JP3973005B2 - 配線用遮断器 - Google Patents

配線用遮断器 Download PDF

Info

Publication number
JP3973005B2
JP3973005B2 JP10275099A JP10275099A JP3973005B2 JP 3973005 B2 JP3973005 B2 JP 3973005B2 JP 10275099 A JP10275099 A JP 10275099A JP 10275099 A JP10275099 A JP 10275099A JP 3973005 B2 JP3973005 B2 JP 3973005B2
Authority
JP
Japan
Prior art keywords
thyristor
voltage
current
capacitor
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10275099A
Other languages
English (en)
Other versions
JP2000299929A (ja
Inventor
正夫 今本
保徳 浜井
康之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tempearl Industrial Co Ltd
Original Assignee
Tempearl Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tempearl Industrial Co Ltd filed Critical Tempearl Industrial Co Ltd
Priority to JP10275099A priority Critical patent/JP3973005B2/ja
Publication of JP2000299929A publication Critical patent/JP2000299929A/ja
Application granted granted Critical
Publication of JP3973005B2 publication Critical patent/JP3973005B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Breakers (AREA)

Description

【0001】
【発明の属する技術分野】
本件の発明は配線用遮断器に係り、特にプラグやコードからの出火の防止を目的とした配線用遮断器に関する。
【0002】
【従来の技術】
従来このような配線用遮断器には過電流や短絡の検出、遮断にバイメタルを使用していた(以下熱動型とする)。図1は、その配線用遮断器の遮断特性(電流−遮断時間特性)の一例である。
【0003】
また、前述の過電流や短絡電流の検出にバイメタルと電磁コイルを併用したものがある(以下熱動電磁型とする)。これは電磁コイルにより、バイメタルによる電流検出では大電流短絡時の応答時間が長いという欠点を補おうというものであり、図2にその遮断特性(電流−遮断時間特性)を示す。図2のAの部分の特性はバイメタル、Bの部分の特性は電磁コイルにより得られており電磁コイルの動作領域(Bの特性の部分)では、バイメタルに比べ、遮断動作時間が格段に短くなることが分かる。
【0004】
しかしながら、上述の熱動電磁型配線用遮断器は図3のような、白熱電灯点灯時の越流電流やその他負荷機器での突入電流での誤動作を避けるため、電磁コイルでの引き外し動作電流を、越流電流値や突入電流値(定格電流の約10倍)よりも小さくすることができなかった。
【0005】
【発明が解決しようとする課題】

熱動型配線用遮断器は、図4のような正弦波波形の短絡電流では、その配線用遮断器の遮断特性(電流−遮断時間特性)どおりに動作するが、短絡事故点がコンセントより負荷側の場合、コンセントに接続されるコードの通電許容エネルギー(電流時間積)は、先の配線用遮断器の遮断特性の電流時間積より小さく、コードの被覆の温度が上がり出火することがあった。
【0006】
また、コードの被覆の絶縁劣化や、過熱による被覆の溶融による絶縁物を介した短絡の場合は、図5のような非連続で間欠的な放電状の短絡電流(以下短絡放電とする)となり、バイメタルを動作させるだけの電流エネルギー(電流時間積)が足りず、熱動型配線用遮断器を動作させることができなかったり、遮断までに時間がかかったりしていたため、短絡部分から出火、火災に至ることがあった。
【0007】
一方熱動電磁型配線用遮断器は、通常定格電流の10倍以上の電流値では、電磁コイルにより電流を検知し、コードの通電許容エネルギー以下で瞬時に遮断することができる。しかし、電磁コイルが検出しない先のコンセントより負荷側での短絡のような小電流域の短絡では、熱動型配線用遮断器と同様の遮断状況となり、プラグやコードから出火し、火災に至る可能性があった。
【0008】
通常、コンセントを分岐に持つような配線用遮断器は、定格電流が20Aであり、熱動電磁型配線用遮断器の電磁コイルでの引き外し電流は200A程度に選定される。しかしながら、コンセントより負荷側での短絡では、その状況に応 じ、200A以下でしか電流が流れない場合が多々あり、その場合では前述のように、熱動電磁型配線用遮断器でもプラグやコードからの出火を保護できない場合があった。
【0009】
そこで本件の発明の目的とするところは、コンセントを分岐に持つような配線用遮断器の通常の過電流等、定格電流を超える電流値で、遮断動作時間をそれほど速くしなくてよい電流領域では、長限時引き外し手段であるバイメタルで電流を検知、遮断し、定格電流の約3倍以上の電流値では、後述する短限時引き外し手段で電流を検知し、白熱電灯点灯時の越流電流やその他負荷機器での突入電流で誤動作することなく、且つ、バイメタルによる長限時引き外し手段より速く、ある時延を持って遮断し、定格電流の10倍以上の電流値では、瞬時引き外し手段として、電磁コイルにより電流を検知し、瞬時に遮断することができる配線用遮断器を提供しようとするものである。
【0010】
且つ、コストの安い短限時引き外し手段を持った配線用遮断器を提供しようとするものである。
【0012】
【課題を解決するための手段】
上述の目的を達成するため本件発明では、に請求項では、手動開閉が可能であり、係合を引き外すことで手動閉状態でも開閉機構に連動する接点を開とすることができる2極配線用遮断器において、定格電流を超える電流値では、長限時引き外し手段として、バイメタルが通電による発熱で湾曲し、前記係合を引き外し、開閉機構に連動する接点を開とし、定格電流の約3倍以上の電流値では、短限時引き外し手段として、2極遮断器の一方の主導体に設けた、通電電流に比例する電圧発生部1の電源端子側に第1のサイリスタ5のカソードを、前記電圧発生部1の負荷端子側に第1のサイリスタ5のゲートを接続し、第1のサイリスタ5のアノードと遮断器の他方の主導体の間には、ダイオード11とトリップコイル10と第2のサイリスタ9のアノードとカソードを直列的に、且つ、第1のサイリスタ5のアノード−カソード間の順方向電流を阻止しない方向に接続し、第2のサイリスタ9のゲート−カソード間には、コンデンサ8と第1のサイリスタ5がON動作した時にコンデンサ8に充電する充電回路を設け、第1のサイリスタ5がON動作した時間だけコンデンサ8に充電を行い、前記コンデンサ8の充電電圧が第2のサイリスタ9のトリガ電圧を超えたとき、第2のサイリスタ9がON動作し、ダイオード11から電源の供給を受けたトリップコイル10を吸引させて係合を引き外し、開閉機構に連動する接点を開とし、定格電流の10倍以上の電流値では、瞬時引き外し手段として、電磁コイルが働いて、係合を引き外し、開閉機構に連動する接点を開とするようにしたものである。
【0013】
に請求項では、手動開閉が可能であり、係合を引き外すことで手動閉状態でも開閉機構に連動する接点を開とすることができる2極配線用遮断器において、定格電流を超える電流値では、長限時引き外し手段として、バイメタルが通電による発熱で湾曲し、前記係合を引き外し、開閉機構に連動する接点を開とし、定格電流の約3倍以上の電流値では、短限時引き外し手段として、2極遮断器の2つの主導体の各々には電流に比例する電圧発生部14、25を設け、電圧発生部14、25の各々の電源端子部側には、アノード同士を接続した第1、第2のサイリスタ18、29のそれぞれのカソードを接続し、電圧発生部14、25の各々の負荷端子部側には、電圧発生部14、25の各々の電源端子部側にカソードを接続した第1または第2のサイリスタ18、29の各々のゲートを接続し、2つの主導体の間には、カソード同士を接続した第1、第2のダイオード30、24の各々のアノードを接続し、第1、第2のダイオード30、24の接続点と、第1、第2のサイリスタ18、29の接続点の間には、トリップコイル23と第3のサイリスタ22のアノード−カソード間の直列回路を、第3のサイリスタ22のアノードからカソードへの順方向が、第1、第2のダイオード30、24の接続点から、第1、第2のサイリスタ18、29の接続点に向かう向きに接続し、第3のサイリスタ22のゲート−カソード間にはコンデンサ21を設け、第1、第2のサイリスタ18、29のいずれか一方がON動作した時、前記コンデンサ21に充電する充電回路を設け、第1または第2のサイリスタ18、29がON動作した時間だけコンデンサ21に充電を行い、前記コンデンサ21の充電電圧が第3のサイリスタ22のトリガ電圧を超えたとき、第3のサイリスタ22がON動作し、電源の供給を受けたトリップコイル23を吸引させて係合を引き外し、開閉機構に連動する接点を開とし、定格電流の10倍以上の電流値では、瞬時引き外し手段として、電磁コイルが働いて、係合を引き外し、開閉機構に連動する接点を開とするようにしたものである。
【0014】
に請求項では、手動開閉が可能であり、係合を引き外すことで手動閉状態でも開閉機構に連動する接点を開とすることができる2極配線用遮断器において、定格電流を超える電流値では、長限時引き外し手段として、バイメタルが通電による発熱で湾曲し、前記係合を引き外し、開閉機構に連動する接点を開とし、定格電流の約3倍以上の電流値では、短限時引き外し手段として、2極遮断器の一方の極の主導体には通電電流に比例する電圧発生部32を設け、該電圧発生部32の両端には、第1のサイリスタ36と第2のサイリスタ46のそれぞれのゲート、カソードを互い違いに接続するとともに、該第1、第2のサイリスタ36、46のアノード同士の接続点と、他方の極の主導体の間には、ダイオード42とトリップコイル41と第3のサイリスタ40のアノードとカソードを直列的に、且つ、第1、第2のサイリスタ36、46のアノード−カソード間の順方向電流を阻止しない方向に接続し、第3のサイリスタ40のゲート−カソード間には、コンデンサ39と第1または第2のサイリスタ36、46がON動作した時に、コンデンサ39に充電する充電回路を設け、第1または第2のサイリスタ36、46がON動作した時間だけコンデンサ39に充電を行い、前記コンデンサ39の充電電圧が第3のサイリスタ40のトリガ電圧を超えたとき、第3のサイリスタ40がON動作し、ダイオード42から電源の供給を受けたトリップコイル41を吸引させて係合を引き外し、開閉機構に連動する接点を開とし、定格電流の10倍以上の電流値では、瞬時引き外し手段として、電磁コイルが働いて、係合を引き外し、開閉機構に連動する接点を開とするようにしたものである。
【0015】
に請求項では、手動開閉が可能であり、係合を引き外すことで手動閉状態でも開閉機構に連動する接点を開とすることができる2極配線用遮断器において、定格電流を超える電流値では、長限時引き外し手段として、バイメタルが通電による発熱で湾曲し、前記係合を引き外し、開閉機構に連動する接点を開とし、定格電流の約3倍以上の電流値では、短限時引き外し手段として、2極遮断器の2つの主導体に各々通電電流に比例する電圧発生部14、25を設け、該各々の電圧発生部14、25の両端には、各々の電圧発生部14、25毎にサイリスタ18、46または29、51のゲート、カソードを互い違いに接続し、4つのサイリスタ18、46、29、51のアノード同士を接続するとともに、2極遮断器の2つの主導体の間には、カソード同士を接続した2つのダイオード30、24の各々のアノードを接続し、4つのサイリスタ18、46、29、51のアノード同士の接続点と2つのダイオード30、24のカソードの接続点の間に は、トリップコイル23と第5のサイリスタ22のアノード−カソード間の直列回路を、第5のサイリスタ22のアノードからカソードへの順方向が、2つのダイオード30、24の接続点から、4つのサイリスタ18、46、29、51の接続点に向かう向きに接続し、第5のサイリスタ22のゲート−カソード間にはコンデンサ21を設け、4つのサイリスタ18、46、29、51のいずれかがON動作した時、前記コンデンサ21に充電する充電回路を設け、4つのサイリスタ18、46、29、51のいずれかがON動作した時間だけコンデンサ21に充電を行い、前記コンデンサ21の充電電圧が第5のサイリスタ22のトリガ電圧を超えたとき、第5のサイリスタ22がON動作し、電源の供給を受けたトリップコイル23を吸引させて係合を引き外し、開閉機構に連動する接点を開とし、定格電流の10倍以上の電流値では、瞬時引き外し手段として、電磁コイルが働いて、係合を引き外し、開閉機構に連動する接点を開とするようにしたものである。
【0016】
に請求項では、請求項2または3または4または5の配線用遮断器の、前記電圧発生部に、バイメタルのインピーダンスを用いたものである。
【0017】
に請求項では、請求項2または3または4または5または6の配線用遮断器において、前記定格電流は20Aであり、最後にトリップコイルに係合引き外しを行わせるサイリスタの、ゲート−カソード間に接続されたコンデンサを充電する充電回路と、コンデンサの充電の時定数を、短絡電流が定格電流の約3倍以上のとき、商用周波数の2〜5サイクル程度の時間で、該コンデンサの充電電圧が前記サイリスタのトリガ電圧を超えるように設定したものである。
【0019】
【作用】
請求項の発明によれば、通常の過電流等、定格電流を超える電流値で、動作時間をそれほど速くしなくてよい電流領域では、長限時引き外し手段であるバイメタルで電流を検知、遮断し、定格電流の約3倍以上の電流値では、短限時引き外し手段で電流を検知し、白熱電灯点灯時の越流電流やその他負荷機器での突入電流で誤動作することのないように、時延を持って遮断し、定格電流の10倍以上の電流値では、瞬時引き外し手段として、電磁コイルにより電流を検知し、瞬時に遮断することができ、且つ、短限時引き外し手段を、サイリスタやダイオード等を用いて簡単な回路構成で、最もコストを安くできるような配線用遮断器を得られる。
【0020】
請求項の発明によれば、請求項の発明の作用に加え、図5a、b、どちらの極性の過電流もしくは短絡電流についても検出可能となり、aから始まる波形の電流であっても、bから始まる波形の短絡電流であっても、充電用コンデンサの充電時定数を任意に設定することで、短絡の発生時点から、時定数で定められた時間で確実に遮断することができ、且つ、短限時引き外し手段を、サイリスタやダイオード等を用いて簡単な回路構成で、コストを安くできる配線用遮断器を得られる。
【0021】
請求項の発明によれば、請求項の発明の作用に加え、回路への接続の際に電源、負荷側の区別なく接続でき、且つ、短限時引き外し手段を、サイリスタやダイオード等を用いて簡単な回路構成で、コストを安くできる配線用遮断器を得られる。
【0022】
請求項の発明によれば、請求項の発明の作用を合わせ持ち、且つ、短限時引き外し手段を、サイリスタやダイオード等を用いて簡単な回路構成で、コストを安くできる配線用遮断器を得られる。
【0023】
請求項の発明によれば、電圧発生部には配線用遮断器の過電流および短絡電流検出素子であるバイメタルを利用でき、前記電圧発生部に、別途に抵抗等を用いることなく構成を単純化することができ、製造コストの低減につながる請求項の配線用遮断器を得られる。
【0024】
請求項の発明によれば、60A以上の短絡電流で、2〜5サイクル程度で回路を遮断可能な短限時引き外し手段を有する、請求項の発明の配線用遮断器を得られる。
【0025】
【発明の実施の形態】
以下に本件発明を図面を用いて詳細に説明する。
【0026】
図8は、本件発明の遮断器の構成例の図である。長限時引き外し手段と短限時引き外し手段および瞬時引き外し手段により、係合を引き外し、開閉機構に連動する図示しない接点を開とする。また図9は、本件発明の配線用遮断器の遮断特性(電流−遮断時間特性)である。
【0027】
図8、図9において、長限時引き外し手段と長限時引き外し特性、および、瞬時引き外し手段と瞬時引き外し特性は、従来の熱動電磁型20A定格の配線用遮断器と同一である。短限時引き外し特性は、定格電流20Aの約3倍の60A以上で、商用周波数の2〜5サイクル程度の時間で係合を引き外す。したがって、従来の熱動電磁型配線用遮断器の瞬時引き外し手段で動作しない200A以下 の、例えば、コンセント以後の負荷側で起こった短絡事故の場合でも長限時引き外し手段の引き外し特性より速く遮断を完了し、プラグやコードからの出火の危険性を小さくすることができる。
【0028】
図10は、本件発明の請求項の実施例の図である。
【0029】
図10中1は、電圧発生部であり、より簡単には、遮断器導電部の内部インピーダンスで通電電流に比例した電圧を発生する。
【0030】
図10中2は、サイリスタ5のトリガ電圧に対する電圧発生部1の電圧の配分を調整するための抵抗であり、例えば炭素皮膜抵抗を2本用い、ゲート−カソード間の抵抗の両端に目的の電圧を発生する。3はサイリスタ5のゲート−カソード間の過電圧保護用のダイオードである。
【0031】
なお、図10中4は一般的なノイズ除去コンデンサである。
【0032】
図10中6は分圧抵抗で、遮断器の両端の電圧をサイリスタ9のゲート−カソード間に分圧するための抵抗であり、例えば炭素皮膜抵抗を2本用い、ゲート−カソード間の抵抗の両端に目的の電圧を発生する。
【0033】
図10中7は定電圧回路であり、コンデンサ8に一定電圧で充電を行う。例えば、ツェナーダイオードまたは定電流素子等の組み合わせにより構成する。な お、6、7、8はそれぞれの素子の定数を定めることにより、コンデンサ8の充電時定数を定めることができる。
【0034】
図10中5はサイリスタで、電圧発生部1の両端に発生した通電による遮断器の内部インピーダンスに比例した電圧を、第1のサイリスタ5のゲート−カソード間に印加し、その電圧が第1のサイリスタ5のトリガ電圧を超えた場合、アノード−カソード間をショートし、第1のサイリスタ5がON動作し、コンデンサ8に定電圧回路7により、第1のサイリスタ5がON動作した時間だけ充電を行う。コンデンサ8の両端の電圧が前述の充電時定数に定められた充電により、第2のサイリスタ9のトリガ電圧を超えた時点で、アノード−カソード間をショートし、第2のサイリスタ9がON動作し、トリップコイル10の両端に、ダイオード11によって整流された遮断器の両端の電圧が印加され、トリップコイル10の吸引動作により図示しない接点開閉機構により接点12を開とする。なお、ダイオード11とサイリスタ9のアノード−カソード間の方向は、サイリスタ5と同一となる方向に接続されている。
【0035】
よって、コンデンサ8の両端の電圧が、サイリスタ9のトリガ電圧に達する時間を、抵抗6と定電圧回路7とコンデンサ8の容量による充電時定数を調整することで、遮断器を流れる電流が定格電流の3倍の電流値の時に、商用周波数で2〜5サイクル程度かかるように設定することができる。
【0036】
上述の方法で、請求項の短限時引き外し手段が得られ、従来から存在するバイメタルによる電流検出遮断方法と電磁コイルによる瞬時遮断方法とを組み合わせることにより、本件発明の配線用遮断器となる。
【0037】
なお、電流検出部1のインピーダンスは従来の配線用遮断器の熱動引外し素子であるバイメタルのインピーダンスを用いることができる。例えば、通常20A定格の熱動型配線用遮断器の熱動引き外し素子に用いられるバイメタルの通電部のインピーダンスは、約5mΩ内外であり、このインピーダンスに、約60A以上の実効値の過電流もしくは短絡電流が流れた場合、バイメタルの通電部のインピーダンスの両端にはピーク値で0.4V以上の電圧が発生するので、第1のサイリスタ5のゲート−カソード間に印加したとき分圧抵抗2の比の調整により、第1のサイリスタ5はON動作が可能となって、第1のサイリスタ5のON動作により、コンデンサ8に定電圧回路7から充電を行う。この動作を2〜5サイクル程度行えば、コンデンサ8の両端の電圧が第2のサイリスタ9のトリガ電圧を超え、第2のサイリスタ9がON動作し、トリップコイル10の両端に、ダイオード11によって整流された遮断器の両端の電圧が印加され、トリップコイル10の吸引動作により図示しない接点開閉機構により接点12を開とすることが可能となる。
【0038】
また、図10中13は瞬時引き外し手段であり、電源および電流の極性に関係なく、電流が一定値を超えると働き、係合を引き外し、図示しない接点開閉機構により接点12を開とする。
【0039】
なお、図10の実施例により、トリップコイル10を動作させることのできる電源および電流極性は、図10のA側が電源側で、且つ、図10のアの方向に電流が流れたときのみであって、A側が電源側で、矢印アとは逆方向(イの方向)に電流が流れた場合は、電圧発生部1のA側がプラス、B側がマイナスとなっ て、第1のサイリスタ5のゲートがカソードに対して順電圧(トリガ電圧が高い状態)にならないためON動作しない。
【0040】
より簡単に説明すれば、図5に示す短絡電流のaの波形が、図10のアの方向の短絡電流である場合、aの波形で短絡を検知し、第1のサイリスタ5はON動作し、コンデンサ8に充電を開始するが、bの波形ではアの方向の短絡電流方向とは逆となるので、第1のサイリスタ5はON動作せず、コンデンサ8に充電は開始されない。言い換えると短絡電流が、b方向の波形で始まる短絡では、電流方向が次のa方向に変わるまで待たなければコンデンサ8の充電を開始せず、接点12が開になるまで約半波分の時間遅れが生じることになる。
【0041】
また、A側とは逆側(B側)が電源側で、図10のアの方向に電流が流れた場合は、図10の*1の極がプラス極で、*2の極がマイナス極であるので、第1のサイリスタ5は、アノードがカソードに対して電源電圧が順電圧(アノード電圧が高い状態)にならないためON動作しない。また、A側とは逆側(B側)が電源側で、図10のイの方向に電流が流れた場合は、電圧発生部1のA側がプラスで、B側がマイナスとなって、第1のサイリスタ5のゲートがカソードに対して順電圧(トリガ電圧が高い状態)にならないためON動作しない。より簡単に説明すれば、図10のA側が電源の場合、図10のアの方向に流れた過電流もしくは短絡電流を検知し、接点12は開動作するが、B側が電源の場合、短限時引き外し手段は接点12を開動作できない。
【0042】
図11は、本件発明の請求項3の実施例の図である。14の電圧発生部は図10の1と、15のトリガ電圧調整用抵抗は図10の2と、16の過電圧保護用ダイオードは図10の3と、17のノイズ除去コンデンサは図10の4と、18のサイリスタは図10の5と、19の分圧抵抗は図10の6と、20の定電圧回路は図10の7と、21の充電用コンデンサは図10の8と、22のサイリスタは図10の9と、23のトリップコイルは図10の10と、24の整流用ダイオードは図10の11と、それぞれ同等のものである。そして新たに電圧発生部2 5、トリガ電圧調整用抵抗26、過電圧保護用ダイオード27、ノイズ除去コンデンサ28、サイリスタ29、整流用ダイオード30を図のように付加したものであり、電圧発生部14、25の各々の電源端子部側には、アノード同士を接続した第1、第2のサイリスタ18、29のそれぞれのカソードを接続し、電圧発生部14、25の各々の負荷端子部側には、電圧発生部14、25の各々の電源端子部側にカソードを接続した第1または第2のサイリスタ18、29の各々のゲートを接続し、2つの主導体の間には、カソード同士を接続した第1、第2のダイオード30、24の各々のアノードを接続し、第1、第2のダイオード3 0、24の接続点と、第1、第2のサイリスタ18、29の接続点の間には、トリップコイル23と第3のサイリスタ22のアノード−カソード間の直列回路 を、第3のサイリスタ22のアノードからカソードへの順方向が、第1、第2のダイオード30、24の接続点から、第1、第2のサイリスタ18、29の接続点に向かう向きに接続し、第3のサイリスタ22のゲート−カソード間にはコンデンサ21を設け、第1、第2のサイリスタ18、29のいずれか一方がON動作した時、前記コンデンサ21に充電する充電回路を設け、第1または第2のサイリスタ18、29がON動作した時間だけコンデンサ21に充電を行い、前記コンデンサ21の充電電圧が第3のサイリスタ22のトリガ電圧を超えたとき、第3のサイリスタ22がON動作し、電源の供給を受けたトリップコイル23を吸引させて係合を引き外すようにしたものである。
【0043】
図11のC側が電源側で、遮断器に図11のアの方向の電流が流れた場合は、電圧発生部14の両端の電圧が第1のサイリスタ18のトリガ電圧を超えると、図10と同様に、第1のサイリスタ18のアノード−カソード間をショートし、第1のサイリスタ18がON動作し、コンデンサ21に定電圧回路20により、第1のサイリスタ18がON動作した時間だけ充電を行う。コンデンサ21の両端の電圧が第3のサイリスタ22のトリガ電圧を超えた時点で、アノード−カソード間をショートし、第3のサイリスタ22がON動作し、トリップコイル23の両端に、ダイオード24によって整流された遮断器の両端の電圧が印加され、トリップコイル23の吸引動作により図示しない接点開閉機構により接点31を開とする。この際、第2のサイリスタ29は、電圧検出部25のC側がプラス、D側がマイナスとなるので、ゲートがカソードに対して順電圧(トリガ電圧が高い状態)にならないためON動作しない。
【0044】
図11のC側が電源側で、図11のイの方向に電流が流れた場合は、電圧発生部14のC側がプラス、D側がマイナスとなり、第1のサイリスタ18は、ゲートがカソードに対して順電圧(トリガ電圧が高い状態)にならないためON動作しない。しかし、図11中の電圧発生部25、トリガ電圧調整用抵抗26、過電圧保護用ダイオード27、ノイズ除去コンデンサ28、サイリスタ29、整流用ダイオード30により、図11のイの方向の電流が流れた場合は、電圧発生部25の両端の電圧が第2のサイリスタ29のトリガ電圧を超えると、第2のサイリスタ29のアノード−カソード間をショートし、第2のサイリスタ29がON動作し、コンデンサ21に定電圧回路20により、第2のサイリスタ29がON動作した時間だけ充電を行う。コンデンサ21の両端の電圧が第3のサイリスタ22のトリガ電圧を超えた時点で、アノード−カソード間をショートし、第3のサイリスタ22がON動作し、トリップコイル23の両端に、ダイオード30によって整流された遮断器の両端の電圧が印加され、トリップコイル23の吸引動作により図示しない接点開閉機構により接点31を開とする。
【0045】
しかし、図10の実施例と同様に、C側とは逆側(D側)が電源側で、図11のアの方向に電流が流れた場合は、図11の*3の極がプラス極で、*4の極がマイナス極となるので、第1のサイリスタ18は、アノードがカソードに対して順電圧(アノード電圧が高い状態)にならないためON動作しない。第2のサイリスタ29もまた、電圧発生部25のC側がプラス、D側がマイナスとなるの で、ゲートがカソードに対して順電圧(トリガ電圧が高い状態)にならないためON動作しない。
【0046】
また、C側とは逆側(D側)が電源側で、図11のイの方向に電流が流れた場合は、電圧発生部14のC側がプラスで、D側がマイナスとなるので、第1のサイリスタ18は、ゲートがカソードに対して順電圧(トリガ電圧が高い状態)にならないためON動作しない。第2のサイリスタ29もまた、図11の*3の極がマイナス極で、*4の極がプラス極となるので、アノードがカソードに対して順電圧(アノード電圧が高い状態)にならないためON動作しない。
【0047】
より簡単に説明すれば、図11のC側が電源の場合、ア、イどちらの方向に流れた電流でも検知し、接点12を開動作できるが、D側が電源の場合、短限時引き外し手段は接点12を開動作できない。
【0048】
なお、電流検出部14、25のインピーダンスは図10の例と同様、従来の熱動引き外し素子としてバイメタルのインピーダンスを用いることができる。
【0049】
また、図11中の13は図10と同様、瞬時引き外し手段である。
【0050】
図12は、本件発明の請求項の実施例の図である。32の電圧発生部は図10の1と、33のトリガ電圧調整用抵抗は図10の2と、34の過電圧保護用ダイオードは図10の3と、35のノイズ除去コンデンサは図10の4と、36のサイリスタは図10の5と、37の分圧抵抗は図10の6と、38の定電圧回路は図10の7と、39の充電用コンデンサは図10の8と、40のサイリスタは図10の9と、41のトリップコイルは図10の10と、42の整流用ダイオードは図10の11と、それぞれ同等のものである。そして新たにトリガ電圧調整用抵抗43、過電圧保護用ダイオード44、ノイズ除去コンデンサ45、サイリスタ46の回路を付加したものであり、電圧発生部32の両端には、第1のサイリスタ36と第2のサイリスタ46のそれぞれのゲート、カソードを互い違いに接続するとともに、該第1、第2のサイリスタ36、46のアノード同士の接続点と、他方の極の主導体の間には、ダイオード42とトリップコイル41と第3のサイリスタ40のアノードとカソードを直列的に、且つ、第1、第2のサイリスタ36、46のアノード−カソード間の順方向電流を阻止しない方向に接続し、第3のサイリスタ40のゲート−カソード間には、コンデンサ39と第1または第2のサイリスタ36、46がON動作した時に、コンデンサ39に充電する充電回路を設け、第1または第2のサイリスタ36、46がON動作した時間だけコンデンサ39に充電を行い、前記コンデンサ39の充電電圧が第3のサイリスタ40のトリガ電圧を超えたとき、第3のサイリスタ40がON動作するようにしたものである。
【0051】
図12中の電圧発生部32では、図12のE側が電源側で(図10のA側)、図12のアの方向の電流が流れた場合は、電圧発生部32のE側がマイナスで、F側がプラスとなるので、図10と同様に、電圧発生部32の両端の電圧が第1のサイリスタ36のトリガ電圧を超えると、第1のサイリスタ36のアノード−カソード間をショートし、第1のサイリスタ36がON動作し、コンデンサ39に定電圧回路38により、第1のサイリスタ36がON動作した時間だけ充電を行う。コンデンサ39の両端の電圧が第3のサイリスタ40のトリガ電圧を超えた時点で、アノード−カソード間をショートし、第3のサイリスタ40がON動作し、トリップコイル41の両端に、ダイオード42によって整流された遮断器の両端の電圧が印加され、トリップコイル41の吸引動作により図示しない接点開閉機構により接点47を開とする。この際、第2のサイリスタ46は、ゲートがカソードに対して順電圧(トリガ電圧が高い状態)にならないためON動作しない。
【0052】
また、図12のE側が電源側で、図12のイの方向に電流が流れた場合は、図12の電圧発生部32のE側がプラスとなり、F側がマイナスとなるので、第1のサイリスタ36は、ゲートがカソードに対して順電圧(トリガ電圧が高い状態)にならないためON動作しない。また、第2のサイリスタ46は、*5の極がプラスで、*6の極がマイナスとなるので、アノードがカソードに対して順電圧(アノード電圧が高い状態)にならないためON動作しない。
【0053】
図12のF側が電源側で、図12のアの方向に電流が流れた場合は、図12の*5の極がプラス極で、*6の極がマイナス極となるので、第1のサイリスタ36は、アノードがカソードに対して順電圧(アノード電圧が高い状態)にならないためON動作しない。第2のサイリスタ46もまた、電圧発生部32のE側がマイナスで、F側がプラスなるので、ゲートがカソードに対して順電圧(トリガ電圧が高い状態)にならないためON動作しない。
【0054】
また、図12のF側が電源側で、図12のイの方向に電流が流れた場合は、図12の電圧発生部32のE側がプラスで、F側がマイナスとなり、第1のサイリスタ36は、ゲートがカソードに対して順電圧(アノード電圧が高い状態)にならないためON動作しない。しかし、図12中のトリガ電圧調整用抵抗43、過電圧保護用ダイオード44、ノイズ除去コンデンサ45、サイリスタ46によ り、図10と同様に、電圧発生部32の電圧が第2のサイリスタ46のトリガ電圧を超えると、第2のサイリスタ46のアノード−カソード間をショートし、第2のサイリスタ46がON動作し、コンデンサ39に定電圧回路38により、第2のサイリスタ46がON動作した時間だけ充電を行う。コンデンサ39の両端の電圧が第3のサイリスタ40のトリガ電圧を超えた時点で、アノード−カソード間をショートし、第3のサイリスタ40がON動作し、トリップコイル41の両端に、ダイオード42によって整流された遮断器の両端の電圧が印加され、トリップコイル41の吸引動作により図示しない接点開閉機構により接点47を開とする。
【0055】
より簡単に説明すれば、図5に示す短絡電流のaの波形が、図12のアの方向の短絡電流である場合、E側が電源側のときは、aの波形で短絡を検知し、第1のサイリスタ36がON動作し、コンデンサ39に充電を開始し、トリップコイル41が動作する。F側が電源側のときは、bの波形で短絡を検知し、第2のサイリスタ46がON動作し、コンデンサ39に充電を開始し、トリップコイル41が動作する。言い換えると、E側が電源側の場合はa方向の電流を検知し、F側が電源側の時はb方向の電流を検知し、接点12を開とする。
【0056】
なお、電流検出部32のインピーダンスは図10の例と同様、従来の熱動引き外し素子としてバイメタルのインピーダンスを用いることができる。
【0057】
また、図12中の13は図10と同様、瞬時引き外し手段である。
【0058】
図13は、本件発明の請求項の実施例の図である。図13の回路では図11の回路に新たにトリガ電圧調整用抵抗43、48、過電圧保護用ダイオード44、49、ノイズ除去コンデンサ45、50、サイリスタ46、51の回路を付加したものであり、電圧発生部14、25の両端には、各々の電圧発生部14、25毎にサイリスタ18、46または29、51のゲート、カソードを互い違いに接続し、4つのサイリスタ18、46、29、51のアノード同士を接続するとともに、2極遮断器の2つの主導体の間には、カソード同士を接続した2つのダイオード30、24の各々のアノードを接続し、4つのサイリスタ18、46、29、51のアノード同士の接続点と2つのダイオード30、24のカソードの接続点の間には、トリップコイル23と第5のサイリスタ22のアノード−カソード間の直列回路を、第5のサイリスタ22のアノードからカソードへの順方向が、2つのダイオード30、24の接続点から、4つのサイリスタ18、46、29、51の接続点に向かう向きに接続し、第5のサイリスタ22のゲート−カソード間にはコンデンサ21を設け、4つのサイリスタ18、46、29、51のいずれかがON動作した時、前記コンデンサ21に充電する充電回路を設け、4つのサイリスタ18、46、29、51のいずれかがON動作した時間だけコンデンサ21に充電を行い、前記コンデンサ21の充電電圧が第5のサイリスタ22のトリガ電圧を超えたとき、第5のサイリスタ22がON動作し、電源の供給を受けたトリップコイル23を吸引させて係合を引き外すようにしたものである。
【0059】
図13のG側が電源側で、電流が図13のアの方向に流れた場合は、図10と同様に、電圧発生部14の電圧が第1のサイリスタ18のトリガ電圧を超える と、第1のサイリスタ18のアノード−カソード間をショートし、第1のサイリスタ18がON動作し、コンデンサ21に定電圧回路20により、第1のサイリスタ18がON動作した時間だけ充電を行う。コンデンサ21の両端の電圧が、第5のサイリスタ22のトリガ電圧を超えた時点で、アノード−カソード間をショートし、第5のサイリスタ22がON動作し、トリップコイル23の両端に、ダイオード24によって整流された遮断器の両端の電圧が印加され、トリップコイル23の吸引動作により図示しない接点開閉機構により接点31を開とする。この際、第2のサイリスタ29、第3のサイリスタ46は、ゲートがカソードに対して順電圧(トリガ電圧が高い状態)にならないためON動作しない。第4のサイリスタ51は、アノードがカソードに対して順電圧(アノード電圧が高い状態)にならないためON動作しない。
【0060】
図13のG側が電源側で、電流が図13のイの方向に流れた場合は、図11と同様に、電圧発生部25の電圧が第2のサイリスタ29のトリガ電圧を超える と、第2のサイリスタ29のアノード−カソード間をショートし、第2のサイリスタ29がON動作し、コンデンサ21に定電圧回路20により、第2のサイリスタがON動作した時間だけ充電を行う。コンデンサ21の両端の電圧が第5のサイリスタ22のトリガ電圧を超えた時点で、アノード−カソード間をショートし、第5のサイリスタ22がON動作し、トリップコイル23の両端に、ダイオード30によって整流された遮断器の両端の電圧が印加され、トリップコイル23の吸引動作により図示しない接点開閉機構により接点31を開とする。この際、第1のサイリスタ18、第4のサイリスタ51は、ゲートがカソードに対して順電圧(トリガ電圧が高い状態)にならないためON動作しない。第3のサイリスタ46は、アノードがカソードに対して順電圧(アノード電圧が高い状態)にならないためON動作しない。
【0061】
図13のH側が電源側で、電流が図13のアの方向に流れた場合は、図11と同様に、電圧発生部25の電圧が第4のサイリスタ51のトリガ電圧を超える と、第4のサイリスタ51のアノード−カソード間をショートし、第4のサイリスタ51がON動作し、コンデンサ21に定電圧回路20により、第4のサイリスタ51がON動作した時間だけ充電を行う。コンデンサ21の両端の電圧が第5のサイリスタ22のトリガ電圧を超えた時点で、アノード−カソード間をショートし、第5のサイリスタ22がON動作し、トリップコイル23の両端に、ダイオード30によって整流された遮断器の両端の電圧が印加され、トリップコイル23の吸引動作により図示しない接点開閉機構により接点31を開とする。この 際、第2のサイリスタ29、第3のサイリスタ46は、ゲートがカソードに対して順電圧(トリガ電圧が高い状態)にならないためON動作しない。第1のサイリスタ18は、アノードがカソードに対して順電圧(アノード電圧が高い状態)にならないためON動作しない。
【0062】
図13のH側が電源側で、電流が図13のイの方向に流れた場合は、電圧発生部14の電圧が第3のサイリスタ46のトリガ電圧を超えると、第3のサイリスタ46のアノード−カソード間をショートし、第3のサイリスタ46がON動作 し、コンデンサ21に定電圧回路20により、第3のサイリスタがON動作した時間だけ充電を行う。コンデンサ21の両端の電圧が第5のサイリスタ22のトリガ電圧を超えた時点で、アノード−カソード間をショートし、第5のサイリスタ22がON動作し、トリップコイル23の両端に、ダイオード24によって整流された遮断器の両端の電圧が印加され、トリップコイル23の吸引動作により図示しない接点開閉機構により接点31を開とする。この際、第1のサイリスタ18、第4のサイリスタ51は、ゲートがカソードに対して順電圧(トリガ電圧が高い状態)にならないためON動作しない。第2のサイリスタ29は、アノードがカソードに対して順電圧(アノード電圧が高い状態)にならないためON動作しない。
【0063】
例えば、H側が電源側で正弦波の短絡電流が流れた場合は、電圧発生部14、25で電圧が第3のサイリスタ46と第4のサイリスタ51のトリガ電圧を超えると、第3のサイリスタ46と第4のサイリスタ51が電流の向きによって交互にON動作し、コンデンサ21に定電圧回路20により、第3のサイリスタ46と第4のサイリスタ51がON動作した時間だけ充電を行う。コンデンサ21の両端の電圧が第5のサイリスタ22のトリガ電圧を超えた時点で、アノード−カソード間をショートし、第5のサイリスタ22がON動作し、トリップコイル23の両端に、ダイオード24またはダイオード30によって整流された遮断器の両端の電圧が印加され、トリップコイル23の吸引動作により図示しない接点開閉機構により接点31を開とする。よって、抵抗19と定電圧回路20と充電用コンデンサ21の容量による充電時定数を任意に設定することで、任意の時延を持って遮断することができる。
【0064】
より簡単に説明すれば、電源側がG側、H側のどちらであっても、電流極性に関係なく検知し、時延を持って遮断することができる。
【0065】
なお、電流検出部14、25のインピーダンスは図11、12の例と同様、従来の熱動引き外し素子としてバイメタルのインピーダンスを用いることができ る。
【0066】
また、図13中の13は図10と同様、瞬時引き外し手段である。なお、図10、11、12、13のいずれも、定格電流20Aの配線用遮断器で、分圧抵抗やコンデンサ、定電圧回路等の調整により、遮断器の通電電流が60Aのとき、商用周波数の2〜5サイクルでトリップコイルを吸引させることは容易に行え る。
【0068】
請求項の発明によれば、通常の過電流等、定格電流を超える電流値で、動作時間をそれほど速くしなくてよい電流領域では、長限時引き外し手段であるバイメタルで電流を検知、遮断し、定格電流の約3倍以上の電流値では、短限時引き外し手段で電流を検知し、白熱電灯点灯時の越流電流やその他負荷機器での突入電流で誤動作することのないように、時延を持って遮断し、定格電流の10倍以上の電流値では、瞬時引き外し手段として、電磁コイルにより電流を検知し、瞬時に遮断することができ、且つ、短限時引き外し手段を、サイリスタやダイオード等を用いて簡単な回路構成で、最もコストを安くできるような配線用遮断器を得られる効果がある。
【0069】
請求項の発明によれば、請求項2の発明の作用に加え、図5a、b、どちらの極性の過電流もしくは短絡電流についても検出可能となり、aから始まる波形の電流であっても、bから始まる波形の短絡電流であっても、充電用コンデンサの充電時定数を任意に設定することで、短絡の発生時点から、時定数で定められた時間で確実に遮断することができ、且つ、短限時引き外し手段を、サイリスタやダイオード等を用いて簡単な回路構成で、コストを安くできる配線用遮断器を得られる効果がある。
【0070】
請求項の発明によれば、請求項の発明の作用に加え、回路への接続の際に電源、負荷側の区別なく接続でき、且つ、短限時引き外し手段を、サイリスタやダイオード等を用いて簡単な回路構成で、コストを安くできる配線用遮断器を得られる効果がある。
【0071】
請求項の発明によれば、請求項1、の発明の作用を合わせ持ち、且つ、短限時引き外し手段を、サイリスタやダイオード等を用いて簡単な回路構成で、コストを安くできる配線用遮断器を得られる効果がある。
【0072】
請求項の発明によれば、電圧発生部には配線用遮断器の過電流および短絡電流検出素子であるバイメタルを利用でき、前記電圧発生部に、別途に抵抗等を用いることなく構成を単純化することができ、製造コストの低減につながる請求項の配線用遮断器を得られる効果がある。
【0073】
請求項の発明によれば、60A以上の短絡電流で、2〜5サイクル程度で回路を遮断可能な短限時引き外し手段を有する、請求項の発明の配線用遮断器を得られる効果がある。
【図面の簡単な説明】
【図1】 過電流や短絡電流の検出にバイメタルを使用したものの遮断特性例(電流−遮断時間特性)
【図2】 過電流や短絡電流の検出にバイメタルと電磁コイルを使用したものの遮断特性例(電流−遮断時間特性)
【図3】 越流や突入電流波形の例
【図4】 正弦波の短絡電流波形の例
【図5】 非連続で間欠的な短絡電流波形の例
【図6】 半波整流された形の過電流もしくは短絡電流の例
【図7】 半波整流された形の過電流もしくは短絡電流の例
【図8】 本件発明の遮断器の構成例の図
【図9】 本件発明の配線用遮断器の動作特性例(電流−遮断時間特性)
【図10】 本件発明の請求項の実施例の図
【図11】 本件発明の請求項の実施例の図
【図12】 本件発明の請求項の実施例の図
【図13】 本件発明の請求項の実施例の図

Claims (6)

  1. 手動開閉が可能であり、係合を引き外すことで手動閉状態でも開閉機構に連動する接点を開とすることができる2極配線用遮断器において、定格電流を超える電流値では、長限時引き外し手段として、バイメタルが通電による発熱で湾曲し、前記係合を引き外し、開閉機構に連動する接点を開とし、定格電流の約3倍以上の電流値では、短限時引き外し手段として、2極遮断器の一方の主導体に設けた、通電電流に比例する電圧発生部1の電源端子側に第1のサイリスタ5のカソードを、前記電圧発生部1の負荷端子側に第1のサイリスタ5のゲートを接続し、第1のサイリスタ5のアノードと遮断器の他方の主導体の間には、ダイオード11とトリップコイル10と第2のサイリスタ9のアノードとカソードを直列的に、且つ、第1のサイリスタ5のアノード−カソード間の順方向電流を阻止しない方向に接続し、第2のサイリスタ9のゲート−カソード間には、コンデンサ8と第1のサイリスタ5がON動作した時にコンデンサ8に充電する充電回路を設け、第1のサイリスタ5がON動作した時間だけコンデンサ8に充電を行い、前記コンデンサ8の充電電圧が第2のサイリスタ9のトリガ電圧を超えたとき、第2のサイリスタ9がON動作し、ダイオード11から電源の供給を受けたトリップコイル10を吸引させて係合を引き外し、開閉機構に連動する接点を開とし、定格電流の10倍以上の電流値では、瞬時引き外し手段として、電磁コイルが働いて、係合を引き外し、開閉機構に連動する接点を開とすることを特徴とする配線用遮断器。
  2. 手動開閉が可能であり、係合を引き外すことで手動閉状態でも開閉機構に連動する接点を開とすることができる2極配線用遮断器において、定格電流を超える電流値では、長限時引き外し手段として、バイメタルが通電による発熱で湾曲し、前記係合を引き外し、開閉機構に連動する接点を開とし、定格電流の約3倍以上の電流値では、短限時引き外し手段として、2極遮断器の2つの主導体の各々には電流に比例する電圧発生部14、25を設け、電圧発生部14、25の各々の電源端子部側には、アノード同士を接続した第1、第2のサイリスタ18、29のそれぞれのカソードを接続し、電圧発生部14、25の各々の負荷端子部側には、前記電圧発生部14、25の各々の電源端子部側にカソードを接続した第1または第2のサイリスタ18、29の各々のゲートを接続し、2つの主導体の間には、カソード同士を接続した第1、第2のダイオード30、24の各々のアノードを接続し、第1、第2のダイオード30、24の接続点と、第1、第2のサイリスタ18、29の接続点の間には、トリップコイル23と第3のサイリスタ22のアノード−カソード間の直列回路を、第3のサイリスタ22のアノードからカソードへの順方向が、第1、第2のダイオード30、24の接続点から、第1、第2のサイリスタ18、29の接続点に向かう向きに接続し、第3のサイリスタ22のゲート−カソード間にはコンデンサ21を設け、第1、第2のサイリスタ18、29のいずれか一方がON動作した時、前記コンデンサ21に充電する充電回路を設け、第1または第2のサイリスタ18、29がON動作した時間だけコンデンサ21に充電を行い、前記コンデンサ21の充電電圧が第3のサイリスタ22のトリガ電圧を超えたとき、第3のサイリスタ22がON動作し、電源の供給を受けたトリップコイル23を吸引させて係合を引き外し、開閉機構に連動する接点を開とし、定格電流の10倍以上の電流値では、瞬時引き外し手段として、電磁コイルが働いて、係合を引き外し、開閉機構に連動する接点を開とすることを特徴とする配線用遮断器。
  3. 手動開閉が可能であり、係合を引き外すことで手動閉状態でも開閉機構に連動する接点を開とすることができる2極配線用遮断器において、定格電流を超える電流値では、長限時引き外し手段として、バイメタルが通電による発熱で湾曲し、前記係合を引き外し、開閉機構に連動する接点を開とし、定格電流の約3倍以上の電流値では、短限時引き外し手段として、2極遮断器の一方の極の主導体には通電電流に比例する電圧発生部32を設け、該電圧発生部32の両端には、第1のサイリスタ36と第2のサイリスタ46のそれぞれのゲート、カソードを互い違いに接続するとともに、該第1、第2のサイリスタ36、46のアノード同士の接続点と、他方の極の主導体の間には、ダイオード42とトリップコイル41と第3のサイリスタ40のアノードとカソードを直列的に、且つ 、第1、第2のサイリスタ36、46のアノード−カソード間の順方向電流を阻止しない方向に接続し、第3のサイリスタ40のゲート−カソード間には、コンデンサ39と第1または第2のサイリスタ36、46がON動作した時に、コンデンサ39に充電する充電回路を設け、第1または第2のサイリスタ36、46がON動作した時間だけコンデンサ39に充電を行い、前記コンデンサ39の充電電圧が第3のサイリスタ40のトリガ電圧を超えたとき、第3のサイリスタ40がON動作し、ダイオード42から電源の供給を受けたトリップコイル41を吸引させて係合を引き外し、開閉機構に連動する接点を開とし、定格電流の10倍以上の電流値では、瞬時引き外し手段として、電磁コイルが働いて、係合を引き外し、開閉機構に連動する接点を開とすることを特徴とする配線用遮断器。
  4. 手動開閉が可能であり、係合を引き外すことで手動閉状態でも開閉機構に連動する接点を開とすることができる2極配線用遮断器において、定格電流を超える電流値では、長限時引き外し手段として、バイメタルが通電による発熱で湾曲し、前記係合を引き外し、開閉機構に連動する接点を開とし、定格電流の約3倍以上の電流値では、短限時引き外し手段として、2極遮断器の2つの主導体に各々通電電流に比例する電圧発生部14、25を設け、該各々の電圧発生部14、25の両端には、各々の電圧発生部14、25毎にサイリスタ18、46または29、51のゲート、カソードを互い違いに接続し、4つのサイリスタ18、46、29、51のアノード同士を接続するとともに、2極遮断器の2つの主導体の間には、カソード同士を接続した2つのダイオード30、24の各々のアノードを接続し、4つのサイリスタ18、46、29、51のアノード同士の接続点と2つのダイオード30、24のカソードの接続点の間には、トリップコイル23と第5のサイリスタ22のアノード−カソード間の直列回路を、第5のサイリスタ22のアノードからカソードへの順方向が、2つのダイオード30、24の接続点から、4つのサイリスタ18、46、29、51の接続点に向かう向きに接続し、第5のサイリスタ22のゲート−カソード間にはコンデンサ21を設け、4つのサイリスタ18、46、29、51のいずれかがON動作した時、前記コンデンサ21に充電する充電回路を設け、4つのサイリスタ18、46、29、51のいずれかがON動作した時間だけコンデンサ21に充電を行い、前記コンデンサ21の充電電圧が第5のサイリスタ22のトリガ電圧を超えたとき、第5のサイリスタ22がON動作し、電源の供給を受けたトリップコイル23を吸引させて係合を引き外し、開閉機構に連動する接点を開とし、定格電流の10倍以上の電流値では、瞬時引き外し手段として、電磁コイルが働いて、係合を引き外し、開閉機構に連動する接点を開とすることを特徴とする配線用遮断器。
  5. 前記電圧発生部が、遮断器の構成部品の1つで、従来の過電流および短絡電流検出素子である、バイメタルであることを特徴とする請求項1または2または3または4の配線用遮断器。
  6. 前記定格電流は20Aであり、最後にトリップコイルに係合引き外しを行わせるサイリスタの、ゲート−カソード間に接続されたコンデンサを充電する充電回路と、コンデンサの充電の時定数は、短絡電流が定格電流の約3倍以上のとき、商用周波数の2〜5サイクル程度の時間で、該コンデンサの充電電圧が前記サイリスタのトリガ電圧を超えるように設定されたことを特徴とする、請求項1または2または3または4または5の配線用遮断器。
JP10275099A 1999-04-09 1999-04-09 配線用遮断器 Expired - Fee Related JP3973005B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10275099A JP3973005B2 (ja) 1999-04-09 1999-04-09 配線用遮断器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10275099A JP3973005B2 (ja) 1999-04-09 1999-04-09 配線用遮断器

Publications (2)

Publication Number Publication Date
JP2000299929A JP2000299929A (ja) 2000-10-24
JP3973005B2 true JP3973005B2 (ja) 2007-09-05

Family

ID=14335906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10275099A Expired - Fee Related JP3973005B2 (ja) 1999-04-09 1999-04-09 配線用遮断器

Country Status (1)

Country Link
JP (1) JP3973005B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350502B (zh) * 2019-07-24 2024-05-07 镇江大全赛雪龙牵引电气有限公司 一种钢轨电位限制装置

Also Published As

Publication number Publication date
JP2000299929A (ja) 2000-10-24

Similar Documents

Publication Publication Date Title
US10630069B2 (en) Solid-state circuit interrupter and arc inhibitor
CN112366104B (zh) 混合式气隙和固态断路器
US6532139B2 (en) Arc fault circuit interrupter and circuit breaker having the same
CA2508102C (en) Arc fault circuit breaker and apparatus for detecting wet track arc fault
US6577478B2 (en) Overload circuit interrupter capable of electrical tripping and circuit breaker with the same
US8238065B2 (en) Power cutoff device automatically operated upon occurrence of spark on electric wire
EP0193395A2 (en) Universal fault circuit interrupter
US20050243485A1 (en) Leakage current detection interrupter with open neutral detection
JPH11512557A (ja) 電気スイッチ
JP2003536353A (ja) アーク故障検出回路遮断器システム
US9300126B2 (en) Electrical apparatus for the short-circuit protection of a three-phase load in a three-phase system
CN103414167B (zh) 断路器分合闸线圈状态检测及保护方法
SE436952B (sv) Strombrytaranordning for hogspend likstrom
CN114747106A (zh) 剩余电流断路器
JP3973005B2 (ja) 配線用遮断器
EP4175091A1 (en) Electrical power system
JP3691594B2 (ja) 配線用遮断器
JP3665141B2 (ja) 電子式瞬時引きはずし装置付配線用遮断器
AP1325A (en) Current limiting device.
JP2002359921A (ja) 過電圧保護回路およびこれを搭載したモータ制御装置
WO2013139382A1 (en) Current control apparatus
CN210041314U (zh) 电源线泄漏电流检测保护装置和用电设备
CN108604518A (zh) 具有内部开关元件的负载电流保险丝
JP3827252B2 (ja) 回路遮断器
CN118130858A (zh) 一种耐压试验放电击穿保护装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140622

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees