JP3973224B2 - Thermal shock test equipment - Google Patents

Thermal shock test equipment Download PDF

Info

Publication number
JP3973224B2
JP3973224B2 JP2005193294A JP2005193294A JP3973224B2 JP 3973224 B2 JP3973224 B2 JP 3973224B2 JP 2005193294 A JP2005193294 A JP 2005193294A JP 2005193294 A JP2005193294 A JP 2005193294A JP 3973224 B2 JP3973224 B2 JP 3973224B2
Authority
JP
Japan
Prior art keywords
chamber
test
pressure
air
thermal shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005193294A
Other languages
Japanese (ja)
Other versions
JP2007010531A (en
Inventor
英博 園田
康雄 河本
慎太郎 増田
晴之 犬塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37749237&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3973224(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005193294A priority Critical patent/JP3973224B2/en
Priority to TW95122947A priority patent/TWI308213B/en
Publication of JP2007010531A publication Critical patent/JP2007010531A/en
Application granted granted Critical
Publication of JP3973224B2 publication Critical patent/JP3973224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、試験室に各種材料、各種機器の部品等の試料を入れ、試料を低温と高温の雰囲気に交互にさらして熱ストレス特性、耐久性、熱的強度等を試験する冷熱衝撃試験装置に関するものである。   The present invention relates to a thermal shock test apparatus in which samples such as various materials and parts of various devices are put in a test room, and the samples are alternately exposed to a low temperature and a high temperature atmosphere to test thermal stress characteristics, durability, thermal strength, etc. It is about.

各種材料、各種機器の部品等の熱ストレスに対する耐熱性、物理的・電気的特性等の変化を短時間で評価する冷熱衝撃試験装置において、低温室の冷却器に着霜が多くなった場合、高温室から熱風を低温室へ通して除霜することにより試験の中断時間を短くすることが知られ、例えば特許文献1に記載されている。   In a thermal shock test device that evaluates changes in heat resistance, physical / electrical properties, etc. of various materials and parts of various devices in a short time, when the frost in the cooler in the cold room increases, It is known to shorten the interruption time of the test by passing hot air from a high greenhouse through a low temperature chamber to defrost, and is described in Patent Document 1, for example.

特開平03−90838号公報Japanese Patent Laid-Open No. 03-90838

上記従来技術においては、試験室がほぼ一定の内容積であり、試験室に冷風と熱風が交互に供給された場合、試験室内の圧力は、低温試験時では空気の体積減少により低下し、高温試験時では空気の体積増加により上昇する。したがって、冷熱衝撃試験の繰り返しによって試験室外部と試験室内部の空気に圧力差が発生し、呼吸作用(外気の出入り)を生じる。つまり、試験室が低温試験中の場合は外部空気が試験室内部に流入し、高温試験中の場合は試験室内の空気が外部に流出するようになる。そして、これにより、低温室の冷却器に霜が付着してその能力が低下し、試験の中断時間が長くなったり、試験室内部の温度を所定の低温、高温にするにあたって無駄な時間が多くなったりして十分なものとはいい難かった。   In the above prior art, when the test chamber has a substantially constant internal volume and cold air and hot air are alternately supplied to the test chamber, the pressure in the test chamber decreases due to the volume reduction of the air during the low temperature test, and the high temperature During the test, it rises due to the increase in air volume. Therefore, by repeating the thermal shock test, a pressure difference is generated between the air outside the test chamber and the air inside the test chamber, and a breathing action (external air enters and exits) occurs. That is, when the test chamber is in the low temperature test, the external air flows into the test chamber, and when the test chamber is in the high temperature test, the air in the test chamber flows out to the outside. As a result, frost adheres to the cooler in the low temperature chamber and its capacity decreases, and the interruption time of the test becomes longer, and a lot of time is wasted when the temperature inside the test chamber is set to a predetermined low temperature and high temperature. It was difficult to be enough.

本発明の目的は、上記従来技術の課題を解決し、着霜等の無駄な処理時間による試験の中断時間を無くすと共に、試験室の内部温度を所定の低温、高温にすばやくなるように木目細かい温度制御を可能にし、冷熱衝撃試験の精度を向上することにある。   The object of the present invention is to solve the above-mentioned problems of the prior art, eliminate the interruption time of the test due to wasteful processing time such as frost formation, and finely adjust the internal temperature of the test chamber to a predetermined low temperature and high temperature. It is to enable temperature control and improve the accuracy of the thermal shock test.

上記の目的を達成するため、本発明は、試料を収納するため開閉される試験室扉を有する試験室と、低温室と、高温室と、冷凍機が配置された機械室とを備え、前記試験室に前記低温室からの冷風あるいは高温室からの熱風が供給される冷熱衝撃試験装置において、前記試験室と前記試験室扉の間に設けられたパッキンと、前記試験室に連通され空気が封入された圧力調整室と、を備え、低温試験時に前記圧力調整室から前記空気が前記試験室へ流入可能とされているものである。   In order to achieve the above object, the present invention includes a test chamber having a test chamber door that is opened and closed to store a sample, a low temperature chamber, a high temperature chamber, and a machine chamber in which a refrigerator is disposed, In a thermal shock test apparatus in which cold air from the low temperature chamber or hot air from the high temperature chamber is supplied to the test chamber, a packing provided between the test chamber and the test chamber door, and air communicated with the test chamber And a sealed pressure regulation chamber, and the air can flow into the test chamber from the pressure regulation chamber during a low temperature test.

また、上記のものにおいて、高温試験時に前記試験室から前記空気が前記圧力調整室へ流入可能とされていることが望ましい。
さらに、上記のものにおいて、前記圧力調整室はその内容積が可変とされたことが望ましい。
さらに、上記のものにおいて、前記圧力調整室は前記機械室に配置され、その内外の圧力差で内容積が可変とされたことが望ましい。
Further, in the above, it is desirable that the air can flow from the test chamber into the pressure adjusting chamber during a high temperature test.
Further, in the above, it is desirable that the internal volume of the pressure adjusting chamber is variable.
Furthermore, in the above, it is preferable that the pressure adjusting chamber is disposed in the machine chamber, and the internal volume is made variable by a pressure difference between the inside and the outside.

さらに、上記のものにおいて、前記圧力調整室は伸縮可能な材質で袋状に形成され、その内外の圧力差で内容積が可変とされたことが望ましい。
さらに、上記のものにおいて、前記圧力調整室はポリエチレンの薄膜で形成され、その内外の圧力差で内容積が可変とされたことが望ましい。
さらに、上記のものにおいて、前記パッキンは、内側パッキンと外側パッキンとで2重にされていることが望ましい。
Further, in the above, it is desirable that the pressure adjusting chamber is formed in a bag shape with a material that can be expanded and contracted, and the internal volume is variable by the pressure difference between the inside and outside.
Further, in the above, it is desirable that the pressure adjusting chamber is formed of a polyethylene thin film, and the internal volume is made variable by a pressure difference between the inside and the outside.
Furthermore, in the above, it is preferable that the packing is doubled with an inner packing and an outer packing.

さらに、上記のものにおいて、前記圧力調整室は蛇腹型に形成され、内容積が可変とされたことが望ましい。
さらに、上記のものにおいて、前記圧力調整室は乾燥空気を供給する供給タンクとされ、その内部圧力は低温試験時における前記試験室の圧力以上に設定されていることが望ましい。
Furthermore, in the above, it is desirable that the pressure adjusting chamber is formed in a bellows type and the internal volume is variable.
Furthermore, in the above, it is desirable that the pressure adjusting chamber is a supply tank for supplying dry air, and the internal pressure thereof is set to be equal to or higher than the pressure in the test chamber during a low temperature test.

さらに、上記のものにおいて、前記圧力調整室は、空気を供給する供給タンクとされその内部圧力は低温試験時における前記試験室の圧力以上に設定され、前記試験室との接続口であり前記試験室の内部側に開閉弁が設けられ、前記供給タンクから前記試験室側には開放可能とされ、前記試験室から前記供給タンク側へは開放されないことが望ましい。   Further, in the above, the pressure adjusting chamber is a supply tank for supplying air, and the internal pressure thereof is set to be equal to or higher than the pressure of the test chamber at the time of a low temperature test, and is a connection port with the test chamber and the test It is desirable that an open / close valve is provided on the inner side of the chamber, the valve can be opened from the supply tank to the test chamber side, and is not opened from the test chamber to the supply tank side.

本発明によれば、冷熱衝撃試験装置の試験室に圧力調整室を付設して、低温試験時及び高温試験時には圧力調整室によって試験室と外部空気との呼吸作用の発生を無くしたので、低温室に湿度を多量に含んだ外部空気の流入を無くすことができる。したがって、低温室内に配置されている冷却器の着霜を減少し、低温室内の温度を長期間、安定に保持して運転することが可能となり、試験の中断時間を無くしたり、内部温度を所定の低温、高温にすばやくなるような追従性を向上したりして冷熱衝撃試験の精度を向上することができる。   According to the present invention, the pressure adjustment chamber is attached to the test chamber of the thermal shock test apparatus, and the generation of the breathing action between the test chamber and the external air is eliminated by the pressure adjustment chamber during the low temperature test and the high temperature test. Inflow of external air containing a large amount of humidity into the chamber can be eliminated. Therefore, it is possible to reduce the frost formation of the cooler placed in the low temperature room, keep the temperature in the low temperature room stable and operate for a long time, eliminate the test interruption time, and set the internal temperature to a predetermined value. The accuracy of the thermal shock test can be improved by improving the followability so that the temperature becomes low and high.

冷熱衝撃試験装置において、試験室内は試験室内部の温度が冷風、熱風の空気によって−65℃から150℃までの温度範囲にさらされるため、試験室内の空気の圧力は、ボイル・シャルルの法則(PV=RT:気体の体積Vは圧力Pに反比例して小さくなり、絶対温度Tに比例して大きくなる)に示されるように、低温試験時では空気の体積減少により低下し、高温試験時では空気の体積増加により上昇する。
したがって、冷熱衝撃試験の繰り返しによって試験室外部と試験室内部の空気に圧力差が発生する。そして、この圧力差によって試験室に呼吸作用(外気の出入り)が発生し、試験室が低温試験中の場合は外部空気が試験室内部に流入し、試験室が高温試験中の場合は試験室内の空気が外部に流出するようになる。さらに、外気が流入することにより低温室の冷却器に霜が付着してその能力が低下し、外気が流出することにより蓄熱量が外部に放出され、試料に対して急激な温度変化(熱ストレス)を精度良く印加することが困難であった。
そこで、冷熱衝撃試験装置の試験室に内容積可変式の圧力調整室を付設して、外部空気との呼吸作用の発生を無くすこととした。
In the thermal shock test apparatus, the temperature in the test chamber is exposed to a temperature range of −65 ° C. to 150 ° C. by the air of the cold air and the hot air in the test chamber. PV = RT: The volume V of the gas decreases in inverse proportion to the pressure P and increases in proportion to the absolute temperature T). As shown in FIG. It rises by increasing the volume of air.
Therefore, a pressure difference is generated between the outside of the test chamber and the air inside the test chamber by repeating the thermal shock test. This pressure difference causes a breathing action (external air flow) in the test chamber. When the test chamber is in the low temperature test, external air flows into the test chamber, and when the test chamber is in the high temperature test, the test chamber Air flows out to the outside. In addition, frost adheres to the cooler in the cold room due to the outside air flowing in, and its capacity is reduced, and the amount of stored heat is released to the outside due to the outside air flowing out, causing a sudden temperature change (thermal stress) to the sample. ) Was difficult to apply with high accuracy.
In view of this, a pressure adjustment chamber with a variable internal volume was added to the test chamber of the thermal shock test apparatus to eliminate the occurrence of a breathing action with external air.

以下、本発明の一実施形態を図面に従って説明する。
図1において、1は試験室で、冷風供給口2、冷風排出口3、熱風供給口4、熱風排出口5が配置され、試料6を収納できるようになっている。また、各々の供給口、排出口には冷風切換ダンパ7、熱風切換ダンパ8が配置されている。
9は低温室で、室内の空気を冷却する冷却器10と、冷却された空気を所定の温度に調節して保持する加熱器11とが配置され、調温された冷却空気(以下、冷風という)が送風機12で試験室1に送られる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In FIG. 1, reference numeral 1 denotes a test chamber, which includes a cold air supply port 2, a cold air discharge port 3, a hot air supply port 4, and a hot air discharge port 5 so that a sample 6 can be stored. Further, a cold air switching damper 7 and a hot air switching damper 8 are arranged at each supply port and discharge port.
Reference numeral 9 denotes a low-temperature chamber, in which a cooler 10 that cools indoor air and a heater 11 that adjusts and holds the cooled air to a predetermined temperature are arranged and temperature-controlled cooling air (hereinafter referred to as cold air). ) Is sent to the test chamber 1 by the blower 12.

試験室1内の試料6に対して急激な熱ストレスを与える必要があるため、低温室9の熱容量は試料6を含めた試験室1内の熱容量以上を有する必要があり、このため低温室9には蓄熱板13が設けられ、蓄熱板13は比熱の大きい、たとえばアルミニウム鋼材(約0.90J/kg・K)が使用され、蓄熱板13の比熱と質量による熱容量によって、低温室9全体の熱容量は試料6を含めた試験室1内の熱容量以上となっている。
14は高温室で、室内の空気を加熱する加熱器15が配置され、調温された加熱空気(以下、熱風という)が送風機16で試験室1に送られる。高温室14の熱容量は試料6を含めた試験室1内の熱容量以上とするため、蓄熱板17が設けられ、蓄熱板17は低温室9に配置する蓄熱板13と同等の機能を持つ。
なお、試験室1、低温室9、高温室14は、断熱材18により熱的に遮断されており、所定の温度に到達後、その温度に保持できるようになっている。また、試験室1には通気口20が付設され、図2で説明する圧力調整室19と連結されている。
Since it is necessary to apply rapid thermal stress to the sample 6 in the test chamber 1, the heat capacity of the low temperature chamber 9 needs to be greater than or equal to the heat capacity in the test chamber 1 including the sample 6. Is provided with a heat storage plate 13, and the heat storage plate 13 is made of, for example, an aluminum steel material (about 0.90 J / kg · K) with a large specific heat. The heat capacity is equal to or greater than the heat capacity in the test chamber 1 including the sample 6.
Reference numeral 14 denotes a high-temperature chamber in which a heater 15 for heating the indoor air is disposed, and heated air whose temperature is adjusted (hereinafter referred to as hot air) is sent to the test chamber 1 by a blower 16. Since the heat capacity of the high greenhouse 14 is equal to or greater than the heat capacity in the test chamber 1 including the sample 6, a heat storage plate 17 is provided, and the heat storage plate 17 has the same function as the heat storage plate 13 disposed in the low temperature chamber 9.
Note that the test chamber 1, the low temperature chamber 9, and the high temperature chamber 14 are thermally blocked by a heat insulating material 18, and can be held at a predetermined temperature after reaching a predetermined temperature. Further, the test chamber 1 is provided with a vent 20 and connected to a pressure adjusting chamber 19 described with reference to FIG.

図2の右側断面図において、断熱材18により遮断された試験室1、低温室9、高温室14の背面側には、機械室21が配置され、機械室21には、低温室9内の冷却器10を所定の温度に冷却するための冷凍機(図示せず)、冷風切換ダンパ7および熱風切換ダンパ8を駆動するためのシリンダ22、圧力調整室19が装備されている。   In the right cross-sectional view of FIG. 2, a machine room 21 is disposed on the back side of the test chamber 1, the low temperature room 9, and the high temperature room 14 that are blocked by the heat insulating material 18, and the machine room 21 includes the inside of the low temperature room 9. A refrigerator (not shown) for cooling the cooler 10 to a predetermined temperature, a cylinder 22 for driving the cold air switching damper 7 and the hot air switching damper 8, and a pressure adjusting chamber 19 are provided.

試験室1は通気口20−A、20−Bを経由して圧力調整室19と連通され、圧力調整室19は、たとえばポリエチレン、ポリエチレン‐テレフタラート等の伸縮可能で、かつ強度を保持できる材質によって薄膜の袋状に形成されている。したがって、試験室1の内容積は、内外の圧力差で圧力調整室19が伸縮することで変化する。また試験室1の前面側には、試料6を収納する場合に開閉するための試験室扉23が装備されている。
試験室1内を所定の低温温度あるいは高温温度に保持するため、試験室1は外部空気が流入、あるいは流出することが極力無い構造にする必要があるため、また試験室1を経由して低温室9内に湿度を多量に含んだ外部空気が流入することを防止して、冷却器10、蓄熱板13への着霜を防止し冷凍機の冷凍能力を維持する必要があるため、試験室扉23には閉止時に密閉するためのパッキン24が装備されている。さらに、内側のパッキン24−Aとあわせ、密閉性を高めるために外側のパッキン24−Bを装備しての2重構造としている。
The test chamber 1 communicates with the pressure adjusting chamber 19 via the vents 20-A and 20-B. The pressure adjusting chamber 19 is made of a material that can be expanded and contracted and can maintain strength, such as polyethylene and polyethylene-terephthalate. It is formed in a thin bag shape. Therefore, the internal volume of the test chamber 1 changes as the pressure adjusting chamber 19 expands and contracts due to a pressure difference between the inside and outside. A test chamber door 23 is provided on the front side of the test chamber 1 for opening and closing when the sample 6 is stored.
In order to maintain the inside of the test chamber 1 at a predetermined low temperature or high temperature, the test chamber 1 needs to have a structure in which external air does not flow in or out as much as possible. Since it is necessary to prevent the outside air containing a large amount of humidity from flowing into the chamber 9 to prevent frost formation on the cooler 10 and the heat storage plate 13 and to maintain the refrigeration capacity of the refrigerator, The door 23 is equipped with a packing 24 for sealing when closed. Further, in combination with the inner packing 24-A, the outer packing 24-B is equipped with a double structure in order to improve the sealing performance.

冷風切換ダンパ7および熱風切換ダンパ8と、これを駆動するためのシリンダ22は、シャフト25により連結され、シャフト25は試験室1と断熱材18を貫通しているが、貫通孔部にはパッキン26が装備され、シャフト25と貫通孔を密閉している。以上、パッキン24、26は、ゴム・麻糸屑、石綿、銅板、鉛、プラスチックなどを用いるので、試験室1の密閉性を高め、外部空気が流入、あるいは流出することを防止している。   The cold air switching damper 7 and the hot air switching damper 8 and the cylinder 22 for driving the damper are connected by a shaft 25. The shaft 25 penetrates the test chamber 1 and the heat insulating material 18, but the through hole has a packing. 26 is equipped, and the shaft 25 and the through hole are sealed. As described above, since the packings 24 and 26 are made of rubber, hemp yarn, asbestos, copper plate, lead, plastic, or the like, the sealing property of the test chamber 1 is improved and external air is prevented from flowing in or out.

次に冷熱衝撃試験における試験室内温度と経過時間の関係を図3により説明する。低温室9は、試料6に対して、−65℃と150℃の温度に交互にさらす冷熱衝撃試験を実施する場合には、−65℃より低い温度、たとえば−80℃に保持され、高温室14は、150℃より高い温度、たとえば180℃に保持されている。
この状態でシリンダ22−Aを駆動させて冷風切換ダンパ7を開くと、低温室9内の冷風が試験室1に流入して試料6を含めた試験室1内の温度はA(5分)以内の短時間で所定の−65℃に変化する。さらに、試料6を所定の時間(15分間)冷風にさらした後、シリンダ22−Aを駆動させて冷風切換ダンパ7を閉じ、低温試験を完了する。
Next, the relationship between the test chamber temperature and the elapsed time in the thermal shock test will be described with reference to FIG. The low greenhouse 9 is maintained at a temperature lower than −65 ° C., for example, −80 ° C. when the thermal shock test is performed on the sample 6 alternately at −65 ° C. and 150 ° C. 14 is maintained at a temperature higher than 150 ° C., for example, 180 ° C.
In this state, when the cylinder 22-A is driven to open the cold air switching damper 7, the cold air in the low temperature chamber 9 flows into the test chamber 1, and the temperature in the test chamber 1 including the sample 6 is A (5 minutes). It changes to a predetermined -65 ° C within a short time. Further, after exposing the sample 6 to cold air for a predetermined time (15 minutes), the cylinder 22-A is driven to close the cold air switching damper 7, and the low temperature test is completed.

次にシリンダ22−Bを駆動させて熱風切換ダンパ8が開くと、高温室14内の熱風が試験室1内に流入して試料6を含めた試験室1内の温度はB(5分)以内の短時間で所定の150℃に変化する。さらに、試料6を所定の時間(15分間)熱風にさらした後、シリンダ22−Bを駆動させて熱風切換ダンパ8を閉じ、高温試験を完了する。この低温試験、高温試験を所定の回数繰り返して行ない、冷熱衝撃試験が完了する。A、Bは通常、温度復帰時間と称され、冷熱衝撃試験においては5分以内の短時間で変化させることが必要となる。   Next, when the hot air switching damper 8 is opened by driving the cylinder 22-B, the hot air in the high temperature chamber 14 flows into the test chamber 1 and the temperature in the test chamber 1 including the sample 6 is B (5 minutes). Within a short time within a predetermined 150 ° C. Further, after exposing the sample 6 to hot air for a predetermined time (15 minutes), the cylinder 22-B is driven to close the hot air switching damper 8, and the high temperature test is completed. The low temperature test and the high temperature test are repeated a predetermined number of times to complete the thermal shock test. A and B are usually referred to as a temperature recovery time, and in the thermal shock test, it is necessary to change them in a short time within 5 minutes.

試験室1内の空気の体積は、圧力に反比例して小さくなり、絶対温度に比例して大きくなるが、圧力調整室19を装備しているので、低温試験時には、図4に示すとおり圧力調整室19の空気は外気圧(大気圧)に押されて通気口20−A、20−Bを経由して試験室1内に流入し、圧力調整室19の内容積は縮小する。このため試験室1内部の圧力は低温試験−65℃にさらされる前後でも一定(ほぼ大気圧)に保持される。
高温試験時には、図5に示すとおり試験室1内の空気は通気口20−A、20−Bを経由して圧力調整室19に流入し、圧力調整室19の内容積は外気圧と平衡するまで図のように拡大する。このため試験室1内部の圧力は高温試験150℃にさらされる前後でも一定(ほぼ大気圧)に保持される。
The volume of air in the test chamber 1 decreases in inverse proportion to the pressure and increases in proportion to the absolute temperature. However, since the pressure adjustment chamber 19 is provided, the pressure adjustment is performed as shown in FIG. The air in the chamber 19 is pushed to the external atmospheric pressure (atmospheric pressure) and flows into the test chamber 1 through the vents 20-A and 20-B, and the internal volume of the pressure adjusting chamber 19 is reduced. For this reason, the pressure inside the test chamber 1 is kept constant (substantially atmospheric pressure) even before and after being exposed to the low temperature test of −65 ° C.
At the time of the high temperature test, as shown in FIG. 5, the air in the test chamber 1 flows into the pressure adjusting chamber 19 via the vents 20-A and 20-B, and the internal volume of the pressure adjusting chamber 19 is balanced with the external pressure. Enlarge as shown in the figure. For this reason, the pressure inside the test chamber 1 is kept constant (approximately atmospheric pressure) even before and after being exposed to the high temperature test 150 ° C.

以上、試験室内部の圧力を低温試験時、また高温試験時いずれの場合でも均等になるようにできるので、試験中に試験室外部と試験室内部の圧力差が無く、試験室に対して外部空気との呼吸作用が発生することが無くなり、冷熱衝撃試験の開始から完了まで、試験室1内には低温室9、および高温室14以外の空気の流入を無くすことができる。なお、圧力調整室19に必要な内容積は、ボイル・シャルルの法則(数1)をもとに、試験室1、低温室9、高温室14の内容積と、低温試験温度、高温試験温度により予め求めれば良い。また、圧力調整室19は、試験室1そのものに組み込むことでも良く、その場合は試験室1、又はその一部の内容積が可変、膨張収縮するようになっていれば良い。   As described above, the pressure inside the test chamber can be made uniform during both the low temperature test and the high temperature test, so there is no pressure difference between the outside of the test chamber and the inside of the test chamber during the test, and the outside of the test chamber No breathing action with air occurs, and it is possible to eliminate the inflow of air other than the low temperature chamber 9 and the high temperature chamber 14 into the test chamber 1 from the start to the completion of the thermal shock test. The internal volume required for the pressure adjusting chamber 19 is based on Boyle-Charles' law (Equation 1), the internal volume of the test chamber 1, the low temperature chamber 9, and the high temperature chamber 14, the low temperature test temperature, and the high temperature test temperature. Can be obtained in advance. Further, the pressure adjustment chamber 19 may be incorporated in the test chamber 1 itself. In this case, it is only necessary that the internal volume of the test chamber 1 or a part thereof is variable and expands and contracts.

図6、7は他の実施の形態を示し、19−Bは圧力調整室であり、耐熱、耐薬品性が高い高分子有機ケイ素化合物である薄膜シリコン等の、伸縮可能でかつ強度を保持できる材質によって蛇腹型の袋状に形成されている。圧力調整室19−Bは通気口20−A、20−Bを経由して試験室1と連通され、圧力調整室19−Bの他方端は、ロッド27を介して空気シリンダ28に連結されている。空気シリンダ28は配管29を経由して圧縮空気源(図示せず)と接続され、圧縮空気源から供給される圧縮空気により空気シリンダ28のロッド27が駆動される。   FIGS. 6 and 7 show another embodiment, and 19-B is a pressure adjusting chamber, which can stretch and retain strength, such as a thin film silicon which is a high-molecular organosilicon compound having high heat resistance and chemical resistance. Depending on the material, it is formed in the shape of a bellows bag. The pressure adjustment chamber 19-B communicates with the test chamber 1 via the vents 20-A and 20-B, and the other end of the pressure adjustment chamber 19-B is connected to the air cylinder 28 via the rod 27. Yes. The air cylinder 28 is connected to a compressed air source (not shown) via a pipe 29, and the rod 27 of the air cylinder 28 is driven by the compressed air supplied from the compressed air source.

低温試験時には圧縮空気源から圧縮空気が配管29を経由して図中の矢印に示す方向に空気シリンダ28に供給され、圧力調整室19−Bはロッド27により押しこまれて内容積が縮小する。そして、圧力調整室19−B中の空気は通気口20−A、20−Bを経由して試験室1内に流入する。このため試験室1内部の圧力は低温試験−65℃にさらされる前後でも一定(ほぼ大気圧)に保持できる。また、図7に示すように高温試験時には圧縮空気源から圧縮空気が配管29を経由して図中の矢印に示す方向に空気シリンダ28に供給され、圧力調整室19−Bはロッド27により引かれるため、圧力調整室19−Bの内容積は拡大する。   During the low temperature test, compressed air is supplied from the compressed air source via the pipe 29 to the air cylinder 28 in the direction indicated by the arrow in the figure, and the pressure adjustment chamber 19-B is pushed by the rod 27 to reduce the internal volume. . Then, the air in the pressure adjustment chamber 19-B flows into the test chamber 1 through the vent holes 20-A and 20-B. For this reason, the pressure inside the test chamber 1 can be kept constant (almost atmospheric pressure) even before and after being exposed to the low temperature test of −65 ° C. Further, as shown in FIG. 7, during the high temperature test, compressed air is supplied from the compressed air source to the air cylinder 28 through the pipe 29 in the direction indicated by the arrow in the figure, and the pressure adjusting chamber 19 -B is pulled by the rod 27. Therefore, the internal volume of the pressure adjusting chamber 19-B is expanded.

通気口20−A、20−Bを経由して試験室1内の空気は圧力調整室19−Bに流入して外気圧と平衡するまで拡大するので、内部の圧力は高温試験150℃にさらされる前後でも一定(ほぼ大気圧)に保持される。したがって、試験室内部の圧力を低温試験時、また高温試験時いずれの場合でも均等になるようにできる。   Since the air in the test chamber 1 flows into the pressure adjusting chamber 19-B through the vents 20-A and 20-B and expands until it equilibrates with the external pressure, the internal pressure is exposed to the high temperature test 150 ° C. It is kept constant (almost atmospheric pressure) even before and after the operation. Therefore, the pressure inside the test chamber can be made equal in both the low temperature test and the high temperature test.

図8、9はさらに、圧力調整室に対する他の実施の形態を示し、30は乾燥空気の供給タンクであり、1.0MPa程度の圧力に耐えられるような容器である。乾燥空気供給タンク30は通気口20−A、20−Bを経由して試験室1と連通されている。乾燥空気供給タンク30には、配管31を経由して乾燥空気源(図示せず)と接続され、あらかじめ除湿された乾燥空気(あるいは窒素ガス)が供給されている。なお、乾燥空気源からの供給圧力は乾燥空気供給タンク30の内部圧力(P2)が、低温試験時における試験室1内の圧力(P1)以上となるように設定されている。
通気口20−Aと試験室1との接続口には、開閉弁32が装備され、開閉弁32は乾燥空気の供給タンク30からの試験室1への乾燥空気の供給量を制御するものであり、たとえばステンレス鋼にシリコン材を貼り付けた板状のものであり、その一端は支点33により回動可能として支持されている。開閉弁32は試験室1の内部側に取付けられていて、通気口20−A側から試験室1への空気流動がある場合は、試験室1の内側に自由開放するようになっている。したがって、試験室1側から通気口20−Aへの空気流動がある場合は開放されず、通気口20−Aを密閉する。
FIGS. 8 and 9 further show another embodiment for the pressure regulation chamber, and reference numeral 30 denotes a dry air supply tank, which can withstand a pressure of about 1.0 MPa. The dry air supply tank 30 communicates with the test chamber 1 through the vents 20-A and 20-B. The dry air supply tank 30 is connected to a dry air source (not shown) via a pipe 31 and supplied with dry air (or nitrogen gas) dehumidified in advance. The supply pressure from the dry air source is set so that the internal pressure (P2) of the dry air supply tank 30 is equal to or higher than the pressure (P1) in the test chamber 1 during the low temperature test.
The connection port between the vent 20 -A and the test chamber 1 is equipped with an on-off valve 32, which controls the amount of dry air supplied from the dry air supply tank 30 to the test chamber 1. For example, it is a plate-like material in which a silicon material is bonded to stainless steel, and one end thereof is supported by a fulcrum 33 so as to be rotatable. The on-off valve 32 is attached to the inside of the test chamber 1, and is free to open inside the test chamber 1 when there is an air flow from the vent 20 -A side to the test chamber 1. Therefore, when there is an air flow from the test chamber 1 side to the vent 20-A, it is not opened and the vent 20-A is sealed.

以上のように、乾燥空気の供給タンク30を装備すると、低温試験時には、密閉された試験室1内の空気は体積が小さくなり試験室1外部の空気圧力より減少するが、乾燥空気供給タンク30の中の圧力は低温試験時における試験室1内の圧力以上なっているため、開閉弁32が試験室1の内側に開放する。よって、乾燥空気供給タンク30から乾燥空気が試験室1に流入するので、試験室1内部の圧力は変化しない。つまり、試験室内の圧力は、低温試験−65℃にさらされる前後で一定(ほぼ大気圧)に保持される。したがって、試験室に対して外部空気との呼吸作用が発生することが無く、冷熱衝撃試験の開始から完了まで、試験室1内には低温室9、および高温室14以外の空気の流入が無くなる。また、試験室1に供給される空気はあらかじめ除湿された乾燥空気であるため、低温室9に流入した場合でも冷却器10、蓄熱板13に霜を付着させることが無く、冷却器10の冷却能力を低下させることが無い。そして、長期間、連続の冷熱衝撃試験装置が可能となり、試験途中での冷却器の除霜処理が不要となり、無駄な時間を廃して試験期間の短縮化を図ることができる。具体的には、従来、連続運転可能な試験サイクルは約30サイクル限度とされていたが、本例によれば1000サイクルまでの連続運転が可能となり、試験時間で30%短縮、消費電力量で25%低減が可能となった。   As described above, when the dry air supply tank 30 is provided, during the low temperature test, the air in the sealed test chamber 1 becomes smaller in volume and decreases than the air pressure outside the test chamber 1, but the dry air supply tank 30. Since the pressure in is higher than the pressure in the test chamber 1 during the low temperature test, the on-off valve 32 opens to the inside of the test chamber 1. Therefore, since dry air flows into the test chamber 1 from the dry air supply tank 30, the pressure inside the test chamber 1 does not change. That is, the pressure in the test chamber is kept constant (approximately atmospheric pressure) before and after being subjected to the low temperature test of −65 ° C. Therefore, there is no breathing action with external air to the test chamber, and no air flows into the test chamber 1 except for the low temperature chamber 9 and the high temperature chamber 14 from the start to the completion of the thermal shock test. . In addition, since the air supplied to the test chamber 1 is dry air dehumidified in advance, even when it flows into the low temperature chamber 9, frost does not adhere to the cooler 10 and the heat storage plate 13, and the cooler 10 is cooled. There is no reduction in ability. In addition, a continuous thermal shock test apparatus is possible for a long period of time, eliminating the need for defrosting the cooler in the middle of the test, reducing wasted time and shortening the test period. Specifically, the test cycle that can be continuously operated is conventionally limited to about 30 cycles, but according to this example, continuous operation up to 1000 cycles is possible, the test time is shortened by 30%, and the power consumption is reduced. A reduction of 25% became possible.

以上、低温、あるいは高温試験温度とは異なる外部空気が、試験室に対して流入、あるいは流出することが無いようにしたので、蓄熱量、蓄冷量が外部へ失われることが無くなり、試験室内部の温度を所定の低温温度あるいは高温温度に保持することが容易、必要とされる試験温度、温度変化に対する追従性が向上し、冷熱衝撃試験の試験精度が向上する。   As described above, external air different from the low temperature or high temperature test temperature is prevented from flowing into or out of the test room, so that the amount of heat storage and cold storage is not lost to the outside. It is easy to keep the temperature at a predetermined low temperature or high temperature, the required test temperature, the followability to the temperature change is improved, and the test accuracy of the thermal shock test is improved.

本発明による一実施の形態を示す正面断面図。1 is a front cross-sectional view showing an embodiment according to the present invention. 図1の右側面断面図。FIG. 2 is a right side sectional view of FIG. 1. 一実施の形態による冷熱衝撃試験における試験室内温度と経過時間の関係を示すグラフ。The graph which shows the relationship between the test chamber temperature and elapsed time in the thermal shock test by one Embodiment. 一実施の形態による圧力調整室の内容積が縮小された状態を示す正面図。The front view which shows the state by which the internal volume of the pressure regulation chamber by one Embodiment was shrunk | reduced. 一実施の形態による圧力調整室の内容積が拡大された状態を示す正面図。The front view which shows the state by which the internal volume of the pressure regulation chamber by one Embodiment was expanded. 他の実施の形態による圧力調整室の内容積が縮小された状態を示す正面図。The front view which shows the state by which the internal volume of the pressure regulation chamber by other embodiment was shrunk | reduced. 他の実施の形態による圧力調整室の内容積が拡大された状態を示す正面図。The front view which shows the state by which the internal volume of the pressure regulation chamber by other embodiment was expanded. さらに他の実施の形態による圧力調整機構を示す正面図。The front view which shows the pressure adjustment mechanism by other embodiment. さらに他の実施の形態による圧力調整機構を示す側面図。The side view which shows the pressure adjustment mechanism by other embodiment.

符号の説明Explanation of symbols

1…試験室、2…冷風供給口、3…冷風排出口、4…熱風供給口、5…熱風排出口、6…試料、7…冷風切換ダンパ、8…熱風切換ダンパ、9…低温室、10…冷却器、11…加熱器、12…送風機、13…蓄熱板、14…高温室、15…加熱器、16…送風機、17…蓄熱板、18…断熱材、19…圧力調整室、20…通気口、21…機械室、22…シリンダ、23…試験室扉、24…パッキン、25…シャフト、26…パッキン、27…ロッド、28…空気シリンダ、29…配管、30…供給タンク、31…配管、32…開閉弁、33…支点。   DESCRIPTION OF SYMBOLS 1 ... Test room, 2 ... Cold air supply port, 3 ... Cold air discharge port, 4 ... Hot air supply port, 5 ... Hot air discharge port, 6 ... Sample, 7 ... Cold air switching damper, 8 ... Hot air switching damper, 9 ... Low temperature chamber, DESCRIPTION OF SYMBOLS 10 ... Cooler, 11 ... Heater, 12 ... Blower, 13 ... Heat storage plate, 14 ... High temperature chamber, 15 ... Heater, 16 ... Blower, 17 ... Heat storage plate, 18 ... Heat insulation material, 19 ... Pressure adjustment chamber, 20 DESCRIPTION OF SYMBOLS ... Vent, 21 ... Machine room, 22 ... Cylinder, 23 ... Test chamber door, 24 ... Packing, 25 ... Shaft, 26 ... Packing, 27 ... Rod, 28 ... Air cylinder, 29 ... Piping, 30 ... Supply tank, 31 ... Piping, 32 ... Open / close valve, 33 ... fulcrum.

Claims (10)

試料を収納するため開閉される試験室扉を有する試験室と、低温室と、高温室と、冷凍機が配置された機械室とを備え、前記試験室に前記低温室からの冷風あるいは高温室からの熱風が供給される冷熱衝撃試験装置において、
前記試験室と前記試験室扉の間に設けられたパッキンと、前記試験室に連通され空気が封入された圧力調整室と、を備え、低温試験時に前記圧力調整室から前記空気が前記試験室へ流入可能とされていることを特徴とする冷熱衝撃試験装置。
A test chamber having a test chamber door that is opened and closed to store a sample, a low-temperature chamber, a high-temperature chamber, and a mechanical chamber in which a refrigerator is disposed, and cold air from the low-temperature chamber or a high-temperature chamber is provided in the test chamber In the thermal shock test device supplied with hot air from
A packing provided between the test chamber and the test chamber door; and a pressure adjusting chamber that is communicated with the test chamber and sealed with air, and the air is supplied from the pressure adjusting chamber during the low-temperature test. A thermal shock test apparatus characterized by being able to flow into the water.
請求項1に記載のものにおいて、高温試験時に前記試験室から前記空気が前記圧力調整室へ流入可能とされていることを特徴とする冷熱衝撃試験装置。   2. The thermal shock test apparatus according to claim 1, wherein the air is allowed to flow from the test chamber into the pressure adjustment chamber during a high temperature test. 請求項1に記載のものにおいて、前記圧力調整室はその内容積が可変とされたことを特徴とする冷熱衝撃試験装置。   2. The thermal shock test apparatus according to claim 1, wherein the internal volume of the pressure adjusting chamber is variable. 請求項1に記載のものにおいて、前記圧力調整室は前記機械室に配置され、その内外の圧力差で内容積が可変とされたことを特徴とする冷熱衝撃試験装置。   2. The thermal shock test apparatus according to claim 1, wherein the pressure adjusting chamber is disposed in the machine chamber, and an internal volume is variable by a pressure difference between the inside and the outside. 請求項1に記載のものにおいて、前記圧力調整室は伸縮可能な材質で袋状に形成され、その内外の圧力差で内容積が可変とされたことを特徴とする冷熱衝撃試験装置。   2. The thermal shock test apparatus according to claim 1, wherein the pressure adjusting chamber is formed in a bag shape with a material that can be expanded and contracted, and an internal volume thereof is variable by a pressure difference between the inside and the outside. 請求項1に記載のものにおいて、前記圧力調整室はポリエチレンの薄膜で形成され、その内外の圧力差で内容積が可変とされたことを特徴とする冷熱衝撃試験装置。   2. The thermal shock test apparatus according to claim 1, wherein the pressure adjusting chamber is formed of a thin film of polyethylene, and the internal volume is variable by a pressure difference between the inside and outside. 請求項1に記載のものにおいて、前記パッキンは、内側パッキンと外側パッキンとで2重にされていることを特徴とする冷熱衝撃試験装置。   2. The thermal shock test apparatus according to claim 1, wherein the packing is doubled with an inner packing and an outer packing. 請求項1に記載のものにおいて、前記圧力調整室は蛇腹型に形成され、内容積が可変とされたことを特徴とする冷熱衝撃試験装置。   2. The thermal shock test apparatus according to claim 1, wherein the pressure adjusting chamber is formed in a bellows shape and an internal volume is variable. 請求項1に記載のものにおいて、前記圧力調整室は乾燥空気を供給する供給タンクとされ、その内部圧力は低温試験時における前記試験室の圧力以上に設定されていることを特徴とする冷熱衝撃試験装置。   2. The thermal shock according to claim 1, wherein the pressure adjusting chamber is a supply tank for supplying dry air, and the internal pressure is set to be equal to or higher than the pressure of the test chamber during a low temperature test. Test equipment. 請求項1に記載のものにおいて、前記圧力調整室は、空気を供給する供給タンクとされその内部圧力は低温試験時における前記試験室の圧力以上に設定され、前記試験室との接続口であり前記試験室の内部側に開閉弁が設けられ、前記供給タンクから前記試験室側には開放可能とされ、前記試験室から前記供給タンク側へは開放されないことを特徴とする冷熱衝撃試験装置。
2. The pressure adjusting chamber according to claim 1, wherein the pressure adjusting chamber is a supply tank that supplies air, and an internal pressure thereof is set to be equal to or higher than a pressure of the testing chamber during a low temperature test, and is a connection port with the testing chamber. An on-off valve is provided inside the test chamber, and can be opened from the supply tank to the test chamber side, and is not opened from the test chamber to the supply tank side.
JP2005193294A 2005-07-01 2005-07-01 Thermal shock test equipment Active JP3973224B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005193294A JP3973224B2 (en) 2005-07-01 2005-07-01 Thermal shock test equipment
TW95122947A TWI308213B (en) 2005-07-01 2006-06-26 Thermal shock test apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005193294A JP3973224B2 (en) 2005-07-01 2005-07-01 Thermal shock test equipment

Publications (2)

Publication Number Publication Date
JP2007010531A JP2007010531A (en) 2007-01-18
JP3973224B2 true JP3973224B2 (en) 2007-09-12

Family

ID=37749237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005193294A Active JP3973224B2 (en) 2005-07-01 2005-07-01 Thermal shock test equipment

Country Status (2)

Country Link
JP (1) JP3973224B2 (en)
TW (1) TWI308213B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257958A (en) * 2008-04-17 2009-11-05 Espec Corp Dew condensation suppression device, and environmental testing device equipped therewith
JP2009257957A (en) * 2008-04-17 2009-11-05 Espec Corp Dew condensation suppression device, and environmental testing device equipped therewith
JP2009257951A (en) * 2008-04-17 2009-11-05 Espec Corp Environmental testing device
JP2009257956A (en) * 2008-04-17 2009-11-05 Espec Corp Dew condensation suppression device, and environmental testing device equipped therewith

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7861540B2 (en) * 2008-01-25 2011-01-04 Hamilton Storage Technologies, Inc. Automated storage and retrieval system for storing biological or chemical samples at ultra-low temperatures
JP4960293B2 (en) * 2008-04-17 2012-06-27 エスペック株式会社 Thermal insulation panel and environmental test equipment
US8176747B2 (en) * 2008-07-31 2012-05-15 Hamilton Storage Technologies, Inc. Tube picking mechanism for an automated, ultra-low temperature storage and retrieval system
JP2010085365A (en) * 2008-10-02 2010-04-15 Espec Corp Environmental testing apparatus and coldness storage device
JP5291534B2 (en) * 2009-05-22 2013-09-18 エスペック株式会社 Environmental test equipment
US9163869B2 (en) 2010-09-09 2015-10-20 Hamilton Storage Technologies, Inc. Tube picking mechanisms with an ultra-low temperature or cryogenic picking compartment
WO2012033994A2 (en) 2010-09-10 2012-03-15 Hamilton Storage Technologies, Inc. Sample storage cassette for ultra-low or cryogenic temperatures
CN105372143A (en) * 2015-11-18 2016-03-02 芜湖凯尔电气科技有限公司 Battery hot and cold impact resistance test case
JP6988722B2 (en) * 2018-07-17 2022-01-05 トヨタ自動車株式会社 All-solid-state battery test equipment
CN111521508B (en) * 2020-05-14 2023-04-07 安徽法雷特热交换科技有限公司 Cold and hot impact vibration-resistant test device for automobile radiator
CN111537017A (en) * 2020-06-10 2020-08-14 东莞市升微机电设备科技有限公司 Three-box low-pressure cold and hot impact box
CN113976190A (en) * 2021-11-12 2022-01-28 深圳市帝晶光电科技有限公司 Improve blind hole product crescent pixel light leak constant temperature and humidity machine for
CN114034594A (en) * 2021-11-22 2022-02-11 深圳市诺赛特系统有限公司 Chip pressing heat exchange device and cold-hot impact chip testing system
CN114674653B (en) * 2022-03-29 2023-03-24 盐城市泽楷建设有限公司 Concrete shrinkage test variable-temperature cabin for improving test comprehensiveness for building construction
CN115126747B (en) * 2022-07-04 2024-08-06 贵州龙飞航空附件有限公司 Be used for hydraulic actuator high low temperature environment test device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257958A (en) * 2008-04-17 2009-11-05 Espec Corp Dew condensation suppression device, and environmental testing device equipped therewith
JP2009257957A (en) * 2008-04-17 2009-11-05 Espec Corp Dew condensation suppression device, and environmental testing device equipped therewith
JP2009257951A (en) * 2008-04-17 2009-11-05 Espec Corp Environmental testing device
JP2009257956A (en) * 2008-04-17 2009-11-05 Espec Corp Dew condensation suppression device, and environmental testing device equipped therewith

Also Published As

Publication number Publication date
TWI308213B (en) 2009-04-01
JP2007010531A (en) 2007-01-18
TW200714896A (en) 2007-04-16

Similar Documents

Publication Publication Date Title
JP3973224B2 (en) Thermal shock test equipment
US20240151461A1 (en) Vacuum adiabatic body and refrigerator
US10571169B2 (en) Test chamber with temperature control device
JP5279763B2 (en) ENVIRONMENTAL TEST DEVICE AND METHOD FOR CONTROLLING ENVIRONMENTAL TEST DEVICE
KR101200897B1 (en) Performance testing device of heat pump
KR101866523B1 (en) Testing device and the method thereof that the water's temperature change having gradient to time can be carried out
CN102288634A (en) Thermal property measuring device
JP6125851B2 (en) Valve system
JP6297003B2 (en) Test device and thermostatic device
JP4860596B2 (en) Thermal test equipment
US7716945B2 (en) Pressure equalization port apparatus and method for a refrigeration unit
EP1666817A3 (en) Pressure control valve
JP3911567B2 (en) Thermal shock test equipment
JP2019128167A (en) Environmental test apparatus, air conditioner, and air conditioning method
KR101394329B1 (en) System for supply refrigerants using five way step valve
JP2001280721A (en) High pressure control valve for supercritical steam compression refrigerating cycle device
WO2007125102A1 (en) A cooling device
CN104654497A (en) Device for treating heat and damp in enclosed space
JP7025086B1 (en) Heat pump device
KR100367298B1 (en) Life prediction apparatus of thermoelectric device for generator
KR102102958B1 (en) Thermal expansion valve, and cryocooling system including the expansion valve
JP2000046426A (en) Temperature raising method for pulse pipe refrigerating machine
JP3589401B2 (en) Pulse tube refrigerator
CN206424970U (en) A kind of high-low temperature test chamber
JP2006284102A (en) Control method of refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

R150 Certificate of patent or registration of utility model

Ref document number: 3973224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250