装される。触媒担体14は、図2に示すように、セラミックのコーディライトやFe−Cr−Al系の耐熱鋼からなる基体14aの表面に、β型ゼオライトA,メゾポアシリケートB及び大細孔径アルミナCを略均一に混合したものを薄くコートすることで形成される。このコート層14bは、通常「ウォッシュコート層」と呼ばれ、ここに、貴金属からなる活性成分と希土類金属からなる添加成分とが分散担持される。
【0011】
ウォッシュコート層14bは、図2に示すように、長径口径0.7nm,短径口径0.5〜0.6nmの細孔を有するβ型ゼオライトA、口径2.0nmの細孔を有するメゾポアシリケートB及び口径20〜300nmの細孔を有する大細孔径アルミナCから構成される。このため、ウォッシュコート層14b全体としては、口径0.7〜300nmの細孔を有するようになる。大細孔径アルミナCは、細孔口径のバラツキを抑えるために、例えば、PHS(pHスウィング)法により製造されることが望ましい。
【0012】
活性成分としての貴金属は、例えば、白金Ptが用いられ、また、添加成分としての希土類金属は、例えば、セリウムCe,ランタンLa,ネオジムNd,イットリウムY,プラセオジムPr,サマリウムSmから選ばれた少なくとも1つの金属が用いられることが望ましい。
次に、かかる構成からなる排気浄化触媒装置の作用について説明する。
【0013】
内燃機関から排出された排気は、排気通路10を通って触媒担体14に導入されると、触媒担体14のウォッシュコート層14bに接触する。このとき、排気に含まれる炭素数の多いHC(炭素数6〜20)及びCOは、β型ゼオライトA及びメゾポアシリケートBの細孔によりトラップされる。このため、活性温度以下の酸化反応が十分行なわれない状態であっても、炭素数の多いHC及びCOが未浄化のまま排出されることが抑制され、排気性状を向上することができる。そして、活性温度に達した後は、HC及びCOのトラップに加えて、β型ゼオライトA及びメゾポアシリケートBに担持された貴金属及び希土類金属により、HC及びCOの酸化反応が行なわれるため、排気性状をより向上することができる。
【0014】
また、排気に含まれるPM(粒径100nm前後)は、大細孔径アルミナCの細孔によりトラップされる。このため、活性温度以下であっても、PMが未浄化のまま排出されることが抑制され、排気性状を向上することができる。そして、活性温度に達した後は、大細孔径アルミナCに担持された貴金属及び希土類金属によりPMが酸化浄化される。その後は、PMのトラップと酸化とが繰り返されることで、PMの浄化が連続的に行なわれる。なお、このとき、大細孔径アルミナCにトラップされたPMは、希土類金属により、その酸化が促進される。
【0015】
このように、本発明に係る排気浄化触媒装置によれば、HC及びCOの浄化だけでなく、PMをも浄化できるため、いわゆる「Soot酸化触媒」を実現することができる。従って、排気中にPMを多く含むディーゼル機関であっても、本発明に係る排気浄化触媒装置を搭載すれば、排気中のHC及びCOの浄化だけではなく、PMの浄化も同時に可能となる。
【0016】
なお、以上説明した実施形態では、モノリスタイプの排気浄化触媒装置を前提としたが、ペレットタイプの排気浄化装置であっても同様な作用及び効果が得られることは言うまでもない。
【0017】
【発明の効果】
以上説明したように、請求項1又は請求項3に記載の発明によれば、HC及びCOの浄化だけではなく、PMの浄化も同時に行なうことができる。また、口径0.7〜300nmの細孔を有する多孔質材を容易に形成することができる。
【0018】
請求項2記載の発明によれば、活性成分としての貴金属を白金Ptとすることで、HC,CO及びPMの酸化を効率的に行なうことができる。また、活性成分としての希土類金属をセリウムCe,ランタンLa,ネオジムNd,イットリウムY,プラセオジムPr,サマリウムSmから選ばれた少なくとも1つの金属とすることで、多孔質材にトラップされたPMの酸化を効率的に促進することができる。
【図面の簡単な説明】
【図1】本発明を適用したモノリスタイプの排気浄化触媒装置の構成図
【図2】触媒担体の基体にコートされた多孔質材の詳細図
【符号の説明】
10 排気通路
14 触媒担体
14a 基体
14b ウォッシュコート層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust purification technology using a catalyst, and more particularly to a technology that enables purification of PM (particulate matter).
[0002]
[Prior art]
Conventionally, various exhaust purification catalyst devices have been devised for purifying exhaust gas from an internal combustion engine. As one of the exhaust gas purification catalyst devices, for example, as disclosed in JP-A-10-202107, an active component made of a noble metal is formed on a porous material having pores having a diameter of 0.7 to 20.0 nm. A material in which an additive component made of a Group IIA metal is dispersed and supported is known. In such an exhaust purification catalyst device, HC (hydrocarbon) trapping by the pores of the porous material, low temperature activity by the noble metal, and synergistic effect of promoting the purification of CO (carbon monoxide) by the group IIA metal, HC having a large number of carbon atoms. (C6-C20) and CO are purified from a relatively low temperature.
[0003]
[Problems to be solved by the invention]
However, in such an exhaust purification catalyst device, since the pore diameter of the porous material is set to 0.7 to 20.0 nm, for example, PM of about 100 nm that is often contained in the exhaust of a diesel engine is not trapped, Most of them passed by.
[0004]
Therefore, in view of the conventional problems as described above, the present invention provides an exhaust purification catalyst device and an exhaust purification method that can not only purify HC and CO but also purify PM by reexamining the structure of the catalyst carrier. The purpose is to provide.
[0005]
[Means for Solving the Problems]
For this reason, the invention relating to the exhaust purification catalyst device according to claim 1 is a porous material having pores having a diameter of 0.7 to 300 nm on the surface of the base of the catalyst carrier interposed in the exhaust passage of the internal combustion engine. And coating a porous material formed by substantially uniformly mixing β-type zeolite, mesopore silicate, and alumina having a pore diameter of 20 to 300 nm , and an active ingredient comprising a noble metal on the porous material And an additive component made of a rare earth metal are dispersedly supported.
[0006]
According to such a configuration, when the exhaust discharged from the internal combustion engine is introduced into the catalyst carrier through the exhaust passage, HC, CO, and PM contained in the exhaust are trapped in the pores of the porous material. For this reason, even if the oxidation reaction below the activation temperature is not sufficiently performed, HC, CO, and PM are trapped, so that they are suppressed from being discharged without being purified. On the other hand, after reaching the activation temperature, in addition to trapping HC, CO, and PM, oxidation of HC, CO, and PM is performed by an active component composed of noble metal dispersed and supported on the porous material and an additive component composed of rare earth metal. Is done. At this time, the oxidation of the PM trapped in the porous material is promoted by an additive component made of a rare earth metal.
[0007]
Further, β-type zeolite having pores having a major diameter of 0.7 nm and a minor diameter of 0.5 to 0.6 nm, mesopore silicate having a pore having a diameter of 2.0 nm, and a pore having a diameter of 20 to 300 nm. A porous material having pores having a diameter of 0.7 to 300 nm can be easily formed by mixing the alumina having a substantially uniform density.
[0008]
In the invention of claim 2 , the noble metal is platinum Pt, and the rare earth metal is at least one metal selected from cerium Ce, lanthanum La, neodymium Nd, yttrium Y, praseodymium Pr, and samarium Sm. It is characterized by.
According to such a configuration, oxidation of HC, CO, and PM is efficiently performed by using platinum Pt as the noble metal as the active component. Moreover, oxidation of PM trapped in the porous material can be achieved by using at least one metal selected from cerium Ce, lanthanum La, neodymium Nd, yttrium Y, praseodymium Pr, and samarium Sm as the additive component. Promoted efficiently.
[0009]
In the invention relating to the exhaust gas purification method according to the third aspect, the porous material having pores having a diameter of 0.7 to 300 nm in the exhaust passage of the internal combustion engine , the β-type zeolite, the mesopore silicate, and the diameter of 20 to 300. A catalyst carrier in which an active component made of a noble metal and an additive component made of a rare earth metal are dispersed and supported on a porous material formed by mixing alumina having pores of nm in a substantially uniform manner. The exhaust gas of the internal combustion engine is brought into contact with the exhaust gas to purify the exhaust gas.
According to such a configuration, when the exhaust discharged from the internal combustion engine is introduced into the catalyst carrier through the exhaust passage, HC, CO, and PM contained in the exhaust are trapped in the pores of the porous material. For this reason, even in a state where the oxidation reaction below the activation temperature is not sufficiently performed, HC, CO, and PM are trapped, so that they are suppressed from being discharged unpurified. After reaching the temperature, in addition to trapping HC, CO, and PM, oxidation of HC, CO, and PM is performed by an active component made of noble metal dispersed and supported on the porous material and an additive component made of rare earth metal. . At this time, the oxidation of the PM trapped in the porous material is promoted by an additive component made of a rare earth metal. Further, β-type zeolite having pores having a major diameter of 0.7 nm and a minor diameter of 0.5 to 0.6 nm , mesopore silicate having a pore having a diameter of 2.0 nm , and a diameter of 20 to 300 nm. The porous material having pores having a diameter of 0.7 to 300 nm can be easily formed by mixing the alumina having the pores of approximately uniformly .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows a monolith type exhaust purification catalytic apparatus to which the present invention is applied.
A monolith type catalyst carrier 14 having a honeycomb-shaped cross section is interposed in the exhaust passage 10 of the internal combustion engine via a holding member 12. As shown in FIG. 2, the catalyst carrier 14 has β-type zeolite A, mesopore silicate B, and large pore diameter alumina C on the surface of a base 14a made of ceramic cordierite or Fe—Cr—Al heat-resistant steel. It is formed by thinly coating a substantially uniform mixture. The coat layer 14b is usually called a “wash coat layer”, and an active component made of a noble metal and an additive component made of a rare earth metal are dispersedly supported thereon.
[0011]
As shown in FIG. 2, the washcoat layer 14b is composed of β-type zeolite A having pores having a major diameter of 0.7 nm and a minor diameter of 0.5 to 0.6 nm, and mesopores having a pore of 2.0 nm. It is composed of silicate B and large pore diameter alumina C having pores with a diameter of 20 to 300 nm. For this reason, the entire washcoat layer 14b has pores having a diameter of 0.7 to 300 nm. The large pore diameter alumina C is desirably manufactured by, for example, a PHS (pH swing) method in order to suppress variation in pore diameter.
[0012]
For example, platinum Pt is used as the noble metal as the active component, and the rare earth metal as the additive component is at least one selected from, for example, cerium Ce, lanthanum La, neodymium Nd, yttrium Y, praseodymium Pr, and samarium Sm. It is desirable to use two metals.
Next, the operation of the exhaust purification catalyst apparatus having such a configuration will be described.
[0013]
When exhaust gas discharged from the internal combustion engine is introduced into the catalyst carrier 14 through the exhaust passage 10, the exhaust gas contacts the washcoat layer 14 b of the catalyst carrier 14. At this time, HC (6 to 20 carbon atoms) and CO having a large number of carbon atoms contained in the exhaust gas are trapped by the pores of β-type zeolite A and mesopore silicate B. For this reason, even in a state where the oxidation reaction below the activation temperature is not sufficiently performed, HC and CO having a large number of carbon atoms are suppressed from being discharged without being purified, and the exhaust properties can be improved. After reaching the activation temperature, the oxidation reaction of HC and CO is carried out by the noble metal and rare earth metal supported on the β-type zeolite A and the mesopore silicate B in addition to the trap of HC and CO. The properties can be further improved.
[0014]
Further, PM (particle size around 100 nm) contained in the exhaust is trapped by the pores of the large pore diameter alumina C. For this reason, even if it is below activation temperature, it is suppressed that PM is discharged without being purified, and the exhaust property can be improved. After reaching the activation temperature, PM is oxidized and purified by the noble metal and rare earth metal supported on the large pore diameter alumina C. Thereafter, PM trapping and oxidation are repeated, whereby PM purification is continuously performed. At this time, the oxidation of the PM trapped in the large pore diameter alumina C is promoted by the rare earth metal.
[0015]
Thus, according to the exhaust purification catalyst device of the present invention, not only HC and CO purification but also PM can be purified, so that a so-called “Soot oxidation catalyst” can be realized. Therefore, even if it is a diesel engine containing a large amount of PM in the exhaust, if the exhaust purification catalyst device according to the present invention is mounted, not only the purification of HC and CO in the exhaust but also the purification of PM can be performed simultaneously.
[0016]
In the embodiment described above, the monolith type exhaust purification catalyst device is assumed. However, it goes without saying that the same operation and effect can be obtained even with a pellet type exhaust purification catalyst device.
[0017]
【The invention's effect】
As described above, according to the invention described in claim 1 or claim 3 , not only HC and CO but also PM can be simultaneously purified. In addition, a porous material having pores with a diameter of 0.7 to 300 nm can be easily formed.
[0018]
According to the second aspect of the present invention, oxidation of HC, CO and PM can be efficiently performed by using platinum Pt as the noble metal as the active component. Further, the rare earth metal as the active component is at least one metal selected from cerium Ce, lanthanum La, neodymium Nd, yttrium Y, praseodymium Pr, and samarium Sm, thereby oxidizing the PM trapped in the porous material. Can be promoted efficiently.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a monolith type exhaust purification catalytic apparatus to which the present invention is applied. FIG. 2 is a detailed view of a porous material coated on a base of a catalyst carrier.
10 Exhaust passage 14 Catalyst support 14a Base 14b Wash coat layer

Claims (3)

内燃機関の排気通路に介装された触媒担体の基体表面に、口径0.7〜300nmの細孔を有する多孔質材であって、β型ゼオライト,メゾポアシリケート及び口径20〜300 nm の細孔を有するアルミナを略均一に混合して形成された多孔質材をコートすると共に、該多孔質材に、貴金属からなる活性成分と希土類金属からなる添加成分とを分散担持させたことを特徴とする排気浄化触媒装置。A porous material having pores with a diameter of 0.7 to 300 nm on the surface of a base of a catalyst carrier interposed in an exhaust passage of an internal combustion engine, having a β-type zeolite, mesopore silicate, and a fine particle with a diameter of 20 to 300 nm . A porous material formed by substantially uniformly mixing alumina having pores is coated, and an active component made of a noble metal and an additive component made of a rare earth metal are dispersedly supported on the porous material. Exhaust purification catalyst device. 前記貴金属は、白金Ptであり、前記希土類金属は、セリウムCe,ランタンLa,ネオジムNd,イットリウムY,プラセオジムPr,サマリウムSmから選ばれた少なくとも1つの金属であることを特徴とする請求項1記載の排気浄化触媒装置。 2. The noble metal is platinum Pt, and the rare earth metal is at least one metal selected from cerium Ce, lanthanum La, neodymium Nd, yttrium Y, praseodymium Pr, and samarium Sm. Exhaust gas purification catalyst device. 内燃機関の排気通路に、口径0.7〜300In the exhaust passage of the internal combustion engine, the diameter is 0.7 to 300 nmnm の細孔を有する多孔質材であって、β型ゼオライト,メゾポアシリケート及び口径20〜300A porous material having β-type zeolite, mesopore silicate, and a diameter of 20 to 300 nmnm の細孔を有するアルミナを略均一に混合して形成された多孔質材に貴金属からなる活性成分と希土類金属からなる添加成分とを分散担持させた触媒担体を介装し、該触媒担体に内燃機関の排気を接触させて、該排気を浄化することを特徴とする排気浄化方法。A catalyst carrier in which an active component made of a noble metal and an additive component made of a rare earth metal are dispersed and supported on a porous material formed by mixing alumina having a plurality of pores substantially uniformly, and an internal combustion engine is mounted on the catalyst carrier. An exhaust gas purification method comprising purifying exhaust gas by contacting exhaust gas of an engine.
JP2000331163A 2000-10-30 2000-10-30 Exhaust purification catalyst device and exhaust purification method Expired - Fee Related JP3973831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000331163A JP3973831B2 (en) 2000-10-30 2000-10-30 Exhaust purification catalyst device and exhaust purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000331163A JP3973831B2 (en) 2000-10-30 2000-10-30 Exhaust purification catalyst device and exhaust purification method

Publications (2)

Publication Number Publication Date
JP2002138816A JP2002138816A (en) 2002-05-17
JP3973831B2 true JP3973831B2 (en) 2007-09-12

Family

ID=18807554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000331163A Expired - Fee Related JP3973831B2 (en) 2000-10-30 2000-10-30 Exhaust purification catalyst device and exhaust purification method

Country Status (1)

Country Link
JP (1) JP3973831B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005033118B4 (en) * 2005-07-11 2008-01-03 Siemens Ag Catalyst system for an internal combustion engine and method for its production
JP4803400B2 (en) 2008-03-27 2011-10-26 三菱自動車工業株式会社 Exhaust gas purification device for internal combustion engine
KR101180949B1 (en) * 2010-07-09 2012-09-07 기아자동차주식회사 Catalyst for diesel particulate filter, preparation method of the same, and smoke reduction device of diesel engine

Also Published As

Publication number Publication date
JP2002138816A (en) 2002-05-17

Similar Documents

Publication Publication Date Title
JP4651039B2 (en) Catalytic device and method for purifying exhaust gas of an internal combustion engine operated under lean conditions
KR101895640B1 (en) Surface-coated zeolite materials for diesel oxidation applications
JP2017501329A (en) Passive NOx adsorber containing precious metal and small pore molecular sieve
WO2008053690A1 (en) Exhaust gas purifying catalyst
JP2002001124A (en) Catalyst for purification of exhaust gas and method for purification of exhaust gas
JP2002361083A (en) Exhaust gas cleaning catalyst for internal combustion engine, method of producing the same and claening apparatus
JP4591164B2 (en) Exhaust gas purification method and exhaust gas purification device
JP2004058013A (en) Purification catalyst for exhaust gas
JP4174976B2 (en) Exhaust purification device and method for manufacturing the same
JP2007270672A (en) Exhaust emission control device
JP3973831B2 (en) Exhaust purification catalyst device and exhaust purification method
JP6574670B2 (en) Exhaust gas purification catalyst
JP2004188388A (en) Filter for cleaning diesel exhaust gas and its production method
JP4097362B2 (en) Exhaust gas purification catalyst and exhaust gas purification device
JP7388951B2 (en) Exhaust gas purification device
JP3458624B2 (en) Exhaust purification catalyst device for internal combustion engine
JP2002357120A (en) Exhaust emission control device
JP4114581B2 (en) Exhaust purification device
JP2004243189A (en) Purifying apparatus for exhaust gas of internal combustion engine
JP3736373B2 (en) Engine exhaust purification system
JP2004322022A (en) Catalyst for cleaning exhaust gas
JPH0568888A (en) Waste gas cleaning catalyst
JP2002322907A (en) Exhaust emission catalyst purifier of cylinder injection system engine and exhaust emission purifying method
JP2004211566A (en) Emission control system and emission control method
JP2002239346A (en) Method and apparatus for cleaning exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070613

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees