JP3972127B2 - Metal-coated fiber body and method for producing the same - Google Patents

Metal-coated fiber body and method for producing the same Download PDF

Info

Publication number
JP3972127B2
JP3972127B2 JP2001382054A JP2001382054A JP3972127B2 JP 3972127 B2 JP3972127 B2 JP 3972127B2 JP 2001382054 A JP2001382054 A JP 2001382054A JP 2001382054 A JP2001382054 A JP 2001382054A JP 3972127 B2 JP3972127 B2 JP 3972127B2
Authority
JP
Japan
Prior art keywords
fiber
metal
coating
coated
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001382054A
Other languages
Japanese (ja)
Other versions
JP2003183980A (en
Inventor
真 綱島
暢男 古谷
雄亮 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001382054A priority Critical patent/JP3972127B2/en
Publication of JP2003183980A publication Critical patent/JP2003183980A/en
Application granted granted Critical
Publication of JP3972127B2 publication Critical patent/JP3972127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、繊維体に設けた金属被覆の密着性および耐腐蝕性に優れると共に軽量であって低価格で製造でき、しかも人の皮膚への影響も少ない金属被覆繊維体とその製造方法に関する。
【0002】
【従来の技術】
ナイロン繊維やポリエステル繊維などの高分子材料からなる合成繊維表面に金属薄膜をコーテングした導電性繊維ないし導電性糸が従来から知られており、金属コーテング膜の密着性を高めるために種々の方法が試みられている。例えば、硫化銅をコーテングする場合に、銅イオン捕捉基を有する染料で高分子材料を前処理し、これに銅イオンを結合させた後に硫化する方法(特公平01-37513号)や、アルカリ処理して粗面化した繊維表面に銅イオン捕捉基を付着させた後にこれに硫化銅を結合させる方法(特開平06-298973号)などが知られている。また、アラミド繊維などのように金属メッキを施し難いものについては、ポリビニルピロリドン(PVP)を利用して金属イオンを付着させ、これを還元して金属メッキを形成する方法(特表平06-506267号)などが知られている。
【0003】
【発明が解決しようとする課題】
ところが、上記PVPを利用するメッキ方法は繊維の種類が限られるので一般的ではない。また、銅イオン捕捉基を導入するコーテング方法は金属被覆が銅やその化合物に限られ、しかも金属被覆の付着強度が必ずしも十分ではないと云う問題がある。なお、繊維をアルカリ処理して粗面化すれば概ね金属被覆の付着強度を高めることができるが、粗面化の程度と金属被覆の状態が適切でないと十分な効果が得られない。しかも、金属被覆繊維を衣類等に使用する場合には洗濯や摩耗などの過酷な使用条件に耐える必要がある。さらに、導電性の観点からは、金属被覆の部分的剥離によっても断線状態を招くので金属被覆は信頼性の高い密着強度を有することが求められる。また、金属被覆繊維とりわけ銀被覆繊維は大気中に酸化物や洗剤等によって表面腐食や変色を生じる問題がある。
【0004】
本発明は従来の金属被覆繊維における上記問題を解決したものであって、優れた耐食性と被覆強度を有する金属被覆繊維体を提供する。一般に金属被覆繊維体は塩素や硫化物による表面腐食が多く見られる。これを防止するため、下地の金属被覆の上側に防食用金属被覆を設ける二重金属被覆繊維体があるが、これは金属量が多く、コスト高を招くことが懸念される。本発明は金属被覆表面にフッ素化合物被覆を設けることによって、被覆金属量が少なく、耐腐食性に優れ、皮膚への刺激も少ない金属被覆繊維体を提供するものである。
【0005】
【課題を解決する手段】
本発明は、金属被覆を有する繊維体において、繊維体表面に設けた金属被覆を下地とし、その上にフッ素化合物の表面被覆を設けたものであり、下地に導電性金属被覆を設けることによって優れた導電性を有すると共に表面のフッ素化合物被覆によって耐腐食性を高め、皮膚への刺激が少なく比較的軽量であって製造コストも低い金属被覆繊維体を提供する。
【0006】
本発明は以下の構成からなる金属被覆繊維体とその製造方法に関する。
(1)アクリル繊維、ナイロン繊維、ポリエステル繊維、高強度ナイロン系繊維、ポリフェニレンサルファイド系繊維、ポリカーボネート系繊維、またはアラミド系繊維からなる基体繊維の表面に金属被覆を有し、さらに該金属被覆の表面にフッ素化合物被覆を有し、該金属被覆を設けた後に基体繊維の結晶化温度以上であって融解温度未満の温度で加熱処理されており、上記フッ素化合物被覆が基体繊維の結晶化温度以下で形成されていることを特徴とする金属被覆繊維体。
(2)フッ素化合物被覆が金属被覆繊維体重量の0.01〜5%である上記(1)に記載する金属被覆繊維体。
(3)フッ素化合物被覆の表面がパラフィン処理またはワックス処理されている上記(1)または上記(2)に記載する金属被覆繊維体。
(4)金属被覆が金、銀、銅、ニッケル、錫またはこれらの合金の一種または二種以上からなる導電性金属被覆である上記(1)〜上記(3)の何れかに記載する金属被覆繊維体。
(5)アクリル繊維、ナイロン繊維、ポリエステル繊維、高強度ナイロン系繊維、ポリフェニレンサルファイド系繊維、ポリカーボネート系繊維、またはアラミド系繊維からなる基体繊維の表面に金属被覆を設け、さらに基体繊維の結晶化温度以上であって融解温度未満の温度で加熱処理し、次いで、この金属被覆表面にフッ素化合物被覆を基体繊維の結晶化温度以下で形成する金属被覆繊維体の製造方法。
(6)基体繊維の表面に金属被覆を設けた後に、該金属被覆繊維体を基体繊維の結晶化温度以上であって融解温度未満の温度で加熱処理し、次いで、タンクに入れ、フッ素系化合物溶液を循環して接触させた後に、加圧水蒸気を導入し、基体繊維の結晶化温度以下で乾燥加熱処理して金属被覆表面にフッ素化合物被覆を形成する上記(5)に記載する金属被覆繊維体の製造方法。
【0007】
さらに、本発明は以下の製造方法に関する。
(7) 基体繊維の表面に金属被覆を設けた後に、これを基体繊維の結晶化温度以上であって融解温度未満の温度で加熱処理し、次いで、この金属被覆表面にフッ素化合物被覆を基体繊維の結晶化温度以下で形成する金属被覆繊維体の製造方法。
(8) フッ素系化合物被覆の形成溶液として、有機フッ素系界面活性剤またはアルコキシシラン系フッ素化合物溶液を用いる上記(7)に記載する金属被覆繊維体の製造方法。
【0008】
【発明の実施の態様】
以下、本発明を実施態様に基づいて具体的に説明する。
本発明の金属被覆繊維体は、基体繊維の表層に下地の金属被覆とその上にフッ素化合物被覆を有することを特徴とするものである。なお、本発明において繊維体とは短繊維(ステープル)、長繊維(フィラメント)、これらの繊維からなる各種の加工糸(フィラメント糸、紡績糸など)を云い、これらを広く含めて繊維体と云う。
【0009】
本発明の金属被覆繊維体の基体となる繊維(基体繊維と云う)としては、ポリエステル、ポリアミド、アクリル、ポリオレフィン、ナイロンなどの高分子材料を主成分とした合成繊維、木綿などの天然繊維、レーヨンなどのセルロース系繊維、これらの有機繊維のほかにガラスファイバーなどの無機繊維、またはこれらの複合繊維体などが挙げられる。これらの繊維体は二種以上を混紡したものでも良く、合成繊維と天然繊維を混紡したものでも良い。
【0010】
さらに、本発明は基体繊維として高強度ナイロン系繊維、ポリフェニレンサルファイド系繊維、ポリカーボネート系繊維、またはアラミド系繊維を用いたものを含む。高強度ナイロン系繊維とはザイロンの商品名で市販されている高重合ナイロン繊維などである。これらの繊維は高重合体であり溶融温度が高く耐熱性に優れており、この基体繊維を用いた金属被覆単繊維を配合した導電性樹脂は高温環境下での使用に適する。
【0011】
基体繊維の表面に設ける下地の金属被覆は、例えば、金、銀、銅、ニッケル、錫、またはこれらの合金の一種または二種以上からなる導電性金属被覆が好ましい。なお、被覆方法ないし手段は限定されない。電解メッキや化学(無電解)メッキ、あるいは真空蒸着などを利用することができる。基体繊維表面に電解メッキあるいは化学メッキなどによって上記金属の被覆を設けると良い。なお、金属被覆を設ける際に、予め繊維体表面をアルカリ等によってエッチング処理し、粗面化すれば被覆されるメッキ金属がこの繊維体表面の粗面に入り込んでアンカー効果を発揮するので好ましい。この金属被覆は一層でも二層以上でも良い。
【0012】
上記金属被覆は、その表面にオレンジピールを有するものが好ましい。金属被覆がオレンジピールを有することによって密着強度が向上する。オレンジピール(orange peel)とはオレンジの皮に似た状態であって、表面粗さが概ね0.01〜1μmの表面状態を云い、ユズ肌ないし梨地肌と称されている。金属被覆の層厚が概ね数百ナノメータ(nm)以下であるとき、金属被覆がオレンジピールを有するものは被覆の裏側まで粗面状態になっており、基体繊維の表面がこの粗面状態の金属被覆裏面に入り込んでアンカー効果を発揮するので基体繊維と金属被覆との接着強度が向上する。さらに、金属被覆表面がオレンジピールを有することにより、その上側のフッ素化合物被覆との接着強度も向上する。
【0013】
本発明の金属被覆繊維体は上記金属被覆の表面にフッ素化合物被覆を有する。金属被覆繊維体におけるフッ素系化合物被覆の量は5重量%以下、好ましくは0.01〜5重量%が適当である。このフッ素化合物被覆によって優れた撥水が得られる。長期間持続的な撥水性を有するにはフッ素化合物被覆の量は0.5重量%以上が好ましい。なお、この被覆量が5重量%を上回っても撥水性は大きく変わらないので、被覆量は5重量%以下が適当である。
【0014】
このフッ素化合物被覆は有機フッ素系界面活性剤、あるいはアルコキシシラン系フッ素化合物などを用いて形成すると良い。例えば、上記化合物を含む溶液を金属被覆表面に塗布し、あるいはこれらの溶液に金属被覆繊維体を浸して金属被覆表面にフッ素化合物溶液を付着させ、これを乾燥し加熱処理してフッ素系界面活性剤を反応させ、あるいはアルコキシシコンの加水分解などにより金属被覆表面にフッ素化合物被覆を形成する。
【0015】
フッ素化合物溶液としては市販のフッ素系界面活性剤を用いることができる。この一例として、1〜10%濃度のフッ素系界面活性剤、0.1〜1%濃度のメラミン樹脂、および0.05〜1%の触媒化合物を混合した水溶液が知られている。なお、フッ素系界面活性剤の濃度が10%より濃いと金属被覆繊維体の表面が茶色に変色するので好ましくない。また、この濃度が1%未満であると撥水効果が低く、塩素や硫黄化合物に対する変色防止効果も低くなる。
【0016】
本発明の金属被覆繊維体は、その表面にフッ素系化合物被覆を有し、これが下地の金属被覆の保護層となるので耐腐蝕性が向上する。具体的には、例えば、この金属被覆繊維体を塩素系洗浄剤で洗濯した場合、この表面被覆によって塩素系洗浄剤の浸透を防止するので塩素系洗浄剤に対する耐腐蝕性に優れる。また、塵埃や汗などに含まれる硫化物等による硫化反応、あるいは空気中での酸化反応等による腐食に対しても優れた耐食性を示す。さらに、下地の金属被覆が外部に露出しないので皮膚に対する刺激が殆どなく、金属アレルギーなどを生じる虞がない。また、これらフッ素化合物被覆は透明性が高いので適度な膜厚下において下地の金属被覆の色調が被覆表面に表れる。従って、白色系の導電性金属被覆を設けることにより、耐腐食性に優れ、かつ金属アレルギーを生じない白色導電性繊維体を得ることができる。
【0017】
本発明の金属被覆繊維体はフッ素系化合物被覆の表面にさらに表面処理を施したものを含む。表面処理としては、パラフィンやワックスによる防錆処理ないしオイル処理(オイリング)などを施すことができる。なお、この防錆処理によって白色度の経時的な低下や密着性(剥離強度)の低下を防止することができる。また、オイル処理を施すことにより繊維体表面の滑り性が向上する。このオイル処理は繊維体を織機や編機によって加工する際にその滑りを良くするので金属被覆の密着性の保護にもなる。金属被覆繊維体は実際に使用する際に、摩擦、剪断力、曲げ等の物理的な力を受け、その強さや頻度によって金属被覆の剥離や欠落が生じる。それらの度合いは直接的には金属被覆と繊維体との密着強度に基づくが、上記表面処理を施すことによって摩擦や剪断力などが緩衝され、その結果として金属被覆の剥離が防止される。
【0018】
本発明の金属被覆繊維体は短繊維や長繊維、あるいは紡績糸や加工糸など各種の糸にして用いられる。また、金属被覆繊維を単独に用いる他に、合成繊維や天然繊維、あるいは合成繊維と天然繊維の混合繊維に混紡した混合繊維として用いることができる。さらに、本発明の金属被覆繊維体は織布または不織布などの布地材料や編物材料などとして用いることができる。この場合、銀やスズ、ニッケルなどを用いたものは高い白色度を有するので染色した際に発色性に優れ、テキスタイルや衣料品の布材に適する。さらに、銀などをコーテングしたものは抗菌繊維体および抗菌衣料として利用することができる。具体的な用途としては、抗菌性の靴下、下着、上着、白衣、寝具、シーツ、ナプキン、手袋、シャツ、ズボン、絨毯、マット、カーテンあるいは作業衣などが挙げられる。
【0019】
また、本発明の金属被覆繊維体は布地材料等に限らず、その導電性を利用して電磁波シールド材、無塵服、手袋、靴、カバー、作業衣などの静電防止材料、あるいは電極や電線の軽量化を図る代替材料などに用いることができる。さらに、有機材料との混錬による複合導電材料や繊維体強化プラスチックの導電性補強材などに用いることができる。
【0020】
なお、本発明の金属被覆繊維体を製造する手段として、基体繊維をチーズ巻の状態でタンク内に設置し、チーズ巻の内側から外側に向かってメッキ液が流れるようにしてメッキすると良い。具体的には、タンク内に基体繊維を支える軸を設け、軸の周面にはメッキ液が流れ出す多数の小孔を設け、軸にはメッキ液の導入管を接続する。この軸にチーズ巻の基体繊維を差し込み、メッキ液を供給する。メッキ液は軸の内部を流れて小孔から外部に流れ出し基体繊維を内側から外側に向かって通過する。このような製造手段によれば、繊維の間隙がメッキ液によって外側に押し広がられた状態となり、繊維相互の細部にまでメッキ液が浸透するので、チーズ巻きの状態でも繊維体の表面に金属メッキが均一に形成される。
【0021】
金属被覆(メッキ)を施した後にこの繊維体を乾燥し、上記温度範囲(基体繊維の結晶化温度以上であって融解温度未満の温度)の加熱処理を施す。この加熱処理はメッキ槽内に加圧水蒸気を導入して行っても良い。またはメッキ槽から巻糸体を取り出して、電気炉などに移して加熱処理しても良い。なお、加熱処理雰囲気は空気中でも良いが、金属被覆の酸化による変色を防止するためには窒素やアルゴン等の不活性雰囲気下で加熱処理を行うと良い。金属被覆を形成した後に、さらにフッ素化合物被覆を基体繊維の結晶化温度以下で形成する。金属被覆(メッキ)、加熱処理を終えた繊維体を再びメッキ工程のタンクに入れ、フッ素系化合物溶液を循環して接触させた後に、加圧水蒸気を導入し、乾燥、加熱処理を施すことによって金属被覆の上層に均一にフッ素化合物を被覆することができる。
【0022】
【実施例】
以下、本発明を実施例によって具体的に示す。
前述のメッキ手段を用い、基体繊維(150デニール)をメッキ槽に入れ、以下の処理工程(イ)〜(ホ)を経て金属被覆繊維体を得た。
(イ)脱脂処理:脱脂液(エースクリーンA-220:奥野製薬工業社製品)の5wt%溶液を55℃でメッキ槽に5分間循環させた後、イオン交換水を通じて十分に洗浄した。
(ロ)アルカリ処理:脱脂処理後に20wt%水酸化ナトリウム溶液を70℃でメッキ槽に20分間循環させ、さらにイオン交換水を通じて十分に洗浄した後に5wt%濃塩酸溶液を室温でメッキ槽に2分間循環させた。
(ハ)活性化処理:アルカリ処理後に濃塩酸溶液と塩化パラジウム混合溶液(キャタリストC:輿野製薬工業社製品)をメッキ槽に室温で3分間循環させた後にイオン交換水を通じて十分に洗浄した。さらに10wt%硫酸溶液をメッキ槽に45℃で3分間循環させて活性化した。
(ニ)第一層金属被覆の形成:以上の前処理によって繊維体表面に触媒を付着させた後に、この基体繊維を銀、ニッケル、銅の各メッキ液に浸し、無電解メッキによって下地の第一層金属被覆を形成した。
(ホ)加熱処理:以上の工程を経て製造した金属被覆繊維体の一部を電気炉に装入し、基体繊維の結晶化温度以上および融解温度未満の温度条件で加熱冷却処理した。
【0023】
〔実施例1〕
上記(イ)〜(ホ)の工程によって得た金属被覆繊維体を、フッ素系界面活性剤(0.05%濃度、1%濃度、3%濃度、5%濃度)、メラミン樹脂(0.3%濃度)、有機アミン(0.1%濃度)を含む水溶液に浸漬し、取り出して乾燥後、4時間加熱処理した。
【0024】
〔実施例2〕
上記(イ)〜(ホ)の工程によって得た金属被覆繊維体を、アルコキシシラン系界面活性剤(0.05%濃度、1%濃度、3%濃度、5%濃度)、酢酸(0.1%濃度)を含む水溶液に浸漬し、取り出して乾燥後、4時間加熱処理した。
【0025】
これらの金属被覆繊維体について、白色度および塩素漂白試験を行い腐蝕の有無を調べた。塩素漂白試験は塩素水溶液(商品名ハイター50%を含む水溶液)100ccの中に試料の銀被覆繊維を室温下で10分間浸し、発生する気泡を観察して3段階評価を行った。白色度は室温で大気下に放置(1ヶ月、3ヶ月)した後、ハンターの式に基づいてL値を求めた。これらの結果を表1に示した。また、比較例としてフッ素化合物被覆を形成しない繊維体を対比して示した。
【0026】
この結果に示すように、本発明の好ましい範囲に属する金属被覆繊維体は何れも塩素腐蝕に対して優れた耐食性を有しており、さらに耐変色性も高く、銀被覆においては白色度も高い。一方、比較例は何れも塩素による腐食がみられ、また白色度も低下した。
【0027】
【発明の効果】
本発明の金属被覆繊維体は耐腐食性に優れると共に被覆強度が大きい。具体的には、塩素漂白試験において優れた耐塩素腐蝕性を有している。さらに、大気中に放置しても変色せずに白色度を保つ。また、加熱下でも伸縮率が小さく、外力に対する耐久性に優れる。従って、これまでは金属被覆の密着性や耐変色性が十分でないために適用できなかった分野にも本発明の金属被覆繊維体を用いることできる。
【0028】
【表1】

Figure 0003972127
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal-coated fiber body that is excellent in adhesion and corrosion resistance of a metal coating provided on a fiber body, is lightweight, can be manufactured at low cost, and has little influence on human skin, and a method for manufacturing the metal-coated fiber body.
[0002]
[Prior art]
Conventionally known are conductive fibers or yarns in which a metal thin film is coated on the surface of a synthetic fiber made of a polymer material such as nylon fiber or polyester fiber, and various methods are available for improving the adhesion of the metal coating film. Has been tried. For example, when coating copper sulfide, a method of pre-treating a polymer material with a dye having a copper ion-trapping group, and then sulfiding after binding copper ions to this (Japanese Patent Publication No. 01-37513) or alkali treatment For example, a method of attaching a copper ion capturing group to a roughened fiber surface and then bonding copper sulfide to the copper ion capturing group is known (Japanese Patent Laid-Open No. 06-298973). For materials that are difficult to be metal-plated, such as aramid fiber, a method of forming metal plating by attaching metal ions using polyvinylpyrrolidone (PVP) and reducing the metal ions (JP-A 06-506267) No.) is known.
[0003]
[Problems to be solved by the invention]
However, the plating method using PVP is not general because the types of fibers are limited. Further, the coating method for introducing a copper ion capturing group has a problem that the metal coating is limited to copper or a compound thereof, and the adhesion strength of the metal coating is not always sufficient. Note that if the fiber is roughened by alkali treatment, the adhesion strength of the metal coating can be generally increased, but sufficient effects cannot be obtained unless the degree of roughening and the state of the metal coating are appropriate. Moreover, when the metal-coated fiber is used for clothing or the like, it is necessary to withstand severe use conditions such as washing and wear. Furthermore, from the viewpoint of electrical conductivity, the metal coating is required to have a highly reliable adhesion strength because a disconnection state is caused even by partial peeling of the metal coating. In addition, metal-coated fibers, particularly silver-coated fibers, have a problem of causing surface corrosion or discoloration due to oxides or detergents in the atmosphere.
[0004]
The present invention solves the above-mentioned problems in conventional metal-coated fibers, and provides a metal-coated fiber body having excellent corrosion resistance and coating strength. In general, metal-coated fiber bodies often show surface corrosion due to chlorine and sulfide. In order to prevent this, there is a double metal-coated fiber body in which an anticorrosion metal coating is provided on the upper side of the underlying metal coating. However, this has a concern that the amount of metal is large and the cost is increased. The present invention provides a metal-coated fibrous body having a small amount of coated metal, excellent corrosion resistance and less irritation to the skin by providing a fluorine compound coating on the metal-coated surface.
[0005]
[Means for solving the problems]
The present invention is a fiber body having a metal coating, in which a metal coating provided on the surface of the fiber body is used as a base, and a surface coating of a fluorine compound is provided thereon, and it is excellent by providing a conductive metal coating on the base. A metal-coated fiber body having high electrical conductivity and high corrosion resistance by coating with a fluorine compound on the surface, less irritation to the skin, relatively light weight, and low in production cost.
[0006]
The present invention relates to a metal-coated fiber body having the following configuration and a method for producing the same.
(1) A metal coating is provided on the surface of a base fiber made of acrylic fiber, nylon fiber, polyester fiber, high-strength nylon fiber, polyphenylene sulfide fiber, polycarbonate fiber, or aramid fiber, and the surface of the metal coating Is coated with a fluorine compound coating, and is heat-treated at a temperature not lower than the melting temperature of the substrate fiber and lower than the melting temperature after the metal coating is provided. A metal-coated fiber body, which is formed.
(2) The metal-coated fiber body described in (1) above, wherein the fluorine compound coating is 0.01 to 5% of the weight of the metal-coated fiber body.
(3) The metal-coated fiber body according to (1) or (2) above, wherein the surface of the fluorine compound coating is paraffin-treated or wax-treated.
(4) The metal coating according to any one of (1) to (3) above, wherein the metal coating is a conductive metal coating made of one or more of gold, silver, copper, nickel, tin, or an alloy thereof. Fiber body.
(5) A metal coating is provided on the surface of a base fiber made of acrylic fiber, nylon fiber, polyester fiber, high-strength nylon fiber, polyphenylene sulfide fiber, polycarbonate fiber, or aramid fiber, and the crystallization temperature of the base fiber A method for producing a metal-coated fibrous body, wherein the heat treatment is performed at a temperature lower than the melting temperature and then a fluorine compound coating is formed on the surface of the metal coating at a temperature lower than the crystallization temperature of the base fiber.
(6) After providing a metal coating on the surface of the base fiber, the metal-coated fiber body is heat-treated at a temperature higher than the crystallization temperature of the base fiber and lower than the melting temperature. The metal-coated fibrous body according to (5) above, wherein after circulating the solution and contacting, pressurized water vapor is introduced, and drying and heat treatment is performed below the crystallization temperature of the base fiber to form a fluorine compound coating on the metal-coated surface Manufacturing method.
[0007]
Furthermore, this invention relates to the following manufacturing methods.
(7) After providing a metal coating on the surface of the base fiber, this is heat-treated at a temperature that is higher than the crystallization temperature of the base fiber and lower than the melting temperature. The manufacturing method of the metal-coated fiber body formed below the crystallization temperature.
(8) The method for producing a metal-coated fibrous body according to the above (7), wherein an organic fluorine-based surfactant or an alkoxysilane-based fluorine compound solution is used as the fluorine-based compound coating forming solution.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be specifically described based on embodiments.
The metal-coated fiber body of the present invention is characterized by having a base metal coating on the surface layer of the base fiber and a fluorine compound coating thereon. In the present invention, the fiber body refers to short fibers (staples), long fibers (filaments), and various processed yarns (filament yarns, spun yarns, etc.) made of these fibers, and these are broadly referred to as fiber bodies. .
[0009]
As a fiber (called a base fiber) as a base of the metal-coated fiber body of the present invention, a synthetic fiber mainly composed of a polymer material such as polyester, polyamide, acrylic, polyolefin, nylon, natural fiber such as cotton, rayon, etc. In addition to these organic fibers, inorganic fibers such as glass fibers, or composite fiber bodies thereof can be used. These fiber bodies may be a mixture of two or more, or may be a mixture of synthetic fibers and natural fibers.
[0010]
Furthermore, the present invention includes those using high-strength nylon fiber, polyphenylene sulfide fiber, polycarbonate fiber, or aramid fiber as the base fiber. The high-strength nylon fiber is a highly polymerized nylon fiber marketed under the trade name of XYLON. These fibers are high polymers, have a high melting temperature, and are excellent in heat resistance. Conductive resins containing metal-coated single fibers using the base fibers are suitable for use in a high temperature environment.
[0011]
The base metal coating provided on the surface of the base fiber is preferably a conductive metal coating made of one or more of gold, silver, copper, nickel, tin, or an alloy thereof. The coating method or means is not limited. Electrolytic plating, chemical (electroless) plating, vacuum deposition, or the like can be used. It is preferable to provide the metal coating on the surface of the base fiber by electrolytic plating or chemical plating. When the metal coating is provided, it is preferable that the surface of the fiber body is etched in advance with an alkali or the like to roughen the surface because the plated metal to be coated enters the rough surface of the surface of the fiber body and exhibits an anchor effect. This metal coating may be a single layer or two or more layers.
[0012]
The metal coating preferably has orange peel on the surface. The adhesion strength is improved by having an orange peel in the metal coating. An orange peel is a state similar to an orange peel and has a surface roughness of about 0.01 to 1 μm, and is called yuzu skin or pear skin. When the thickness of the metal coating is approximately several hundred nanometers (nm) or less, the metal coating having an orange peel is in a rough state up to the back side of the coating, and the surface of the base fiber is a metal in the rough state. Since it enters the back surface of the coating and exhibits an anchor effect, the adhesive strength between the base fiber and the metal coating is improved. Furthermore, since the metal coating surface has orange peel, the adhesive strength with the fluorine compound coating on the upper side is also improved.
[0013]
The metal-coated fiber body of the present invention has a fluorine compound coating on the surface of the metal coating. The amount of the fluorine compound coating in the metal-coated fiber body is 5% by weight or less, preferably 0.01 to 5% by weight. Excellent water repellency can be obtained by this fluorine compound coating. In order to have long-lasting water repellency, the amount of the fluorine compound coating is preferably 0.5% by weight or more. Even if the coating amount exceeds 5% by weight, the water repellency does not change greatly. Therefore, the coating amount is suitably 5% by weight or less.
[0014]
This fluorine compound coating is preferably formed using an organic fluorine-based surfactant or an alkoxysilane-based fluorine compound. For example, a solution containing the above compound is applied to the metal-coated surface, or a metal-coated fiber body is immersed in these solutions to adhere the fluorine compound solution to the metal-coated surface, which is dried and heat-treated to obtain a fluorine-based surface activity. A fluorine compound coating is formed on the surface of the metal coating by reacting an agent or by hydrolysis of alkoxysilicone.
[0015]
A commercially available fluorine-based surfactant can be used as the fluorine compound solution. As an example of this, an aqueous solution in which a fluorine-containing surfactant having a concentration of 1 to 10%, a melamine resin having a concentration of 0.1 to 1%, and a catalyst compound of 0.05 to 1% is mixed is known. In addition, when the density | concentration of a fluorine-type surfactant is deeper than 10%, since the surface of a metal covering fiber body will change into brown, it is unpreferable. Further, when the concentration is less than 1%, the water repellent effect is low, and the discoloration preventing effect for chlorine and sulfur compounds is also low.
[0016]
The metal-coated fiber body of the present invention has a fluorine-based compound coating on the surface, and this serves as a protective layer for the underlying metal coating, thereby improving the corrosion resistance. Specifically, for example, when this metal-coated fibrous body is washed with a chlorine-based cleaning agent, penetration of the chlorine-based cleaning agent is prevented by this surface coating, so that the corrosion resistance to the chlorine-based cleaning agent is excellent. In addition, it exhibits excellent corrosion resistance against corrosion caused by sulfides contained in dust, sweat, etc., or oxidation reaction in the air. Furthermore, since the underlying metal coating is not exposed to the outside, there is almost no irritation to the skin, and there is no possibility of causing metal allergy or the like. In addition, since these fluorine compound coatings are highly transparent, the color tone of the underlying metal coating appears on the coating surface under an appropriate film thickness. Therefore, by providing a white conductive metal coating, it is possible to obtain a white conductive fiber body that is excellent in corrosion resistance and does not cause metal allergy.
[0017]
The metal-coated fiber body of the present invention includes those obtained by further surface-treating the surface of the fluorine-based compound coating. As the surface treatment, rust prevention treatment or oil treatment (oiling) with paraffin or wax can be performed. In addition, this rust prevention treatment can prevent a decrease in whiteness over time and a decrease in adhesion (peeling strength). Moreover, the slipperiness of the fiber body surface improves by performing an oil process. This oil treatment improves slipping when the fiber body is processed by a loom or a knitting machine, and thus also protects the adhesion of the metal coating. When the metal-coated fiber body is actually used, it receives physical forces such as friction, shearing force, bending, and the like, and the metal coating is peeled or missing depending on its strength and frequency. The degree thereof is directly based on the adhesion strength between the metal coating and the fibrous body, but by applying the surface treatment, friction, shearing force and the like are buffered, and as a result, peeling of the metal coating is prevented.
[0018]
The metal-coated fiber body of the present invention is used as various yarns such as short fibers and long fibers, or spun yarn and processed yarn. In addition to using the metal-coated fiber alone, it can be used as a synthetic fiber, a natural fiber, or a mixed fiber blended with a synthetic fiber and a natural fiber. Furthermore, the metal-coated fiber body of the present invention can be used as a fabric material such as a woven fabric or a non-woven fabric or a knitted material. In this case, those using silver, tin, nickel, etc. have high whiteness, so that they have excellent color developability when dyed and are suitable for textiles and clothing materials. Furthermore, what coated silver etc. can be utilized as an antimicrobial fiber body and antimicrobial clothing. Specific applications include antibacterial socks, underwear, outerwear, lab coats, bedding, sheets, napkins, gloves, shirts, trousers, carpets, mats, curtains or work clothes.
[0019]
In addition, the metal-coated fiber body of the present invention is not limited to a fabric material or the like, and uses its conductivity to prevent an electromagnetic wave shielding material, dust-free clothing, gloves, shoes, covers, work clothes, and other antistatic materials, or electrodes or It can be used as an alternative material for reducing the weight of electric wires. Further, it can be used as a composite conductive material by kneading with an organic material, a conductive reinforcing material of a fiber reinforced plastic, or the like.
[0020]
In addition, as a means for producing the metal-coated fiber body of the present invention, the base fiber may be installed in a tank in a cheese winding state and plated so that a plating solution flows from the inside to the outside of the cheese winding. Specifically, a shaft for supporting the base fiber is provided in the tank, a large number of small holes through which the plating solution flows are provided on the peripheral surface of the shaft, and an introduction pipe for the plating solution is connected to the shaft. A base fiber of cheese winding is inserted into this shaft, and a plating solution is supplied. The plating solution flows inside the shaft, flows out from the small holes, and passes through the base fiber from the inside toward the outside. According to such a manufacturing means, the gap between the fibers is pushed outward by the plating solution, and the plating solution penetrates into the details of the mutual fibers. The plating is formed uniformly.
[0021]
After the metal coating (plating) is applied, the fiber body is dried and subjected to a heat treatment within the above temperature range (a temperature higher than the crystallization temperature of the base fiber and lower than the melting temperature) . This heat treatment may be performed by introducing pressurized water vapor into the plating tank. Alternatively, the wound body may be taken out from the plating tank and transferred to an electric furnace or the like for heat treatment. Note that the heat treatment atmosphere may be air, but in order to prevent discoloration due to oxidation of the metal coating, the heat treatment may be performed in an inert atmosphere such as nitrogen or argon. After forming the metal coating, a fluorine compound coating is further formed below the crystallization temperature of the base fiber. After the metal coating (plating) and heat treatment have been finished, the fiber body is again placed in the tank of the plating process, and after circulating the fluorine-based compound solution and contacted, pressurized water vapor is introduced, dried, and heat treated. The fluorine compound can be uniformly coated on the upper layer of the coating.
[0022]
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
Using the above-described plating means, the base fiber (150 denier) was placed in a plating tank, and a metal-coated fiber body was obtained through the following treatment steps (a) to (e).
(A) Degreasing treatment: A 5 wt% solution of a degreasing solution (Ascreen A-220: Okuno Pharmaceutical Co., Ltd.) was circulated in a plating tank at 55 ° C. for 5 minutes, and then thoroughly washed with ion-exchanged water.
(B) Alkaline treatment: After degreasing treatment, 20 wt% sodium hydroxide solution is circulated in the plating tank for 20 minutes at 70 ° C., and after thoroughly washing with ion exchange water, 5 wt% concentrated hydrochloric acid solution is placed in the plating tank at room temperature for 2 minutes. It was circulated.
(C) Activation treatment: After alkali treatment, concentrated hydrochloric acid solution and palladium chloride mixed solution (Catalyst C: Hadano Pharmaceutical Co., Ltd. product) was circulated through the plating bath at room temperature for 3 minutes and then thoroughly washed with ion-exchanged water. . Further, a 10 wt% sulfuric acid solution was circulated through the plating tank at 45 ° C. for 3 minutes for activation.
(D) Formation of the first layer metal coating: After the catalyst is attached to the surface of the fiber body by the above pretreatment, the base fiber is immersed in each of silver, nickel and copper plating solutions, and the base layer is coated by electroless plating. A single metal coating was formed.
(E) Heat treatment: A part of the metal-coated fiber body produced through the above steps was placed in an electric furnace and heat-cooled under a temperature condition not lower than the crystallization temperature of the base fiber and lower than the melting temperature.
[0023]
[Example 1]
The metal-coated fiber body obtained by the steps (a) to (e) above was prepared using a fluorosurfactant (0.05% concentration, 1% concentration, 3% concentration, 5% concentration), melamine resin (0.3). % Concentration) and an organic amine (0.1% concentration) in an aqueous solution, taken out, dried, and heat-treated for 4 hours.
[0024]
[Example 2]
The metal-coated fiber body obtained by the steps (a) to (e) above was prepared by using an alkoxysilane surfactant (0.05% concentration, 1% concentration, 3% concentration, 5% concentration), acetic acid (0.1%). % Concentration) was taken out, taken out and dried, followed by heat treatment for 4 hours.
[0025]
These metal-coated fiber bodies were subjected to whiteness and chlorine bleaching tests to examine the presence or absence of corrosion. In the chlorine bleaching test, the silver-coated fiber of the sample was immersed in 100 cc of an aqueous chlorine solution (an aqueous solution containing 50% of the trade name Hiter) for 10 minutes at room temperature, and the generated bubbles were observed and evaluated in three stages. The whiteness was left in the atmosphere at room temperature (1 month, 3 months), and the L value was determined based on the Hunter equation. These results are shown in Table 1. In addition, as a comparative example, a fiber body not formed with a fluorine compound coating is shown in comparison.
[0026]
As shown in this result, all the metal-coated fiber bodies belonging to the preferred range of the present invention have excellent corrosion resistance against chlorine corrosion, and also have high discoloration resistance, and high whiteness in silver coating. . On the other hand, all the comparative examples were corroded by chlorine and the whiteness was also lowered.
[0027]
【The invention's effect】
The metal-coated fiber body of the present invention is excellent in corrosion resistance and has high coating strength. Specifically, it has excellent chlorine corrosion resistance in the chlorine bleaching test. Furthermore, it maintains whiteness without discoloration even when left in the atmosphere. In addition, the stretch rate is small even under heating, and the durability against external force is excellent. Therefore, the metal-coated fiber body of the present invention can also be used in a field that could not be applied due to insufficient adhesion and discoloration resistance of the metal coating.
[0028]
[Table 1]
Figure 0003972127

Claims (6)

アクリル繊維、ナイロン繊維、ポリエステル繊維、高強度ナイロン系繊維、ポリフェニレンサルファイド系繊維、ポリカーボネート系繊維、またはアラミド系繊維からなる基体繊維の表面に金属被覆を有し、さらに該金属被覆の表面にフッ素化合物被覆を有し、該金属被覆を設けた後に基体繊維の結晶化温度以上であって融解温度未満の温度で加熱処理されており、上記フッ素化合物被覆が基体繊維の結晶化温度以下で形成されていることを特徴とする金属被覆繊維体。 A base fiber made of acrylic fiber, nylon fiber, polyester fiber, high-strength nylon fiber, polyphenylene sulfide fiber, polycarbonate fiber, or aramid fiber has a metal coating, and the surface of the metal coating is a fluorine compound. And having a coating, heat-treated at a temperature not lower than the melting temperature of the substrate fiber and lower than the melting temperature after the metal coating is provided, and the fluorine compound coating is formed at a temperature lower than the crystallization temperature of the substrate fiber. A metal-coated fibrous body characterized by comprising: フッ素化合物被覆が金属被覆繊維体重量の0.01〜5%である請求項1に記載する金属被覆繊維体。  The metal-coated fiber body according to claim 1, wherein the fluorine compound coating is 0.01 to 5% of the weight of the metal-coated fiber body. フッ素化合物被覆の表面がパラフィン処理またはワックス処理されている請求項1または2に記載する金属被覆繊維体。 The metal-coated fiber body according to claim 1 or 2, wherein the surface of the fluorine compound coating is paraffin-treated or wax-treated. 金属被覆が金、銀、銅、ニッケル、錫またはこれらの合金の一種または二種以上からなる導電性金属被覆である請求項1〜3の何れかに記載する金属被覆繊維体。  The metal-coated fiber body according to any one of claims 1 to 3, wherein the metal coating is a conductive metal coating composed of one or more of gold, silver, copper, nickel, tin, or an alloy thereof. アクリル繊維、ナイロン繊維、ポリエステル繊維、高強度ナイロン系繊維、ポリフェニレンサルファイド系繊維、ポリカーボネート系繊維、またはアラミド系繊維からなる基体繊維の表面に金属被覆を設け、さらに基体繊維の結晶化温度以上であって融解温度未満の温度で加熱処理し、次いで、この金属被覆表面にフッ素化合物被覆を基体繊維の結晶化温度以下で形成する金属被覆繊維体の製造方法。 A metal coating is provided on the surface of the base fiber made of acrylic fiber, nylon fiber, polyester fiber, high-strength nylon fiber, polyphenylene sulfide fiber, polycarbonate fiber, or aramid fiber, and the crystallization temperature of the substrate fiber is exceeded. A method for producing a metal-coated fiber body, in which a heat treatment is performed at a temperature lower than the melting temperature, and then a fluorine compound coating is formed on the surface of the metal coating at a temperature lower than the crystallization temperature of the base fiber. 基体繊維の表面に金属被覆を設けた後に、該金属被覆繊維体を基体繊維の結晶化温度以上であって融解温度未満の温度で加熱処理し、次いで、タンクに入れ、フッ素系化合物溶液を循環して接触させた後に、加圧水蒸気を導入し、基体繊維の結晶化温度以下で乾燥加熱処理して金属被覆表面にフッ素化合物被覆を形成する請求項5に記載する金属被覆繊維体の製造方法。  After providing a metal coating on the surface of the substrate fiber, the metal-coated fiber body is heat-treated at a temperature higher than the crystallization temperature of the substrate fiber and lower than the melting temperature, and then placed in a tank to circulate the fluorine compound solution. 6. The method for producing a metal-coated fibrous body according to claim 5, wherein after the contacting, pressurized water vapor is introduced, and drying and heat treatment is performed at a temperature lower than the crystallization temperature of the base fiber to form a fluorine compound coating on the surface of the metal coating.
JP2001382054A 2001-12-14 2001-12-14 Metal-coated fiber body and method for producing the same Expired - Fee Related JP3972127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001382054A JP3972127B2 (en) 2001-12-14 2001-12-14 Metal-coated fiber body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001382054A JP3972127B2 (en) 2001-12-14 2001-12-14 Metal-coated fiber body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003183980A JP2003183980A (en) 2003-07-03
JP3972127B2 true JP3972127B2 (en) 2007-09-05

Family

ID=27592550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001382054A Expired - Fee Related JP3972127B2 (en) 2001-12-14 2001-12-14 Metal-coated fiber body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3972127B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106381689A (en) * 2016-08-31 2017-02-08 浙江益南纤维科技有限公司 Preparation technology of metal cotton composite fiber with electromagnetic shielding function

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002052098A1 (en) * 2000-12-26 2002-07-04 Mitsubishi Materials Corporation Metal-coated fiber and electroconductive composition comprising the same, and method for production thereof and use thereof
JP4708748B2 (en) * 2004-09-14 2011-06-22 公益財団法人鉄道総合技術研究所 Method for producing low thermal expansion linear body
DE102006055763B4 (en) * 2006-11-21 2011-06-22 Militz, Detlef, 15366 Process for metallizing polyester, metallized polyester and its use
CN101363189B (en) * 2007-08-06 2010-12-08 四川得阳化学有限公司 Technique for coating inorganic strengthening layer on polyphenyl thioether fabric surface
CN103668944B (en) * 2013-12-16 2015-11-25 天诺光电材料股份有限公司 A kind of aramid fiber Conductive Silver-Coated PET Fibers and preparation method thereof
CN105200761A (en) * 2015-10-13 2015-12-30 四川大学 Palladium-free activation chemical nickel-plating method for electromagnetic shielding polyphenylene sulfide fiber
WO2022030399A1 (en) * 2020-08-04 2022-02-10 ナガセケムテックス株式会社 Laminate and fabric coating composition
JP6980145B1 (en) * 2021-03-31 2021-12-15 ナガセケムテックス株式会社 Dough coating composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106381689A (en) * 2016-08-31 2017-02-08 浙江益南纤维科技有限公司 Preparation technology of metal cotton composite fiber with electromagnetic shielding function
CN106381689B (en) * 2016-08-31 2019-03-08 浙江益南纤维科技有限公司 A kind of preparation process of the metal wool composite fibre with electro-magnetic screen function

Also Published As

Publication number Publication date
JP2003183980A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
KR100808322B1 (en) Metal-coated fiber and electroconductive composition comprising the same, and method for production thereof and use thereof
US4378226A (en) Electrically conducting fiber and method of making same
JP3972127B2 (en) Metal-coated fiber body and method for producing the same
KR100639093B1 (en) Conductive fiber, manufacturing method therefor, apparatus, and application
CN113235295A (en) Mixed metal nuclear radiation resistant material and preparation method and garment thereof
JP4560750B2 (en) Metal-coated fibers and their applications
JP2004502055A (en) Fabric having gold layer formed thereon and method for producing same
DE2820502A1 (en) METALLIZED ARAMID FIBERS
JP4789081B2 (en) Metal-coated fiber body and method for producing the same
US20040258914A1 (en) Enhanced metal ion release rate for anti-microbial applications
JP4329105B2 (en) Metal-coated fiber body and method for producing the same
JP3906903B2 (en) Metal-coated fiber body and method for producing the same
JP4524725B2 (en) Metal-coated fiber body
JP4543356B2 (en) Metal-coated fiber body, its use and production method
KR100433391B1 (en) Method for preparing electroless metal plated fiber for protecting electromagnetic waves
JP4830406B2 (en) Conductive fiber
JP4161287B2 (en) Conductive resin composition and production method and use thereof
JP2019183178A (en) Plating fiber and electric wire
JPS62299567A (en) Production of metal coated fiber
WO2021145180A1 (en) Metal-covered liquid crystal polyester multifilament
JP3919965B2 (en) Chlorine-resistant silver-coated fiber structure and manufacturing method thereof
JPH0749627B2 (en) Method for producing metal-coated fiber cloth
TWM549701U (en) Metal textile yarn with metal oxide ceramic coating layer
JPH03199441A (en) Electrically conductive yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees