JP3972092B2 - Methods for producing fibers, films and nonwoven fabrics of silk and silk-like materials, and fibers, films or nonwoven fabrics produced by these methods - Google Patents

Methods for producing fibers, films and nonwoven fabrics of silk and silk-like materials, and fibers, films or nonwoven fabrics produced by these methods Download PDF

Info

Publication number
JP3972092B2
JP3972092B2 JP2002069905A JP2002069905A JP3972092B2 JP 3972092 B2 JP3972092 B2 JP 3972092B2 JP 2002069905 A JP2002069905 A JP 2002069905A JP 2002069905 A JP2002069905 A JP 2002069905A JP 3972092 B2 JP3972092 B2 JP 3972092B2
Authority
JP
Japan
Prior art keywords
silk
hfa
solution
silk fibroin
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002069905A
Other languages
Japanese (ja)
Other versions
JP2004068161A (en
JP3972092B6 (en
Inventor
哲郎 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Original Assignee
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002572175A external-priority patent/JPWO2002072931A1/en
Application filed by NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY filed Critical NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority to JP2002069905A priority Critical patent/JP3972092B6/en
Priority claimed from JP2002069905A external-priority patent/JP3972092B6/en
Publication of JP2004068161A publication Critical patent/JP2004068161A/en
Publication of JP3972092B2 publication Critical patent/JP3972092B2/en
Application granted granted Critical
Publication of JP3972092B6 publication Critical patent/JP3972092B6/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は絹又は絹様繊維、フィルム若しくは不織布に関し、特にヘキサフロロアセトン水和物を溶媒として用いた、絹又は絹様繊維、フィルム若しくは不織布及びそれらの製造方法に関する。
【0002】
【従来の技術】
近年、バイオテクノロジー技術の進歩に伴い、大腸菌や酵母、山羊等の動物を用いて、いろいろな機能を有する絹様物質を生産することが盛んに試みられている。そのために、絹様物質から繊維やフィルムを作製するための優れた溶媒を見出すことが必要となっている。また、従来の家蚕絹繊維や野蚕絹繊維について、天然には存在しない、所望の太さを持つ単フィラメント繊維を作製するためにも、優れた溶媒を見出すことが必要である。
【0003】
従来、分子量の低下が起こりにくく、優れた力学特性を有する再生家蚕絹繊維を得るための溶媒としてヘキサフロロイソプロパノール(HFIP)が頻繁に用いられている(米国特許第 5, 252, 285号明細書)。しかしながら、天然の家蚕絹繊維はそのままではHFIPに溶解しないため、繊維を一旦臭化リチウム等の塩水溶液に溶解し、塩を透析によって除去した後流延乾燥し、得られた絹フィブロインフィルムをHFIPに溶解させることが行われている。しかしながら、この場合にはHFIPに溶解し終えるまでに8日間という長時間を必要とする(米国特許第5,252,285号)という欠点があった。
【0004】
また、HFIPにはエリ蚕等の野蚕絹フィブロインの絹糸は溶解しないという欠点があった。そこで本発明者は、核磁気共鳴法を駆使して各種の溶媒中における絹フィブロインと溶媒の相互作用の研究を行い、HFIPより優れた溶媒について検討した結果、ヘキサフロロアセトン水和物(以下、単にHFAとする)が絹様物質から繊維やフィルムを作製するための優れた溶媒であることを見出すと共に、HFAに溶解した溶液を用いてエレクトロスピニングした場合には極細繊維が互いに融着した高品位の不織布が得られることを見出し、本発明に到達した。
【0005】
即ち、絹フィブロインの溶媒としての条件は、(1)絹フィブロインの強固な水素結合を切断する力を有すること、(2)短時間で絹フィブロインを溶解すること、(3)分子鎖を切断せずに絹フィブロインを溶解すること、(4)その後、長時間安定な状態で絹フィブロインを存在させられること、(5)溶液が紡糸に必要な粘度を持つこと、(6)絹フィブロインが固化した後は残存しにくいこと(脱溶媒させやすいこと)等であるが、HFAはこれら全ての条件を満たす上に、野蚕絹フィブロインをも溶解し得るという特性を有する。
【0006】
【発明が解決しようとする課題】
従って本発明の第1の目的は、低分子量化を引き起すことなく、絹及び/又は絹様材料からなる繊維、フィルム又は不織布を製造する方法を提供することにある。
本発明の第2の目的は、野蚕から得られる絹フィブロインについても繊維、フィルム又は不織布を製造することのできる方法を提供することにある。
本発明の第3の目的は、家蚕及び野蚕を適宜ブレンドした繊維、フィルムまたは不織布を提供することにある。
【0007】
【課題を解決するための手段】
本発明の上記の諸目的は、絹フィブロイン及び/又は絹様材料をヘキサフロロアセトン水和物又はそれを主成分とする溶剤に溶解した溶液から紡糸し、必要に応じて延伸することを特徴とする絹又は絹様繊維の製造方法、及び、絹フィブロイン及び/又は絹様材料をヘキサフロロアセトン水和物又はそれを主成分とする溶剤に溶解した溶液を流延し、乾燥後必要に応じて延伸することを特徴とする絹又は絹様フィルムの製造方法、又は、前記溶液をエレクトロスピニングする不織布の製造方法、並びにこれらの方法によって得られた繊維、フィルム、又は不織布によって達成された。
【0008】
【発明の実施の形態】
本発明で使用するヘキサフロロアセトンは図1のA図に示される物質であり、通常、水和物として安定に存在する。従って、本発明においても水和物として使用する。水和の数は特に限定されるものではない。本発明においては、絹様材料の性質によって、HFAを水やHFIP等で希釈して用いることも可能である。この場合でもHFAは80%以上であることが好ましい。このような希釈された溶剤を、本明細書ではHFAを主成分とする溶剤と称する。
【0009】
本発明で使用する絹フィブロインとは、家蚕、及び、エリ蚕、柞蚕、天蚕等の野蚕の絹フィブロインを意味する。また、絹様材料とは、例えば、一般式―[(GA−((GA−G−Y−(GA―や、[GGAGSGYGGGYGHGYGSDGG(GAGAGS)で表される合成蛋白質である。但し、Gはグリシン、Aはアラニン、Sはセリン、Yはチロシンである。前者についての詳細は特願2000−84141号に記載されている。尚、一般式中のAはアラニンであり、3番目毎のAはセリンであってもよい。A並びにAもアラニンであり、その一部はバリンに換っても良い。
【0010】
本発明においては、絹フィブロイン及び/又は絹様材料をHFAのみで溶解することができる。因みに、従来のHFIPの場合には家蚕絹繊維並びに野蚕絹繊維については直接溶解することができなかった。また、HFIPの場合と同様に、先ずLiBrに溶解し、透析してLiBrを除去した後流延してフィルムを作製し、得られたフィルムをHFAに溶解しても良い。この場合の溶解性はHFIPの場合より著しく良好であり、操作性が大幅に改良されるだけでなく、得られる繊維の力学的性質も、HFIPを溶媒とする場合より良好である。尚、本発明においてはHFAとHFIPの混合物を溶媒として使用することもできる。この場合、溶解しようとする蛋白質に応じて、両者の比率を適宜決定すれば良い。
【0011】
本発明においては、絹フィブロインフィルムをヘキサフロロアセトン水和物に溶解するので、分子鎖の切断が殆ど起こらず、従来より短時間で絹の溶液が得られる。更に、より溶解の時間を長くした場合には、フィルムを作製する工程を経ずに家蚕生糸を直接溶解させられる上、エリ蚕、天蚕等、野蚕絹の生糸を直接溶解させることもでき、それらの混合溶液を得ることもできる。
【0012】
本発明の絹繊維又は絹フィルム若しくは不織布は、上記のようにして得られた溶液から、公知の方法によって容易に作製することができる。即ち、繊維を製造する場合には、家蚕絹、野蚕絹、これらを基に変形した絹様材料等を溶解した紡糸液を用い、紡糸液中に紡糸するか空気中で紡糸し、必要に応じて延伸すれば良い。また、フィルムを製造する場合には、前記紡糸液をフィルム上に流延・乾燥させ、必要に応じて延伸する。不織布の場合には、前記紡糸液を用いてエレクトロスピニングする。
【0013】
上記した紡糸液を用いてエレクトロスピニングすると、数十nm〜数百nm(ナノメーター)の極細繊維による不織布を得ることが出来る。尚、エレクトロスピニング法は、高い電圧(10〜30kV)を用いて紡糸を行う方法である。この方法では、高電圧によって溶液表面に電荷が誘発、蓄積される。この電荷はお互いに反発し、この反発力は表面張力に対抗する。電場力が臨界値を越えると、電荷の反発力が表面張力を越え、荷電した溶液のジェットが噴射される。噴射されたジェットは体積に対して表面積が大きい為、溶媒が効率良く蒸発し、また体積の減少により電荷密度が高くなるため、更に細いジェットへと分裂していく。この過程により、前記した如く、数十〜数百nmの均一なフィラメントが網状コレクター(収集板)上に得られる(例えば、Fong et al.,Polymer 1999,40,4585.)。
【0014】
【発明の効果】
以上詳述した如く、HFAを用いることにより、家蚕再生絹糸はもとより、野蚕絹や合成絹糸を容易に溶解することができるだけでなく、糸の太さを変えることも、フィルム状や不織布状にすることもできるので、絹及び絹様材料の応用範囲を著しく拡大することができる。また、本発明の極細繊維からなる高品質の不織布は、特に医療材料として有用であるので産業上極めて有意義である。
【0015】
【実施例】
以下、本発明を実施例によって更に詳述するが、本発明はこれによって限定されるものではない。
実施例1.
平成11年度春繭 春嶺×鐘月を供試原料家蚕繭層として用いた。これを繰糸した後、精練によってフィブロインを覆うセリシン蛋白やその他の脂肪分などを除去し、絹フィブロインを得た。精練方法は以下の通りである。
【0016】
精練方法
0.5重量%のマルセル石鹸(第一工業製薬(株)製)水溶液を調製し、100℃に加熱した後上述した繭層を入れ、操糸後、撹拌しながら煮沸した。煮沸30分後に、100℃に加熱した蒸留水中で洗浄した。この操作を3回行い、更に蒸留水で30分間煮沸した後洗浄し、乾燥して絹フィブロインとした。
前述したように、家蚕絹フィブロインは繊維状でHFAに可溶である。しかしながら溶解には2ヶ月以上要するので、より速く溶解させるために、下記のようにして再生家蚕絹フィブロインフィルムを作製し、これを試料として用いた。
【0017】
再生家蚕絹フィブロインの作製
家蚕絹フィブロインの溶解は、9M LiBr水溶液を用い、40℃で、一時間以内で溶け残りが無くなるまで振とうすることにより行った。得られた絹フィブロイン / 9M LiBr水溶液をガラスフィルター(3G2)を用いて減圧濾過し、水溶液中のゴミ等を除去した後セルロース製の透析膜(VISKASE SELES CORP製, Seamless Cellulose Tubing, 36/32)に詰め、蒸留水を用いて4日間透析をし、LiBrを取り除いて家蚕絹フィブロイン水溶液とした。これをプラスチックプレート(栄研器材株式会社製 滅菌2号 角形シャーレ)に展開し、室温で2日間静置して水を蒸発させ、再生家蚕絹フィブロインフィルムとした。
【0018】
紡糸溶媒としてHFA・3HO(Aldrich Chem. Co.製 Fw:220.07)を用い、溶媒に溶解する絹フィブロイン濃度及び溶解速度の検討を行った(表1)。フィルムの厚さは約0.1mmであった。HFA・3HOは揮発しやすいので、加熱せずに25℃の恒温下で溶解させた結果、本実施例の場合には、紡糸に最も適した絹フィブロイン濃度は8−10重量%であることが分った。また、これらの濃度では2時間で溶解する等、全体として非常に溶解時間が短いことが明らかになった。HFA水和物にはいくつかの水和形態があり、本実施例でも3水和物及びx水和物を用いたが、溶解能に違いは見られなかった。更に、フィルムとすることなく、家蚕絹繊維を、直接HFA水和物に溶解させることもできた(絹フィブロイン濃度は10重量%)が、この場合には溶解に2ヶ月以上を要した。
【0019】
【表1】

Figure 0003972092
【0020】
HFAに絹フィブロインフィルムを投入して撹拌した後、25℃の恒温下で静置して溶解した後十分脱泡し、紡糸原液とした。紡糸原液は薄い琥珀色であった。紡糸原液をシリンダーに充填し、0.45mm径のノズルから凝固浴中に紡出した。紡出した紡糸原液を凝固させる凝固浴の最適成分条件の検討結果は、表2に示した通りである。この結果から、100%メタノールを凝固浴として用い、この凝固浴中に一晩静置した糸を未延伸試料とした。
【0021】
【表2】
Figure 0003972092
【0022】
未延伸試料を100%のメタノール中または水中に浸漬したまま延伸すると、室温で高い弾性を示した。尚、延伸せずに、浸漬後直ちに乾燥した試料は、強度及び弾性共に著しく低かった。また、延伸浴として水を選んだのは操作性がよいことからである。HFA系未延伸糸の延伸結果は、最大で4倍、平均延伸倍率は約3倍であった。そこで3倍延伸した糸を延伸済み試料とした。
【0023】
延伸した後水中から空気中に引き上げた試料は収縮した。そこで、収縮を防ぐため、延伸機に試料を固定したまま、オートクレーブ(株式会社トミー精工製 AUTOCLAVE SS−325)中で125℃の水蒸気を用いて熱処理を行った。このように高湿度熱処理を行ったにもかかわらず、乾燥過程においても試料の収縮が起こったので、延伸機に試料を固定したまま室温で乾燥し、再生絹糸とした。
以上の条件を、表3にまとめた。
【0024】
【表3】
Figure 0003972092
【0025】
試料を工業的に大量に作製することを目的とし、モノフィラメント製造装置(東伸工業(株)製)2種、及び(株)化繊ノズル製作所製のノズルを用いて、上記した一連の工程を行い再生絹糸を得た。この結果、糸切れの非常に少ない、紡糸安定性、延伸安定性に優れた再生絹糸が定常的且つ連続して得られることが実証された。
【0026】
紡糸原液の粘度測定
粘度測定サンプルは、連続紡糸で紡糸原液として用いた、絹濃度を10重量%に調整した絹フィブロイン/ HFAとした。測定には、メカニカルスペクトロメーター(Rheometric Far East. Ltd.社製 RMS−800)を用い、歪みが50% radのときにおける周波数依存性の測定を行った。 周波数を変更して粘度を測定し、この剪断速度を0に外挿して0剪断粘度を求めた。この結果、紡糸原液の粘度は18.32ポイズであった。
【0027】
溶液 13 C NMRの測定
紡糸原液中の家蚕絹フィブロインの構造解析を行うため、13C溶液NMR測定を行った。測定にはJEOL社製のalpha500 スペクトロメータを用い、パルス間隔3.00秒、積算回数12,000回、20℃で測定した。サンプルとしては、絹濃度を約3重量%に調整した絹フィブロイン/HFA・xHOを用いた。図2に示したように、HFA・xHO中での絹フィブロインに分子鎖の切断が起こっていないことは明らかである。家蚕絹フィブロインのアラニン等主要アミノ酸の化学シフト値から、家蚕絹フィブロインはαヘリックスをとっていることが判明した。
また、13C溶液NMRの測定結果から、HFA水和物はジオール(図1B図及びC図)として存在し、この中での絹フィブロインは、同じフッ素化アルコールであるHFIPとは異なる溶解形態をとっていることが明らかになった。一方、13C固体CP/MASの結果から、紡糸原液由来のフィルムの構造はαヘリックスを形成し、HFA水和物が多く残存していた。
【0028】
13 C固体CP/MAS NMRの測定
13C固体CP/MAS NMRの測定には、Chemagnetic社製のCMX400スペクトロメーターを用いた。図3のCα、Cβ領域を拡大したスペクトルから、紡糸原液由来の再生フィルム中ではαヘリックスを、再生絹糸中では家蚕絹糸同様βシート構造を形成し、紡糸によって構造転移していることが明らかになった。家蚕絹糸にHFA・xHOを加えて溶解した後乾燥させたもの、及び紡糸原液由来のフィルムには、HFA Cα、Cβ由来のピークが見られたことから、HFA・xHOは家蚕絹フィブロイン中に残存し、乾燥工程だけでは除去できないことが明らかになった。更に、紡出しただけの未延伸再生絹糸にも、強度は前者と比較して小さいもののHFA・xHO由来のピークが見られた。これらのことから、HFIP系再生絹糸の場合と同様に、凝固溶媒中に紡出しただけでは、HFA・xHOは抜け切れていないということが分かった。
【0029】
広角X線回折測定
広角X線回折用の測定サンプルとして、連続紡糸によって得られた再生絹糸(3倍延伸)を用いた。測定には理学電気(株)製の回転対陰極X線回折装置 RINT−2400を用い、40kV、100mAの条件下、ターゲットとしてCuを用いて測定した。赤道方向のディフラクトパターンから、家蚕絹糸のX線回折パターンに近い2θ=20°付近に回折ピークが現れ、βシート構造が形成されていることが分かった。第4図には、19.8°における方位角方向の配向強度を家蚕絹糸の場合とともに示した。HFA系再生絹糸と家蚕絹糸は殆ど配向性に違いは見られなかったことから、βシート結晶の結晶サイズ及び繊維軸方向への配向度は十分であると推定された。尚、A図は再生絹フィブロイン繊維、B図は絹フィブロイン繊維である。
【0030】
DSC解析
DSC測定サンプルは、得られた再生絹糸を約5mmに切りそろえたものをアルミニウム製パンに詰め、N2ガスで満たして調製した。装置としては理学電気社製のTHERMOFLEX(DSC8230D)を用い、測定温度範囲30〜350℃、昇温速度10℃/分で測定した。HFA系再生絹糸のDSC曲線は図5に示した通りである。70−80℃付近に現れる吸熱ピークは、サンプルが吸湿していた水の蒸発熱に由来するものと考えられる。
【0031】
図5には高湿度熱処理温度の異なる再生絹糸のスペクトルを示した。100℃の処理温度(図5A図)で作製した試料のスペクトルには、123℃に発熱ピークが現れた。このピークはHFIPを溶剤とした再生絹糸のスペクトルでは見られないことから、HFAが強く絹フィブロインに作用し、凝固から延伸に至るまでの間に、結晶化が完全には終了していないことが示唆された。この発熱ピークは、家蚕絹フィブロイン由来のピークとして過去の文献にはない低温域であった。しかしながら、13C固体CP/MAS NMRの測定結果については、ピークパターンが家蚕絹糸とほぼ同じであったことから、HFAが強く作用することによって結晶性が向上するということはなかったことが分る。また、家蚕絹糸では結晶成分である領域の結晶化が起こっていると推定された。
【0032】
123℃である程度乱れた結晶成分の結晶化が起こっているのであるならば、熱処理温度をそれ以上に設定して結晶化を促すことにより、力学物性に大きく関与すると考えられている配向成分を増やし、結晶化を促すことが出来ると考えられる。そこで、処理温度を125℃に設定して、作製した再生絹糸のDSC測定を行った。その結果、前述のピークは現れなかった(図5B図)。高配向した絹糸の結晶融解温度は300℃以上に現れるが、125℃で熱処理したHFA系再生絹糸はこれを満たしていた。また、結晶融解温度及びその熱容量は、HFIP系再生絹糸と比較しても優れた値を示した。これらのことから、効果的な高湿度熱処理によって、非晶及び結晶成分の結晶化を促すことが出来たと推定される。このことは、13C固体CP/MAS解析の結果、及び、引っ張り破断強伸度の結果と矛盾しない。
【0033】
引っ張り破断強伸度の測定
サンプルは、試料片70mm、紙ヤスリつかみ10mm、つかみ間隔50mmとした。測定にはテンシロン(島津製作所製、AGS−10kng)を用いた。測定法は定速伸張とし、セルは、10ニュートンのものを用いた。JIS L−0105、 L−1069、 L−1095及び、ASTM D 2101、D2258を参考にし、クロスヘッドスピード50mm/分で測定を行った。
HFA系再生絹糸を測定して得られた応力/歪み曲線より、ヤング率、引っ張り破断強度及び伸度を決定した。値は10点の平均値である。この結果を表4及び図6にまとめた。A図は、絹フィブロイン繊維の応力/歪み曲線、B図はHFA系から再生された絹フィブロイン繊維の応力/歪み曲線である。この結果、得られた再生絹糸の応力/歪み曲線は家蚕絹糸に似た形状を示し、実用に耐えうる強度、弾性及び伸度を持つ繊維であることが明らかになった。また、HFIP系再生絹糸と比較して、伸度及び強度共に同程度かそれ以上の優れた繊維が得られた。更に、得られた糸は非常に均一であり、強度、伸度共に誤差の非常に少ない糸であった。
【0034】
【表4】
Figure 0003972092
【0035】
以上の結果から、家蚕絹糸を直接HFA水和物に溶解できることが実証された。しかしながら、その溶解には2か月以上要することから、LiBr水溶液に溶解させ、LiBrを除去してからフィルムを作製し、HFA水和物に溶解することが好ましく、このようにした場合には、紡糸に適した8−10重量%濃度では、HFIP系よりも遙かに優れた操作性を示した。このように、家蚕絹フィブロイン繊維をHFIPでは溶解できないことと比較すると、HFAは家蚕絹フィブロインの強固な分子間・分子内水素結合を壊す力に優れていることが明らかになった。
【0036】
また、紡出した繊維は糸切れが起こりにくいことから、HFA水和物は分子鎖の配向や分子間・分子内水素結合の形成を妨げないと考えられる。また、HFIP糸再生絹糸と比較して収縮が少ない糸であった。しかしながら、これはHFAが完全に抜けきっていないことに由来することが示唆された。また、13C固体CP/MAS、DSC測定の結果から、100℃で高湿度熱処理した3倍延伸糸は、結晶の引き揃えが不完全であることが示された。そこで125℃で高湿度熱処理を施したところ、これにより家蚕絹糸と同等の結晶配向性を有すると共に、3系の中で最も高い結晶融解温度を持ち、結晶安定性が高くなっていることが判明した。
【0037】
得られた再生絹糸の力学物性は、HFIP系再生絹糸のそれと同等かそれより優れたものであることが明らかになった。また、得られた糸が非常に均一であることからも、HFA水和物が満遍なく絹フィブロインを溶解し、紡糸の際に起こる劇的な構造転移を妨げることなく存在することに由来すると推定された。また、最後にHFA系再生絹糸繊維化のスキームを図7にまとめた。
エリ蚕再生絹糸の作製
平成9年度繭を供試原料エリ蚕(学名:S. c. ricini)繭層として用いた。これをピンセットで細かく解きほぐし、精練によって、フィブロインを覆うセリシン蛋白やその他の脂肪分などを除去し、絹フィブロインを得た。精練方法を以下に述べる。
【0038】
精練方法
0.5重量%の炭酸水素ナトリウム(NaHCO)(和光純薬工業株式会社製, 特級, Mw:84.01)水溶液を調製し、100℃に加熱した後上述の繭層を入れ、撹拌しながら煮沸した。30分後、100℃に加熱した蒸留水中で洗浄した。この操作を5回行い、更に蒸留水で30分間煮沸、洗浄して乾燥し、絹フィブロインとした。
紡糸溶媒にHFA・xHO(東京化成工業株式会社製,Mw:166.02(Anh))を用い、溶媒に投入する絹フィブロイン濃度及びその溶解速度の検討を行った(表5)。この結果、本実験室系で最も適した絹フィブロインの濃度は10重量%であった。また、絹フィブロイン/HFA・xHO溶液は薄い黄色であった。尚、HFA・xHOは沸点が低く揮発性も高いので、加熱は行わず25℃の恒温下で溶解操作を行った。更に、紡糸溶媒に絹フィブロインを混合し撹拌した後、25℃の恒温下で静置して絹フィブロインを溶解し、十分脱泡して紡糸原液とした。
【0039】
【表5】
Figure 0003972092
【0040】
紡糸原液をシリンダーに充填し、0.45mm径のノズルから凝固浴中に紡出した。紡出した紡糸原液を凝固させる凝固浴の、最適成分条件の検討結果を表6に示した。この結果、家蚕の糸と同様の透明な糸を得ることは困難であった。この違いは1次構造にあると考えられる。この中でも比較的繊維形成能の高かった30%エタノール/アセトンを凝固浴として用い、この凝固浴中に紡糸した糸を一晩静置し、これを未延伸試料とした。
【0041】
【表6】
Figure 0003972092
【0042】
延伸条件の検討及び調整
延伸についての条件検討を行った結果、平均1.7倍に延伸できた。再生家蚕絹糸と比較すると、その延伸倍率は低いものであった。
以上の結果から、エリ蚕絹フィブロイン繊維に直接HFA・xHOを加えることにより、紡糸に適した粘度を持つ溶液を操作性良く作製することのできることが明らかになった。特に紡糸に適した粘度を持つ絹濃度は10重量%であった。尚、未延伸繊維は延伸安定性に優れず、糸切れが起こった。
【0043】
実施例2.
エレクトロスピニング法による再生家蚕絹フィブロイン不織布の作製
実施例1と同様にして、10,7,5,3,2重量%の5種類の家蚕絹フィブロイン/HFA・xHO溶液を作製した。
上記の家蚕絹フィブロイン/HFA・xHO溶液について、図8の概念図に示した実験器材を用いて、エレクトロスピニング法を実施した。図8Aは0〜30kVの可変電圧器(東和計測(株)製)である。同Bは溶液を保持するキャピラリーとして機能する、30μlのピペットマン用チップ(Porex BioProducts Inc社製)である。重力により、キャピラリー先端へ紡糸原液を押し出す為に、キャピラリーを水平より僅かに傾斜させた。同Cは溶液を帯電させる為の電極となる銅線、同Dは噴射物を収集する為の、広さ10cm×10cmで1mmの升目を有する、直径0.18mmのステンレス線からなるメッシュ(以下収集板と呼ぶ)である。また、キャピラリー先端から収集板までの距離をここでは射出距離と呼ぶ。
【0044】
この実験に際し、2重量%の溶液は、キャピラリー先端から紡糸原液が液滴として滴下する為、エレクトロスピニング法による紡糸は行えなかった。また、10重量%の溶液は、粘性が高すぎ、キャピラリー先端まで溶液が押し出されなかった為、エレクトロスピニング法による紡糸は行えなかった。これに対し、3,5及び7重量%の溶液においては、キャピラリー先端からの紡糸溶液の滴下が見られなかった。そこで3,5,7重量%の各溶液について、エレクトロスピニング法による紡糸条件の検討を行った。その結果、
a.濃度7重量%、射出距離15cm、電圧20kV
b.濃度5重量%、射出距離15cm、電圧25kV
c.濃度5重量%、射出距離20cm、電圧20kV
d.濃度3重量%、射出距離15cm、電圧15kV
の条件において、収集板上に白色の不織布が得られた。
この不織布試料を真空定温乾燥器SVK−11S(株式会社いすゞ製作所製)内で一晩、非加熱で減圧乾燥した後、99%メタノール(和光純薬工業株式会社製、一級)に一晩浸し、その後、真空定温乾燥器で一晩、非加熱で減圧乾燥した。
【0045】
走査型電子顕微鏡(SEM)による形態観察
メタノールに浸漬した後、乾燥して得られた不織布について、走査型電子顕微鏡(以下、SEMと呼ぶ)を用いて、その形態観察を行った。
金蒸着を、30mAで60秒、約15nmの厚さになるように行った(JEOL社製 JFC−1200 FINE COATER)。試料をJEOL社製 JSM−5200LV SEMで観察した。加速電圧は10kVで、ワーキングディスタンスは20であった。
図9のA、B、C、D各図は、各々紡糸条件あ、b、c、dで得られた不織布の、SEM画像である。この画像から、得られた試料が、実際に微細直径の繊維からなる不織布であることが確認された。このSEM画像上で、繊維が交叉する箇所における繊維直径を計測した。計測点は100点であった。図9のE、F、G、H各図はその結果である。家蚕絹フィブロイン溶液の濃度が低下するにつれ、直径の平均も小さくなっている。また、家蚕絹フィブロイン溶液の低下につれ、繊維の直径の分布する幅が小さくなり、均一な繊維が得られた。図9のE、F、G、H各図から、図9A図の平均直径は590nm、同B図の平均直径は440nm、同C図の平均直径は370nm、同D図の平均直径は280nmであることが判明した。
【0046】
13 C固体CP/MAS NMR測定
前記dの実験条件で得られた不織布について、13C固体CP/MAS NMRスペクトルの測定を、Chemagnetic社製のCMX400スペクトロメーターを用いて行った。図10A図は減圧乾燥のみを施した場合の試料、同B図は減圧乾燥、メタノール浸漬、及び減圧乾燥を行って得た試料のスペクトルである。
図10のCβ領域を拡大したスペクトルから、減圧乾燥のみを施した試料は主にαヘリックス構造を形成しており、減圧乾燥、メタノール浸漬、及び減圧乾燥を行った試料ではαヘリックス構造が減少し、βシート構造の割合が増加していることが明らかになった。
また、これらのスペクトルの比較から、90ppmに見られるHFA由来のピークが消失し、減圧乾燥、メタノール浸漬、及び減圧乾燥の処理により、相当量のHFAの除去を行えたことが確認された。
【0047】
実施例3.
エレクトロスピニング法による再生エリ蚕絹フィブロイン不織布状の作製
実施例1と同様にしてエリ蚕絹フィブロイン/HFA・xHO溶液を作製した。溶液の濃度としては10重量%及び7重量%の2種類を調整した。
実施例1に示した装置(図8)を用いて、エリ蚕絹フィブロイン/HFA・xHO溶液についてエレクトロスピニング法を実施した。
この実験に際し、7重量%溶液は、キャピラリー先端から紡糸原液が液滴として滴下する為、エレクトロスピニング法による紡糸は行えなかった。これに対し、10重量%溶液の場合には、キャピラリー先端からの紡糸溶液の滴下は見られなかった。実際可変電圧器の電圧を25kV、射出距離を15cmとした際に、キャピラリーから安定した溶液の噴射が確認され、収集板上に白色の不織布状サンプルを得ることが出来た。
この不織布状サンプルを真空定温乾燥器SVK−11S((株)いすゞ製作所製)内で一晩、非加熱で減圧乾燥した後、99%メタノール(和光純薬工業(株)製、一級)に一晩浸し、その後、真空定温乾燥器で一晩、非加熱で減圧乾燥した。
【0048】
走査型電子顕微鏡(SEM)による形態観察
メタノールに浸漬した後、乾燥して得られた不織布試料について、SEMを用いて、その形態観察を行った。
金蒸着を30mAで60sec、約15nmの厚さになるように行った(JEOL社製 JFC−1200 FINE COATER)。試料をSEM(JEOL社製 JSM−5200LV SCANNING MICROSCOPE)で観察した。加速電圧は10kVで、ワーキングディスタンスは20であった。
図11A図は、SEMによって得られた画像である。この画像から、得られた試料が実際に微細直径の繊維からなる不織布であることが確認できた。このSEM画像上で、繊維が交叉する箇所における繊維直径を計測した。計測点は100点であった。図11B図はその結果であり、300から400nmの間の直径を持つ繊維が最も多いことが確認された。
【0049】
13 C固体CP/MAS NMR測定
13C固体CP/MAS NMRスペクトルの測定には、Chemagnetic社製のCMX400スペクトロメーターを用いた。図12A図は減圧乾燥のみを施した試料、同B図は減圧乾燥、メタノール浸透、減圧乾燥を行った試料のスペクトルである。
図12のAlaCβ領域のスペクトルから、減圧乾燥のみを施した試料、減圧乾燥、メタノール浸漬、及び減圧乾燥を行った試料共に、αヘリックス構造を主に形成していることが明らかになった。
また、90ppmに見られるHFA由来のピークが消失したことから、減圧乾燥、メタノール浸漬、及び減圧乾燥の処理により、相当量のHFAの除去が行えたことが確認された。
【0050】
実施例4.
実施例2及び実施例3に示された方法で作製した3重量%の家蚕絹フィブロイン及び10重量%のエリ蚕絹フィブロイン/HFA・xHO溶液を、絹フィブロイン濃度が等しくなるように、混合、調整した。混合した絹フィブロイン/HFA・xHOの最終濃度は4.62重量%(家蚕絹フィブロイン、エリ蚕絹フィブロインそれぞれの濃度は2.31重量%)であった。
【0051】
エレクトロスピニング法による再生家蚕・エリ蚕絹フィブロイン混合物の不織布の作製
実施例1に示した装置(図8)を用いて、家蚕絹・エリ蚕絹フィブロイン/HFA・xHO混合溶液についてエレクトロスピニング法を実施した。
この混合溶液について射出距離、電圧を変化させエレクトロスピニング法の実施が可能な条件を検討した結果、射出距離25cm、電圧15kVとした際に、不織布状サンプルが得られた。
この条件で、5回以上実験を行った結果、すべての実験において、同じ様な不織布状サンプルが安定に得られた。
この不織布状サンプルを99%メタノール(和光純薬工業(株)製、一級)に一晩浸し、その後、真空定温乾燥器SVK−11S((株)いすゞ製作所製)内で一晩、非加熱で減圧乾燥した。
【0052】
走査型電子顕微鏡(SEM)による形態観察
メタノールに浸漬した後、乾燥して得られた試料について、SEMを用いて、その形態観察を行った。
金蒸着を30mAで60sec、約15nmの厚さになるように行った(JEOL社製 JFC−1200 FINE COATER)サンプルを、SEM(JEOL社製 JSM−5200LV SCANNING MICROSCOPE)で観察した。加速電圧は10kVで、ワーキングディスタンスは20であった。
図13A図は、SEMによって得られた画像である。この画像から得られた試料が、実際に微細直径の繊維からなる不織布であることが確認された。このSEM画像上で、繊維が交叉する箇所における繊維直径を計測した。計測点は100点であった。図13B図はその結果であり、300から400nmの間の直径を持つ繊維が最も多いことが確認された。
【0053】
13 C固体CP/MAS NMR測定
13C固体CP/MAS NMRスペクトルの測定には、Chemagnetic社製のCMX400スペクトロメーターを用いた。図14はメタノール浸漬と減圧乾燥を行ったサンプルのスペクトルである。
図14のAlaCβ領域のスペクトルから、αヘリックス構造とβシート構造が繊維中で共に形成されていることが明らかになった。
また、HFA由来のピークは見られず、メタノール浸漬と減圧乾燥の処理により、相当量のHFAの除去が行えたことが確認された。
【0054】
実施例5.
TS[GGAGSGYGGGYGHGYGSDGG(GAGAGS)AS]という配列を持つ、分子量(MW)約20000のタンパク質(以下SLP6と呼ぶ)をHFA・xHO(東京化成工業(株)製)に加え、撹拌後25℃の恒温槽で静置して溶解させ、SLP6−HFA・xHO溶液を作成した。
20重量%になるよう調整したSLP6−HFA・xHO混合液を、25℃の恒温槽で一週間静置したが、SLP6は完全には溶解しなかった。そこで、これに再びHFA・xHOを加えて12重量%になるよう調整し、三日間25℃の恒温槽に静置した。しかし、この混合液でもSLP6は完全には溶解しなかった。そのため、この混合液のうわずみのみを紡糸原液とした。
【0055】
エレクトロスピニング法によるSLP6の繊維化
実施例1に示した装置(図8)を用いて、SLP6/HFA・xHO溶液についてエレクトロスピニング法を実施した。尚、収集板にはアルミホイル(日本製箔社製)を用いた。
得られたSLP6−HFA溶液について、距離と電圧を変化させてエレクトロスピニングが可能な条件を検討した結果、射出距離10cm、電圧30kVという条件で収集板に白い皮膜が形成された。二回に分けて実験を行ったところ、二回とも上記の条件で白い皮膜(不織布)が形成された。
この試料を99%メタノール(和光純薬工業(株)製、一級)に一晩浸し、その後、真空定温乾燥器SVK−11S((株)いすゞ製作所製)内で一晩、非加熱で減圧乾燥した。
【0056】
走査型電子顕微鏡(SEM)による形態観察
メタノールに浸漬した後、乾燥して得られた試料について、SEMを用いて、その形態観察を行った。
金蒸着を30mAで60sec、約15nmの厚さになるように行った(JEOL社製 JFC−1200 FINE COATER)。試料をSEM(PHILIPS社製 XL30)で観察した。加速電圧は10kVで、ワーキングディスタンスは12.9であった。
図15A図は、SEMによって得られた画像である。この画像から得られた試料が、実際に微細直径の繊維からなる不織布であることが確認された。このSEM画像上で、繊維が交叉する箇所における繊維直径を計測した。計測点は100点であった。図15B図はその結果であり、直径を測定した繊維の半数以上が100nm以下の繊維であった。
【0057】
【配列表】
Figure 0003972092
Figure 0003972092
Figure 0003972092

【図面の簡単な説明】
【図1】A図は、本発明で紡糸溶媒として使用するヘキサフロロアセトンの原子模型図、B図は、水分子と反応したジオール型の原子模型図、C図は上記反応の反応式である。
【図2】HFA水和物中の、家蚕絹フィブロインの13C溶液NMRスペクトル。
【図3】HFA系から再生された再生絹糸及び家蚕絹フィブロインの13C固体NMRスペクトル。
【図4】A図は、HFA系から再生された絹フィブロインのX線回折パターン、B図は絹フィブロイン繊維のX線回折パターンである。
【図5】A図は、HFA系から再生された絹フィブロインを100℃で熱処理した試料のDSC図、B図は125℃で熱処理した試料のDSC図、C図は天然の家蚕フィブロイン絹糸のDSC図である。
【図6】A図は、絹フィブロイン繊維の応力/歪み曲線、B図はHFA系から再生された絹フィブロイン繊維の応力/歪み曲線である。
【図7】HFA系で絹フィブロイン繊維が再生されるときの説明図である。
【図8】エレクトロスピニングの原理図である。
【図9】実施例2の実験条件a、b、c、dで得られた不織布のSEM画像及び各不織布の直径のヒストグラムである。
【図10】A図は、減圧乾燥のみの家蚕絹不織布のNMRスペクトル図、B図は、メタノールに浸漬した後、減圧乾燥した家蚕絹不織布の13C固体NMRスペクトル図である。
【図11】A図はエリ蚕絹不織布のSEM画像、B図は該SEM画像から計算した直径のヒストグラムである。
【図12】A図は、減圧乾燥のみのエリ蚕絹不織布のNMRスペクトル図、B図は、メタノールに浸漬した後減圧乾燥したエリ蚕絹不織布の13C固体NMRスペクトル図である。
【図13】A図は家蚕絹エリ蚕絹混合不織布のSEM画像、B図は該SEM画像から計算した直径のヒストグラムである。
【図14】メタノールに浸漬した後減圧乾燥した家蚕絹エリ蚕絹混合不織布の13C固体NMRスペクトル図である。
【図15】A図は、実施例5におけるSLP6の不織布のSEM画像、B図は該画像から計算した直径のヒストグラムである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to silk or silk-like fibers, films or nonwoven fabrics, and more particularly to silk or silk-like fibers, films or nonwoven fabrics using hexafluoroacetone hydrate as a solvent and methods for producing them.
[0002]
[Prior art]
In recent years, with the advance of biotechnological technology, it has been actively attempted to produce silk-like substances having various functions using animals such as Escherichia coli, yeast and goats. Therefore, it is necessary to find an excellent solvent for producing fibers and films from silk-like substances. Moreover, it is necessary to find an excellent solvent for producing a single filament fiber having a desired thickness, which does not exist in nature, with respect to conventional rabbit silk fibers and wild silk fibers.
[0003]
Conventionally, hexafluoroisopropanol (HFIP) has been frequently used as a solvent for obtaining regenerated rabbit silk fibers that are less likely to have a reduced molecular weight and have excellent mechanical properties (US Pat. No. 5,252,285). ). However, since natural rabbit silk fiber does not dissolve in HFIP as it is, the fiber is once dissolved in a salt aqueous solution such as lithium bromide, the salt is removed by dialysis, and then cast and dried. The resulting silk fibroin film is used as HFIP. It is done to dissolve. However, in this case, there is a drawback that it takes a long time of 8 days to complete dissolution in HFIP (US Pat. No. 5,252,285).
[0004]
Further, HFIP has a drawback that silk thread of wild silk fibroin such as Eli silkworm does not dissolve. Therefore, the present inventor has studied the interaction between silk fibroin and solvent in various solvents by using the nuclear magnetic resonance method, and as a result of examining a solvent superior to HFIP, HFA) is an excellent solvent for producing fibers and films from silk-like materials, and when electrospun using a solution dissolved in HFA, the ultrafine fibers fused together The present inventors have found that a non-woven fabric of quality can be obtained and have reached the present invention.
[0005]
That is, the condition of silk fibroin as a solvent is (1) it has the ability to cut strong hydrogen bonds of silk fibroin, (2) it can dissolve silk fibroin in a short time, and (3) it can cut molecular chains. (4) The silk fibroin is allowed to exist in a stable state for a long time, (5) The solution has a viscosity necessary for spinning, and (6) The silk fibroin is solidified. However, HFA has the characteristics that it can dissolve wild silk fibroin in addition to satisfying all these conditions.
[0006]
[Problems to be solved by the invention]
Accordingly, a first object of the present invention is to provide a method for producing a fiber, film or nonwoven fabric made of silk and / or silk-like material without causing a reduction in molecular weight.
The second object of the present invention is to provide a method capable of producing a fiber, film or non-woven fabric for silk fibroin obtained from wild silkworms.
The third object of the present invention is to provide a fiber, film or nonwoven fabric in which rabbits and wild rabbits are appropriately blended.
[0007]
[Means for Solving the Problems]
The above-mentioned objects of the present invention are characterized in that silk fibroin and / or silk-like material is spun from a solution in which hexafluoroacetone hydrate or a solvent containing the same is dissolved, and is drawn as necessary. A method for producing silk or silk-like fibers, and a solution obtained by dissolving silk fibroin and / or silk-like material in hexafluoroacetone hydrate or a solvent containing the same as a main component, and after drying, as necessary It was achieved by a method for producing a silk or silk-like film characterized by stretching, a method for producing a nonwoven fabric by electrospinning the solution, and a fiber, film or nonwoven fabric obtained by these methods.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hexafluoroacetone used in the present invention is a substance shown in FIG. 1A and usually exists stably as a hydrate. Therefore, it is used as a hydrate in the present invention. The number of hydration is not particularly limited. In the present invention, HFA can be diluted with water, HFIP or the like depending on the properties of the silk-like material. Even in this case, the HFA is preferably 80% or more. Such a diluted solvent is referred to herein as a solvent mainly composed of HFA.
[0009]
Silk fibroin used in the present invention means silk fibroin of rabbits and wild silkworms such as Eli silkworms, silkworms, and tengu. The silk-like material is, for example, a general formula-[(GA1)j-((GA2)k-G-Y- (GA3)l)m]n-And [GAGGSGYGGGGYGHYGSDGG (GAGAGS)3]nIs a synthetic protein represented by However, G is glycine, A is alanine, S is serine, and Y is tyrosine. Details of the former are described in Japanese Patent Application No. 2000-84141. In the general formula, A1Is alanine and every third A1May be serine. A2And A3Is also alanine, part of which may be replaced by valine.
[0010]
In the present invention, silk fibroin and / or silk-like material can be dissolved only with HFA. Incidentally, in the case of the conventional HFIP, the silkworm silk fiber and the silkworm silk fiber could not be dissolved directly. Similarly to the case of HFIP, the film may be first dissolved in LiBr, dialyzed to remove LiBr and cast to produce a film, and the resulting film may be dissolved in HFA. The solubility in this case is significantly better than in the case of HFIP, not only the operability is greatly improved, but also the mechanical properties of the resulting fiber are better than in the case of using HFIP as a solvent. In the present invention, a mixture of HFA and HFIP can also be used as a solvent. In this case, the ratio between the two may be appropriately determined according to the protein to be dissolved.
[0011]
In the present invention, since the silk fibroin film is dissolved in hexafluoroacetone hydrate, the molecular chain is hardly broken and a silk solution can be obtained in a shorter time than before. Furthermore, when the dissolution time is made longer, the silkworm raw silk can be dissolved directly without going through the process of making a film, and the silkworm silk such as Eli and Tengu can be directly dissolved. It is also possible to obtain a mixed solution of
[0012]
  The silk fiber or silk film or nonwoven fabric of the present invention can be easily produced from the solution obtained as described above by a known method. That is, when producing fibers, use a spinning solution in which silkworm-like material, silkworm silk, and silk-like material deformed based on these are dissolved, and are spun into the spinning solution or spun in the air. Can be stretched. Moreover, when manufacturing a film, the said spinning solution is cast and dried on a film, and is extended | stretched as needed. In the case of non-woven fabric, electrospinning is performed using the spinning solution.The
[0013]
When electrospinning is performed using the spinning solution described above, a nonwoven fabric made of ultrafine fibers of several tens to several hundreds of nanometers can be obtained. The electrospinning method is a method of spinning using a high voltage (10 to 30 kV). In this method, a high voltage induces and accumulates charges on the solution surface. This charge repels each other, and this repulsive force opposes the surface tension. When the electric field force exceeds a critical value, the charge repulsion exceeds the surface tension and a jet of charged solution is ejected. Since the jetted jet has a large surface area relative to the volume, the solvent is efficiently evaporated, and the charge density is increased due to the volume reduction, so that the jet is further broken into smaller jets. Through this process, as described above, uniform filaments of several tens to several hundreds of nanometers are obtained on a net-like collector (collecting plate) (for example, Fong et al., Polymer 1999, 40, 4585.).
[0014]
【The invention's effect】
As described above in detail, by using HFA, not only silk regenerated silk but also wild silk or synthetic silk can be easily dissolved, and the thickness of the yarn can be changed into a film or nonwoven fabric. The application range of silk and silk-like materials can be significantly expanded. Moreover, since the high quality nonwoven fabric which consists of the ultrafine fiber of this invention is especially useful as a medical material, it is very significant industrially.
[0015]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in full detail, this invention is not limited by this.
Example 1.
1999 spring 繭 spring 嶺 x Kanetsuki was used as the sample raw material rabbit layer. After spinning this, sericin protein and other fats covering fibroin were removed by scouring to obtain silk fibroin. The scouring method is as follows.
[0016]
Scouring method
A 0.5% by weight aqueous solution of Marcel soap (Daiichi Kogyo Seiyaku Co., Ltd.) was prepared, heated to 100 ° C., the above-described cocoon layer was added, and the yarn was boiled with stirring after spinning. After boiling for 30 minutes, it was washed in distilled water heated to 100 ° C. This operation was performed three times, and the mixture was further boiled with distilled water for 30 minutes, washed and dried to obtain silk fibroin.
As described above, rabbit silk fibroin is fibrous and soluble in HFA. However, since it takes 2 months or more for dissolution, a regenerated rabbit silk fibroin film was prepared as described below and used as a sample for faster dissolution.
[0017]
Production of regenerated rabbit silk fibroin
Rabbit silk fibroin was dissolved by using a 9M LiBr aqueous solution and shaking at 40 ° C. until there was no undissolved residue within one hour. The obtained silk fibroin / 9M LiBr aqueous solution was filtered under reduced pressure using a glass filter (3G2) to remove dust and the like in the aqueous solution, and then a dialysis membrane made of cellulose (manufactured by VISKASE SELES CORP, Sealless Cellulose Tube, 36/32). And dialyzed for 4 days using distilled water to remove LiBr to obtain an aqueous silk fibroin solution. This was spread on a plastic plate (sterilized No. 2 square petri dish manufactured by Eiken Kikai Co., Ltd.) and allowed to stand at room temperature for 2 days to evaporate water to obtain a regenerated silk silk fibroin film.
[0018]
HFA / 3H as spinning solvent2Using O (Aldrich Chem. Co. Fw: 220.07), the silk fibroin concentration and dissolution rate dissolved in the solvent were examined (Table 1). The thickness of the film was about 0.1 mm. HFA ・ 3H2Since O tends to volatilize, it was found that the silk fibroin concentration most suitable for spinning was 8-10% by weight in this example as a result of dissolution at a constant temperature of 25 ° C. without heating. It was. Moreover, it became clear that the dissolution time was very short as a whole, such as dissolution in 2 hours at these concentrations. There are several hydrated forms of HFA hydrate. In this example, trihydrate and x hydrate were used, but no difference in solubility was observed. Furthermore, it was possible to directly dissolve rabbit silk fibers in HFA hydrate without forming a film (silk fibroin concentration was 10% by weight), but in this case, it took two months or more for dissolution.
[0019]
[Table 1]
Figure 0003972092
[0020]
A silk fibroin film was added to HFA and stirred, and then allowed to stand and dissolve at a constant temperature of 25 ° C., and then sufficiently defoamed to obtain a spinning dope. The spinning dope was light amber. The spinning solution was filled in a cylinder and spun into a coagulation bath from a 0.45 mm diameter nozzle. The examination results of the optimum component conditions of the coagulation bath for coagulating the spun stock solution are as shown in Table 2. From this result, 100% methanol was used as a coagulation bath, and a yarn left overnight in this coagulation bath was used as an unstretched sample.
[0021]
[Table 2]
Figure 0003972092
[0022]
When an unstretched sample was stretched while immersed in 100% methanol or water, it exhibited high elasticity at room temperature. Incidentally, the sample which was not stretched and dried immediately after immersion was extremely low in both strength and elasticity. Moreover, the reason why water was selected as the stretching bath is that the operability is good. The drawing result of the HFA undrawn yarn was 4 times at maximum and the average draw ratio was about 3 times. Therefore, a stretched sample was used as a three-fold stretched yarn.
[0023]
After stretching, the sample pulled up from the water into the air contracted. Therefore, in order to prevent shrinkage, heat treatment was performed using steam at 125 ° C. in an autoclave (manufactured by TOMY Seiko Co., Ltd., AUTOCLAVE SS-325) while fixing the sample to the stretching machine. In spite of the high-humidity heat treatment as described above, the sample contracted during the drying process, so that the sample was dried at room temperature with the sample fixed to a drawing machine to obtain a regenerated silk thread.
The above conditions are summarized in Table 3.
[0024]
[Table 3]
Figure 0003972092
[0025]
In order to produce a large amount of samples industrially, the above-described series of steps are performed using two types of monofilament manufacturing apparatuses (manufactured by Toshin Kogyo Co., Ltd.) and nozzles manufactured by Kasei Nozzle Co., Ltd. Regenerated silk was obtained. As a result, it was proved that a regenerated silk yarn having very little yarn breakage and excellent spinning stability and stretching stability can be obtained constantly and continuously.
[0026]
Viscosity measurement of spinning dope
The viscosity measurement sample was silk fibroin / HFA adjusted to 10% by weight of silk used as a spinning dope for continuous spinning. For the measurement, a mechanical spectrometer (Rheometric Far East. Ltd. RMS-800) was used, and the frequency dependence was measured when the strain was 50% rad. The viscosity was measured by changing the frequency, and the shear rate was extrapolated to 0 to obtain the 0 shear viscosity. As a result, the viscosity of the spinning dope was 18.32 poise.
[0027]
solution 13 C NMR measurement
To analyze the structure of rabbit silk fibroin in the spinning dope,13C solution NMR measurement was performed. For measurement, an alpha500 spectrometer manufactured by JEOL was used, and measurement was performed at a pulse interval of 3.00 seconds, an integration number of 12,000 times, and 20 ° C. As a sample, silk fibroin / HFA xH with silk concentration adjusted to about 3% by weight2O was used. As shown in FIG. 2, HFA · xH2It is clear that no molecular chain breakage occurred in silk fibroin in O. From the chemical shift values of major amino acids such as alanine in rabbit silk fibroin, it was found that rabbit silk fibroin has an α helix.
Also,13From the measurement results of C solution NMR, HFA hydrate exists as a diol (FIGS. 1B and C), and silk fibroin in this has a different dissolved form from HFIP, which is the same fluorinated alcohol. It became clear. on the other hand,13From the result of C solid CP / MAS, the structure of the film derived from the spinning dope formed an α helix, and a lot of HFA hydrate remained.
[0028]
13 Measurement of C solid CP / MAS NMR
13For the measurement of C solid CP / MAS NMR, a CMX400 spectrometer manufactured by Chemanetic was used. From the enlarged spectrum of the Cα and Cβ regions in Fig. 3, it is clear that the α-helix is formed in the recycled film derived from the spinning dope, and the β-sheet structure is formed in the recycled silk similar to the silkworm silk, and the structure is changed by spinning. became. Rabbit silk with HFA xH2OFA was added after dissolution and dried, and the film derived from the spinning solution showed peaks derived from HFA Cα and Cβ.2It was revealed that O remains in the silkworm silk fibroin and cannot be removed only by the drying process. Furthermore, the unstretched regenerated silk that has just been spun has a strength lower than that of the former, but HFA · xH2A peak derived from O was observed. From these facts, as in the case of HFIP-based regenerated silk, only spinning in a coagulation solvent yields HFA · xH.2It turned out that O was not missing.
[0029]
Wide angle X-ray diffraction measurement
As a measurement sample for wide-angle X-ray diffraction, a regenerated silk thread (3-fold stretching) obtained by continuous spinning was used. The measurement was carried out using a rotating anti-cathode X-ray diffractometer RINT-2400 manufactured by Rigaku Denki Co., Ltd., using Cu as a target under the conditions of 40 kV and 100 mA. From the diffracted pattern in the equator direction, it was found that a diffraction peak appeared in the vicinity of 2θ = 20 ° close to the X-ray diffraction pattern of rabbit silk thread, and a β sheet structure was formed. FIG. 4 shows the orientation strength in the azimuth direction at 19.8 ° together with the case of rabbit silk. Since there was almost no difference in orientation between the HFA-based regenerated silk yarn and the rabbit silk yarn, it was estimated that the crystal size of the β sheet crystal and the degree of orientation in the fiber axis direction were sufficient. Fig. A shows regenerated silk fibroin fiber, and Fig. B shows silk fibroin fiber.
[0030]
DSC analysis
The DSC measurement sample was prepared by cutting the regenerated silk thread obtained to about 5 mm and filling it in an aluminum pan and filling it with N2 gas. As the apparatus, THERMOFLEX (DSC8230D) manufactured by Rigaku Denki Co., Ltd. was used, and measurement was performed at a measurement temperature range of 30 to 350 ° C. and a temperature increase rate of 10 ° C./min. The DSC curve of the HFA-based regenerated silk is as shown in FIG. It is considered that the endothermic peak appearing near 70-80 ° C. is derived from the heat of vaporization of water that has been absorbed by the sample.
[0031]
FIG. 5 shows spectra of regenerated silk yarns with different high-humidity heat treatment temperatures. An exothermic peak appeared at 123 ° C. in the spectrum of the sample prepared at a treatment temperature of 100 ° C. (FIG. 5A). Since this peak is not observed in the spectrum of regenerated silk using HFIP as a solvent, HFA strongly acts on silk fibroin, and crystallization is not completely completed between solidification and stretching. It was suggested. This exothermic peak was a low temperature region not found in the past literature as a peak derived from silkworm fibroin. However,13About the measurement result of C solid CP / MAS NMR, since the peak pattern was substantially the same as that of a silkworm silk, it turns out that crystallinity did not improve by strong action of HFA. In addition, it was estimated that in the silkworm silk thread, crystallization occurred in the crystalline component region.
[0032]
If crystallization of crystal components disturbed to some extent is occurring at 123 ° C, the orientation component, which is considered to be greatly involved in mechanical properties, is increased by setting the heat treatment temperature to be higher than that to promote crystallization. It is thought that crystallization can be promoted. Therefore, the processing temperature was set to 125 ° C., and DSC measurement was performed on the produced recycled silk. As a result, the aforementioned peak did not appear (FIG. 5B). The crystal melting temperature of the highly oriented silk yarn appeared at 300 ° C. or higher, but the HFA-based regenerated silk heat-treated at 125 ° C. satisfied this. In addition, the crystal melting temperature and its heat capacity showed excellent values even when compared with the HFIP regenerated silk yarn. From these facts, it is presumed that crystallization of amorphous and crystalline components could be promoted by effective high-humidity heat treatment. This means13This is consistent with the results of C solid CP / MAS analysis and the results of tensile strength at break.
[0033]
Measurement of tensile strength at break
The sample was a sample piece 70 mm, a paper file grip 10 mm, and a grip interval 50 mm. Tensilon (manufactured by Shimadzu Corporation, AGS-10 kng) was used for the measurement. The measurement method was constant speed extension, and the cell used was 10 Newton. Measured at a crosshead speed of 50 mm / min with reference to JIS L-0105, L-1069, L-1095 and ASTM D2101, D2258.
Young's modulus, tensile strength at break, and elongation were determined from the stress / strain curve obtained by measuring the HFA-based regenerated silk. The value is an average of 10 points. The results are summarized in Table 4 and FIG. Fig. A is a stress / strain curve of silk fibroin fiber, and Fig. B is a stress / strain curve of silk fibroin fiber regenerated from the HFA system. As a result, the stress / strain curve of the obtained regenerated silk showed a shape similar to that of rabbit silk, and it was revealed that the fiber had strength, elasticity and elongation that could withstand practical use. Further, excellent fibers having the same or higher elongation and strength than the HFIP regenerated silk yarn were obtained. Further, the obtained yarn was very uniform, and the yarn had very few errors in both strength and elongation.
[0034]
[Table 4]
Figure 0003972092
[0035]
From the above results, it was demonstrated that rabbit silk thread can be directly dissolved in HFA hydrate. However, since it takes 2 months or more for dissolution, it is preferable to dissolve in LiBr aqueous solution, remove LiBr and then make a film, and dissolve in HFA hydrate. At 8-10 wt% concentration suitable for spinning, the operability was far superior to that of the HFIP system. Thus, it became clear that HFA is superior in the ability to break the strong intermolecular and intramolecular hydrogen bonds of rabbit silk fibroin compared to the fact that rabbit silk fibroin fiber cannot be dissolved by HFIP.
[0036]
Further, since the spun fibers are less likely to break, it is considered that HFA hydrate does not hinder the orientation of molecular chains and the formation of intermolecular / intramolecular hydrogen bonds. Moreover, it was a thread | yarn with little shrinkage | contraction compared with the HFIP yarn reproduction | regeneration silk thread. However, this suggests that HFA is not completely removed. Also,13The results of C solid CP / MAS and DSC measurements showed that the triple-drawn yarn heat-treated at 100 ° C. under high humidity has incomplete crystal alignment. Therefore, when high-humidity heat treatment was performed at 125 ° C., it was found that this has crystal orientation equivalent to that of silkworm silk, and has the highest crystal melting temperature among the three systems, and has high crystal stability. did.
[0037]
It was revealed that the mechanical properties of the obtained regenerated silk were equivalent to or better than those of the HFIP regenerated silk. Moreover, since the obtained yarn is very uniform, it is presumed that HFA hydrate uniformly dissolves silk fibroin and exists without interfering with the dramatic structural transition that occurs during spinning. It was. Finally, the scheme for making HFA-based regenerated silk fibers is summarized in FIG.
Preparation of Eli silk regenerated silk thread
Fiscal 1997 rice cake was used as a test raw material rice cake (scientific name: S. c. Ricini). This was finely unwound with tweezers and scouring to remove sericin protein and other fats covering fibroin to obtain silk fibroin. The scouring method is described below.
[0038]
Scouring method
0.5 wt% sodium bicarbonate (NaHCO3) (Manufactured by Wako Pure Chemical Industries, Ltd., special grade, Mw: 84.01) An aqueous solution was prepared, heated to 100 ° C., and then the above-mentioned soot layer was added and boiled with stirring. After 30 minutes, it was washed in distilled water heated to 100 ° C. This operation was performed 5 times, and further boiled with distilled water for 30 minutes, washed and dried to obtain silk fibroin.
Spin solvent as HFA / xH2Using O (manufactured by Tokyo Chemical Industry Co., Ltd., Mw: 166.02 (Anh)), the silk fibroin concentration to be introduced into the solvent and the dissolution rate thereof were examined (Table 5). As a result, the most suitable silk fibroin concentration in this laboratory system was 10% by weight. Silk fibroin / HFA xH2The O solution was light yellow. HFA xH2Since O has a low boiling point and high volatility, the melting operation was performed at a constant temperature of 25 ° C. without heating. Further, silk fibroin was mixed with the spinning solvent and stirred, and then allowed to stand at a constant temperature of 25 ° C. to dissolve the silk fibroin and sufficiently defoamed to obtain a spinning dope.
[0039]
[Table 5]
Figure 0003972092
[0040]
The spinning solution was filled in a cylinder and spun into a coagulation bath from a 0.45 mm diameter nozzle. Table 6 shows the examination results of the optimum component conditions of the coagulation bath for coagulating the spun stock solution. As a result, it was difficult to obtain a transparent yarn similar to that of rabbits. This difference is considered to be in the primary structure. Among these, 30% ethanol / acetone having a relatively high fiber forming ability was used as a coagulation bath, and the spun yarn in this coagulation bath was allowed to stand overnight, and this was used as an unstretched sample.
[0041]
[Table 6]
Figure 0003972092
[0042]
Examination and adjustment of stretching conditions
As a result of investigating the conditions for stretching, it was possible to stretch on average 1.7 times. Compared with the regenerated rabbit silk thread, the draw ratio was low.
From the above results, EFA silk fibroin fiber is directly applied to HFA · xH.2It became clear that by adding O, a solution having a viscosity suitable for spinning can be prepared with good operability. The silk concentration having a viscosity particularly suitable for spinning was 10% by weight. In addition, the undrawn fiber was not excellent in drawing stability, and yarn breakage occurred.
[0043]
Example 2
Fabrication of recycled rabbit silk fibroin nonwoven fabric by electrospinning method
In the same manner as in Example 1, five kinds of silk cocoon fibroin / HFA · xH of 10, 7, 5, 3, 2% by weight2An O solution was prepared.
The above rabbit silk fibroin / HFA xH2The electrospinning method was implemented about the O solution using the experimental equipment shown in the conceptual diagram of FIG. FIG. 8A is a 0-30 kV variable voltage device (manufactured by Towa Measurement Co., Ltd.). B is a 30 μl pipetteman tip (manufactured by Porex BioProducts Inc) that functions as a capillary for holding the solution. In order to push the spinning solution to the tip of the capillary by gravity, the capillary was slightly inclined from the horizontal. C is a copper wire that serves as an electrode for charging the solution, and D is a 10 cm wide x 10 cm 1 mm collection to collect the spray.2A mesh made of stainless steel wire having a diameter of 0.18 mm (hereinafter referred to as a collecting plate). In addition, the distance from the capillary tip to the collecting plate is referred to herein as the injection distance.
[0044]
In this experiment, the 2% by weight solution could not be spun by electrospinning because the spinning solution dropped as a droplet from the capillary tip. Further, the 10% by weight solution was too viscous, and the solution was not pushed out to the tip of the capillary, so spinning by the electrospinning method could not be performed. On the other hand, no dripping of the spinning solution from the capillary tip was observed in the 3, 5 and 7 wt% solutions. Therefore, the spinning conditions by the electrospinning method were examined for 3, 5 and 7% by weight of each solution. as a result,
a. Concentration 7% by weight, injection distance 15cm, voltage 20kV
b. Concentration 5 wt%, injection distance 15 cm, voltage 25 kV
c. Concentration 5 wt%, injection distance 20 cm, voltage 20 kV
d. Concentration 3% by weight, injection distance 15cm, voltage 15kV
Under these conditions, a white nonwoven fabric was obtained on the collecting plate.
The nonwoven fabric sample was dried in a vacuum constant temperature dryer SVK-11S (manufactured by Isuzu Seisakusho Co., Ltd.) overnight under reduced pressure without heating, and then immersed in 99% methanol (manufactured by Wako Pure Chemical Industries, Ltd., first grade) overnight. Thereafter, the film was dried under reduced pressure in a vacuum constant temperature drier overnight without heating.
[0045]
Morphological observation by scanning electron microscope (SEM)
After immersing in methanol, the nonwoven fabric obtained by drying was observed for its morphology using a scanning electron microscope (hereinafter referred to as SEM).
Gold deposition was performed at 30 mA for 60 seconds to a thickness of about 15 nm (JEOL JFC-1200 FINE COATER). The sample was observed with JSM-5200LV SEM manufactured by JEOL. The acceleration voltage was 10 kV and the working distance was 20.
A, B, C, and D in FIG. 9 are SEM images of nonwoven fabrics obtained under the spinning conditions b, c, and d, respectively. From this image, it was confirmed that the obtained sample was actually a nonwoven fabric composed of fine-diameter fibers. On this SEM image, the fiber diameter at the location where the fibers intersect was measured. There were 100 measurement points. Each figure of E, F, G, and H in FIG. 9 shows the results. As the concentration of the silkworm silk fibroin solution decreases, the average diameter decreases. Further, as the silk silk fibroin solution was lowered, the width of the fiber diameter distribution was reduced, and a uniform fiber was obtained. 9E, the average diameter of FIG. 9A is 590 nm, the average diameter of B is 440 nm, the average diameter of C is 370 nm, and the average diameter of D is 280 nm. It turned out to be.
[0046]
13 C solid CP / MAS NMR measurement
About the nonwoven fabric obtained under the experimental conditions of d above,13The measurement of C solid CP / MAS NMR spectrum was performed using a CMX400 spectrometer manufactured by Chemanetic. FIG. 10A is a spectrum of a sample when only vacuum drying is performed, and FIG. B is a spectrum of a sample obtained by performing vacuum drying, methanol immersion, and vacuum drying.
From the spectrum obtained by enlarging the Cβ region in FIG. 10, the sample subjected only to vacuum drying has mainly formed an α helix structure, and the sample subjected to vacuum drying, methanol immersion, and vacuum drying has a decreased α helix structure. It was revealed that the proportion of β sheet structure increased.
From comparison of these spectra, it was confirmed that the HFA-derived peak at 90 ppm disappeared, and a considerable amount of HFA could be removed by vacuum drying, methanol immersion, and vacuum drying.
[0047]
Example 3
Fabrication of recycled Eli silk fibroin nonwoven by electrospinning method
Eli silk fibroin / HFA xH in the same manner as in Example 12An O solution was prepared. As the concentration of the solution, two types of 10% by weight and 7% by weight were prepared.
By using the apparatus shown in Example 1 (FIG. 8), Eli silk fibroin / HFA · xH2An electrospinning method was performed on the O solution.
In this experiment, the 7 wt% solution could not be spun by the electrospinning method because the spinning solution was dropped from the capillary tip as droplets. On the other hand, in the case of the 10% by weight solution, no dripping of the spinning solution from the capillary tip was observed. Actually, when the voltage of the variable voltage device was 25 kV and the injection distance was 15 cm, stable injection of the solution was confirmed from the capillary, and a white nonwoven fabric sample could be obtained on the collecting plate.
This nonwoven fabric sample was dried in a vacuum constant temperature dryer SVK-11S (made by Isuzu Seisakusho Co., Ltd.) overnight under non-heating under reduced pressure, and then 99% methanol (made by Wako Pure Chemical Industries, Ltd., first grade) It was soaked overnight, and then dried in a vacuum constant temperature oven overnight under reduced pressure without heating.
[0048]
Morphological observation by scanning electron microscope (SEM)
About the nonwoven fabric sample obtained by immersing in methanol and drying, the form observation was performed using SEM.
Gold vapor deposition was performed at 30 mA for 60 sec to a thickness of about 15 nm (JFC-JINE 1200 JINE COATER). The sample was observed with SEM (JSMOL JSM-5200LV SCANNING MICROSCOPE). The acceleration voltage was 10 kV and the working distance was 20.
FIG. 11A is an image obtained by SEM. From this image, it was confirmed that the obtained sample was actually a nonwoven fabric made of fine-diameter fibers. On this SEM image, the fiber diameter at the location where the fibers intersect was measured. There were 100 measurement points. FIG. 11B shows the result, and it was confirmed that the number of fibers having a diameter between 300 and 400 nm was the largest.
[0049]
13 C solid CP / MAS NMR measurement
13For the measurement of the C solid CP / MAS NMR spectrum, a CMX400 spectrometer manufactured by Chemical was used. FIG. 12A is a spectrum of a sample subjected only to vacuum drying, and FIG. B is a spectrum of a sample subjected to vacuum drying, methanol permeation, and vacuum drying.
From the spectrum of the AlaCβ region in FIG. 12, it was found that the α helix structure was mainly formed in the sample subjected only to vacuum drying, the sample subjected to vacuum drying, methanol immersion, and vacuum drying.
Moreover, since the peak derived from HFA seen at 90 ppm disappeared, it was confirmed that a considerable amount of HFA could be removed by the treatment of reduced pressure drying, methanol immersion, and reduced pressure drying.
[0050]
Example 4
3% by weight of rabbit silk fibroin and 10% by weight of Eli silk fibroin / HFA.xH prepared by the method shown in Example 2 and Example 3.2The O solution was mixed and adjusted so that the silk fibroin concentration was equal. Mixed silk fibroin / HFA xH2The final concentration of O was 4.62% by weight (the concentration of each of silkworm fibroin and eri silk fibroin was 2.31% by weight).
[0051]
Fabrication of non-woven fabric of recycled rabbit and Eli silk fibroin mixture by electrospinning method
By using the apparatus shown in Example 1 (FIG. 8), silkworm silk and Eli silk fibroin / HFA xH2The electrospinning method was performed on the O mixed solution.
As a result of examining conditions under which the electrospinning method can be carried out by changing the injection distance and voltage for this mixed solution, a nonwoven fabric sample was obtained when the injection distance was 25 cm and the voltage was 15 kV.
As a result of conducting the experiment five times or more under these conditions, the same nonwoven fabric sample was stably obtained in all experiments.
This non-woven sample is immersed in 99% methanol (manufactured by Wako Pure Chemical Industries, Ltd., first grade) overnight, and then is heated overnight in a vacuum constant temperature dryer SVK-11S (made by Isuzu Seisakusho). It was dried under reduced pressure.
[0052]
Morphological observation by scanning electron microscope (SEM)
After immersing in methanol, the sample obtained by drying was observed for morphology using SEM.
Gold vapor deposition was performed at 30 mA for 60 sec and a thickness of about 15 nm (JEOL JFC-1200 FINE COATER) sample was observed with SEM (JEOL JSM-5200LV SCANNING MICROSCOPE). The acceleration voltage was 10 kV and the working distance was 20.
FIG. 13A is an image obtained by SEM. It was confirmed that the sample obtained from this image was actually a non-woven fabric made of fine diameter fibers. On this SEM image, the fiber diameter at the location where the fibers intersect was measured. There were 100 measurement points. FIG. 13B shows the result, and it was confirmed that the number of fibers having a diameter between 300 and 400 nm was the largest.
[0053]
13 C solid CP / MAS NMR measurement
13For the measurement of the C solid CP / MAS NMR spectrum, a CMX400 spectrometer manufactured by Chemical was used. FIG. 14 shows a spectrum of a sample subjected to methanol immersion and vacuum drying.
From the spectrum of the AlaCβ region in FIG. 14, it was revealed that an α helix structure and a β sheet structure were formed in the fiber.
In addition, no HFA-derived peak was observed, and it was confirmed that a considerable amount of HFA could be removed by methanol immersion and vacuum drying.
[0054]
Example 5 FIG.
TS [GAGGSGYGGGGYHGYGSGDG (GAGAGS)3AS]6A protein with a molecular weight (MW) of about 20000 (hereinafter referred to as SLP6) having the sequence of2In addition to O (manufactured by Tokyo Chemical Industry Co., Ltd.), after stirring, let stand in a thermostatic bath at 25 ° C. to dissolve, SLP6-HFA · xH2An O solution was made.
SLP6-HFA xH adjusted to 20 wt%2The O mixture was allowed to stand in a constant temperature bath at 25 ° C. for one week, but SLP6 was not completely dissolved. So again this is HFA xH2O was added to adjust to 12% by weight and left in a thermostatic bath at 25 ° C. for 3 days. However, SLP6 was not completely dissolved even in this mixed solution. Therefore, only the swirl of this mixed solution was used as the spinning dope.
[0055]
Fiber formation of SLP6 by electrospinning method
Using the apparatus shown in Example 1 (FIG. 8), SLP6 / HFA · xH2An electrospinning method was performed on the O solution. Note that aluminum foil (manufactured by Nihon Foil Co., Ltd.) was used for the collecting plate.
The obtained SLP6-HFA solution was examined for conditions capable of electrospinning by changing the distance and voltage. As a result, a white film was formed on the collecting plate under the conditions of an injection distance of 10 cm and a voltage of 30 kV. When the experiment was conducted twice, a white film (nonwoven fabric) was formed both times under the above conditions.
This sample was immersed in 99% methanol (manufactured by Wako Pure Chemical Industries, Ltd., first grade) overnight, and then dried in a vacuum constant temperature dryer SVK-11S (manufactured by Isuzu Seisakusho Co., Ltd.) overnight under reduced pressure without heating. did.
[0056]
Morphological observation by scanning electron microscope (SEM)
After immersing in methanol, the sample obtained by drying was observed for morphology using SEM.
Gold vapor deposition was performed at 30 mA for 60 sec to a thickness of about 15 nm (JFC-JINE 1200 JINE COATER). The sample was observed with SEM (XL30 manufactured by PHILIPS). The acceleration voltage was 10 kV and the working distance was 12.9.
FIG. 15A is an image obtained by SEM. It was confirmed that the sample obtained from this image was actually a non-woven fabric made of fine diameter fibers. On this SEM image, the fiber diameter at the location where the fibers intersect was measured. There were 100 measurement points. FIG. 15B shows the result, and more than half of the fibers whose diameters were measured were fibers of 100 nm or less.
[0057]
[Sequence Listing]
Figure 0003972092
Figure 0003972092
Figure 0003972092

[Brief description of the drawings]
FIG. 1A is an atomic model diagram of hexafluoroacetone used as a spinning solvent in the present invention, FIG. B is a diol type atomic model diagram that has reacted with water molecules, and FIG. C is a reaction formula of the above reaction. .
[Fig. 2] Rabbit silk fibroin in HFA hydrate13C solution NMR spectrum.
[Fig. 3] Regenerated silk thread and rabbit silk fibroin regenerated from HFA system13C solid state NMR spectrum.
4A is an X-ray diffraction pattern of silk fibroin regenerated from an HFA system, and FIG. 4B is an X-ray diffraction pattern of silk fibroin fiber.
5A is a DSC diagram of a sample heat-treated silk fibroin regenerated from an HFA system at 100 ° C., FIG. B is a DSC diagram of a sample heat-treated at 125 ° C., and FIG. C is a DSC of natural rabbit fibroin silk. FIG.
FIG. 6A is a stress / strain curve of silk fibroin fiber, and FIG. 6B is a stress / strain curve of silk fibroin fiber regenerated from an HFA system.
FIG. 7 is an explanatory diagram when silk fibroin fibers are regenerated in an HFA system.
FIG. 8 is a principle diagram of electrospinning.
9 is an SEM image of a nonwoven fabric obtained under the experimental conditions a, b, c, and d of Example 2 and a histogram of the diameters of the respective nonwoven fabrics.
FIG. 10A is an NMR spectrum diagram of a rabbit silk nonwoven fabric that is dried only under reduced pressure. FIG. 10B is a diagram of a rabbit silk nonwoven fabric that has been immersed in methanol and then dried under reduced pressure.13It is a C solid state NMR spectrum diagram.
FIG. 11A is an SEM image of Eli silk non-woven fabric, and FIG. B is a histogram of diameters calculated from the SEM image.
FIG. 12A is an NMR spectrum diagram of Eri silk silk nonwoven fabric only dried under reduced pressure, and FIG.13It is a C solid state NMR spectrum diagram.
FIG. 13A is an SEM image of a silkworm-silk mixed silk nonwoven fabric, and FIG. 13B is a histogram of diameters calculated from the SEM image.
FIG. 14 shows a mixture of non-woven silkworm silk silkworms that has been immersed in methanol and then dried under reduced pressure.13It is a C solid state NMR spectrum diagram.
15A is an SEM image of a non-woven fabric of SLP6 in Example 5, and FIG. B is a histogram of diameters calculated from the image.

Claims (11)

絹フィブロイン及び/又は絹様材料をヘキサフロロアセトン水和物又はそれを主成分とする溶剤に溶解した溶液から紡糸し、必要に応じて延伸することを特徴とする絹又は絹様繊維の製造方法。  A method for producing silk or silk-like fibers, characterized in that silk fibroin and / or silk-like material is spun from a solution in which hexafluoroacetone hydrate or a solvent containing it as a main component is dissolved, and is drawn as necessary. . 絹フィブロイン及び/又は絹様材料をリチウムブロマイドに溶解させた水溶液から、透析によってリチウムブロマイドを除去した後フィルムを作製し、該フィルムをヘキサフロロアセトン水和物又はそれを主成分とする溶剤に溶解する、請求項1に記載された絹又は絹様繊維の製造方法。  After removing lithium bromide by dialysis from an aqueous solution in which silk fibroin and / or silk-like material is dissolved in lithium bromide, a film is prepared, and the film is dissolved in hexafluoroacetone hydrate or a solvent containing it as a main component. The method for producing silk or silk-like fiber according to claim 1. 絹フィブロイン及び/又は絹様材料をヘキサフロロアセトン水和物又はそれを主成分とする溶剤に溶解した溶液を流延し、乾燥後必要に応じて延伸することを特徴とする絹又は絹様フィルムの製造方法。  A silk or silk-like film characterized by casting a solution prepared by dissolving silk fibroin and / or silk-like material in hexafluoroacetone hydrate or a solvent containing the same as a main component, and drying and then stretching as necessary. Manufacturing method. 絹フィブロイン及び/又は絹様材料をヘキサフロロアセトン水和物又はそれを主成分とする溶剤に溶解し、次いでエレクトロスピニングすることを特徴とする絹及び/又は絹様材料の極細繊維からなる不織布の製造方法。  A non-woven fabric comprising ultrafine fibers of silk and / or silk-like material, wherein silk fibroin and / or silk-like material is dissolved in hexafluoroacetone hydrate or a solvent containing the same, and then electrospun. Production method. エレクトロスピニングされる溶液中の絹及び/又は絹様材料の濃度が3〜10重量%である、請求項4に記載された不織布の製造方法。  The method for producing a nonwoven fabric according to claim 4, wherein the concentration of silk and / or silk-like material in the electrospun solution is 3 to 10% by weight. 請求項1の方法によって製造された絹又は絹様繊維。  A silk or silk-like fiber produced by the method of claim 1. 少なくとも野蚕絹が含有されている、請求項6に記載された絹又は絹様繊維。  The silk or silk-like fiber according to claim 6 containing at least wild silk. 請求項3の方法によって製造された、絹又は絹様フィルム。  A silk or silk-like film produced by the method of claim 3. 請求項4の方法によって製造された、家蚕絹フィブロイン、野蚕絹フィブロイン及び絹様材料の中から選択された少なくとも1種の極細繊維からなることを特徴とする不織布。A non-woven fabric comprising at least one ultrafine fiber selected from the group consisting of rabbit silk fibroin, wild silk fibroin and silk-like material , produced by the method of claim 4 . 前記極細繊維が数十nm〜数百nmである、請求項9に記載された不織布。  The nonwoven fabric according to claim 9, wherein the ultrafine fibers are several tens nm to several hundreds nm. 前記極細繊維が、少なくとも家蚕絹又は野蚕絹を含有する、請求項9又は10に記載された不織布。  The nonwoven fabric according to claim 9 or 10, wherein the ultrafine fiber contains at least silkworm silk or wild silk.
JP2002069905A 2001-03-14 2002-03-14 Methods for producing fibers, films and nonwoven fabrics of silk and silk-like materials, and fibers, films or nonwoven fabrics produced by these methods Expired - Lifetime JP3972092B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002069905A JP3972092B6 (en) 2001-03-14 2002-03-14 Methods for producing fibers, films and nonwoven fabrics of silk and silk-like materials, and fibers, films or nonwoven fabrics produced by these methods

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002572175 2001-03-14
JP2002572175A JPWO2002072931A1 (en) 2001-03-14 2001-03-14 Method for producing fiber and film of silk and silk-like material
JP2002069905A JP3972092B6 (en) 2001-03-14 2002-03-14 Methods for producing fibers, films and nonwoven fabrics of silk and silk-like materials, and fibers, films or nonwoven fabrics produced by these methods

Publications (3)

Publication Number Publication Date
JP2004068161A JP2004068161A (en) 2004-03-04
JP3972092B2 true JP3972092B2 (en) 2007-09-05
JP3972092B6 JP3972092B6 (en) 2007-11-28

Family

ID=

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245427A (en) * 2012-05-29 2013-12-09 Toyoda Gosei Co Ltd Method for producing antibacterial regenerated silk
CN107641841A (en) * 2017-09-15 2018-01-30 厦门大学 Regenerated silk fiber of polystyrene induction mesoscopic structure enhancing and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245427A (en) * 2012-05-29 2013-12-09 Toyoda Gosei Co Ltd Method for producing antibacterial regenerated silk
CN107641841A (en) * 2017-09-15 2018-01-30 厦门大学 Regenerated silk fiber of polystyrene induction mesoscopic structure enhancing and preparation method thereof
CN107641841B (en) * 2017-09-15 2020-03-27 厦门大学 Polystyrene-induced mesostructure-enhanced regenerated silk fiber and preparation method thereof

Also Published As

Publication number Publication date
JP2004068161A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
WO2002072937A1 (en) Non-woven fabric comprising ultra-fine fiber of silk fibroin and/or silk-like material, and method for production thereof
Chen et al. Preparation of non-woven mats from all-aqueous silk fibroin solution with electrospinning method
Srinivasan et al. Structure and morphology of small diameter electrospun aramid fibers
EP0636716B1 (en) Water soluble polyvinyl alcohol-based fiber
US7709088B2 (en) Inorganic fibers, fiber structure and process for their production
JP5257943B2 (en) Method for producing silk protein nanofiber
JPH06346314A (en) Regenerated silk fibroin yarn and its production
WO2007004848A1 (en) Aromatic polyamide filament and method of manufacturing the same
Mhuka et al. Fabrication and structural characterization of electrospun nanofibres from Gonometa Postica and Gonometa Rufobrunnae regenerated silk fibroin
Ozturk et al. Thermal analysis of PVA nanofibrous membranes
JP3972092B2 (en) Methods for producing fibers, films and nonwoven fabrics of silk and silk-like materials, and fibers, films or nonwoven fabrics produced by these methods
JP4773902B2 (en) Nanofiber nonwoven fabric and method for producing the same
JP3972092B6 (en) Methods for producing fibers, films and nonwoven fabrics of silk and silk-like materials, and fibers, films or nonwoven fabrics produced by these methods
JP4172888B2 (en) Monofilament and method for producing the same
Srivastava et al. Recent developments in regenerated silk fibroin fibers
JP4009370B2 (en) Production method of polyester fiber
KR20100105157A (en) Process of producing nano size meta-aramid fibrils
JP7445456B2 (en) Nylon 4 fiber and its manufacturing method
WO2011077958A1 (en) Aggregates of collagen fibers, and process for production thereof
KR101652567B1 (en) A method for preparing polyvinyl alcohol nano nonwoven fabric by the heterogeneous surface saponification of polyvinyl acetate nano nonwoven fabric prepared by electrospinning
JP6541086B1 (en) Method for producing molded articles of polymer substance
JP2010260006A (en) Filter material
DULO et al. Controllable Fabrication of Spider-web-like Structured Anaphe Panda Regenerated Silk Nano-fibers/nets via Electro-netting
JP2010227839A (en) High-strength filter
Zhang Electrospun PAN and CA based bicomponent fibers: Nanoporosity and surface features

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070516

R150 Certificate of patent or registration of utility model

Ref document number: 3972092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term