JP2013245427A - Method for producing antibacterial regenerated silk - Google Patents

Method for producing antibacterial regenerated silk Download PDF

Info

Publication number
JP2013245427A
JP2013245427A JP2012122212A JP2012122212A JP2013245427A JP 2013245427 A JP2013245427 A JP 2013245427A JP 2012122212 A JP2012122212 A JP 2012122212A JP 2012122212 A JP2012122212 A JP 2012122212A JP 2013245427 A JP2013245427 A JP 2013245427A
Authority
JP
Japan
Prior art keywords
fibroin
silk
antibacterial
treatment
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012122212A
Other languages
Japanese (ja)
Inventor
Ayumi Iwata
阿佑美 岩田
Naoto Kuriyama
直人 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2012122212A priority Critical patent/JP2013245427A/en
Publication of JP2013245427A publication Critical patent/JP2013245427A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide regenerated silk obtained by forming fibroin with antibacterial properties.SOLUTION: The method for producing antibacterial regenerated silk includes: a water-dissolving process for dissolving fibroin obtained from silk in an aqueous solution containing a lithium salt to provide a fibroin aqueous solution; a demineralization process for removing lithium salts from the fibroin aqueous solution; a drying process for drying the fibroin aqueous solution after the demineralization process to provide dried fibroin; an organic solvent-dissolving process for dissolving the dried fibroin in a fluorine-based organic solvent to provide a fibroin organic solution; and a forming process for forming fibroin into a predetermined form by pouring the fibroin organic solution in alcohol or evaporating the fluorine-based organic solvent from the fibroin organic solution to provide an antibacterial regenerated silk.

Description

本発明は、フィブロインを成形してなる再生シルクの製造方法に関するものである。   The present invention relates to a method for producing recycled silk formed by molding fibroin.

従来の抗菌性繊維は、材料に銀イオン、無機微粒子等を混ぜ込んで抗菌性を付与している。   Conventional antibacterial fibers are provided with antibacterial properties by mixing silver ions, inorganic fine particles and the like into the material.

蚕の繭から作るシルクは、衣服、化粧品、食品等に使用されている。また、シルクは生体適合性が知られている材料であるので人体への安全性も高いと考えられている。そのため、シルクは、手術用の縫合糸として用いられるなど、近年は、医療関連製品への開発も行われている。また、シルク又はシルク由来のフィブロインに銀イオン、銅イオン等の抗菌性金属イオンを吸着させて抗菌性を付与する技術が特許文献1、2に記載されている。   Silk made from silkworm cocoons is used for clothes, cosmetics, foods, and so on. Further, since silk is a material that is known for biocompatibility, it is considered to be highly safe for the human body. Therefore, in recent years, silk has been developed as a medical-related product, such as being used as a surgical suture. Patent Documents 1 and 2 describe a technique for imparting antibacterial properties by adsorbing antibacterial metal ions such as silver ions and copper ions to silk or silk-derived fibroin.

しかし、抗菌性繊維に混ぜ込まれる銀イオン等の抗菌性金属イオンや無機微粒子は、その種類によっては金属アレルギーを引き起こすおそれがあった。   However, antibacterial metal ions such as silver ions mixed with antibacterial fibers and inorganic fine particles may cause metal allergy depending on the type.

なお、抗菌性繊維ではないものの、特許文献3〜5には、次のようなフィブロインに関する記載がある。
特許文献3には、効果の程度は不明であるが、絹フィブロインが抗菌性を持つことの記載がある。
特許文献4には、尿素とメルカプトエタノールとを含む水溶液を用いて繭からセリシンを除去してフィブロインを得ることの記載がある。
特許文献5には、セリシンとフィブロインとをヘキサフルオロイソプロパノール(HFIP)に溶解した溶液を用いて静電紡糸して、繊維を得ることの記載がある。
In addition, although it is not an antibacterial fiber, patent documents 3-5 have the following description regarding fibroin.
Patent Document 3 describes that silk fibroin has antibacterial properties although the degree of effect is unknown.
Patent Document 4 describes that fibroin is obtained by removing sericin from sputum using an aqueous solution containing urea and mercaptoethanol.
Patent Document 5 describes that fibers are obtained by electrostatic spinning using a solution obtained by dissolving sericin and fibroin in hexafluoroisopropanol (HFIP).

特開2003−227064号公報JP 2003-227064 A 特開2004−18757号公報JP 2004-18757 A 特開2005−298782号公報JP 2005-298882 A 特開2001−163899号公報JP 2001-163899 A 特開2007−303015号公報JP 2007-303015 A

本発明は、新しい処理により、フィブロインを成形してなる再生シルクに様々な菌に対する抗菌性を付与することを目的とする。また、本発明で製造された再生シルクと熱硬化性や熱可塑性の樹脂との複合化により、再生シルクが有する、様々な菌に対しての抗菌性・消臭性を維持したまま樹脂成形品を得ることもできるようにし、もって該樹脂成形品の衛生用品等への活用も期待できるようにする。   An object of the present invention is to impart antibacterial properties against various fungi to a regenerated silk formed by molding fibroin by a new treatment. In addition, by combining the regenerated silk produced in accordance with the present invention with a thermosetting or thermoplastic resin, the resin molded product maintains the antibacterial and deodorant properties against various fungi possessed by the regenerated silk. Thus, the resin molded product can be expected to be used for hygiene products.

本出願の発明者は、家蚕繭を脱セリシン処理したシルクを原料にして所定の方法で製造された再生シルクが優れた抗菌性を有することをことを見出した(表1〜4参照)。但し、この再生シルクに優れた抗菌性が発現するメカニズムは本発明の処理に内在されていると考えているが、そのメカニズムの詳細については明確ではない。   The inventor of the present application has found that regenerated silk produced by a predetermined method using silk obtained by removing sericin from rabbits has excellent antibacterial properties (see Tables 1 to 4). However, although the mechanism by which the excellent antibacterial properties are exhibited in the regenerated silk is considered to be inherent in the treatment of the present invention, the details of the mechanism are not clear.

本発明の抗菌性再生シルクの製造方法は、シルクから得たフィブロインをリチウム塩を含む水溶液に溶解してフィブロイン水溶液を得る水溶解処理と、前記フィブロイン水溶液から前記リチウム塩を除去する脱塩処理と、前記脱塩処理後の前記フィブロイン水溶液を乾燥して乾燥フィブロインを得る乾燥処理と、前記乾燥フィブロインをフッ素系の有機溶媒に溶解してフィブロイン有機溶液を得る有機溶解処理と、前記フィブロイン有機溶液をアルコール中に入れて又は前記フィブロイン有機溶液から前記有機溶媒を蒸発させて、フィブロインを所定形状に成形してなる抗菌性の再生シルクを得る成形処理とを含む。   The method for producing an antibacterial regenerated silk of the present invention comprises a water dissolution treatment for dissolving fibroin obtained from silk in an aqueous solution containing a lithium salt to obtain a fibroin aqueous solution, and a desalting treatment for removing the lithium salt from the fibroin aqueous solution. Drying the fibroin aqueous solution after the desalting treatment to obtain dry fibroin, dissolving the dried fibroin in a fluorine-based organic solvent to obtain a fibroin organic solution, and the fibroin organic solution. And forming the antibacterial regenerated silk obtained by forming the fibroin into a predetermined shape by evaporating the organic solvent from the fibroin organic solution.

本発明における各要素の態様を以下に例示する。   The aspect of each element in the present invention is exemplified below.

1.シルク
シルクは、特に限定されないが、シルク製の衣料品等の廃品や端材等から得られたものや、蚕の繭から得られたもの等を例示できる。
蚕は、特に限定されないが、家蚕であってもよいし、野蚕であってもよい。
1. Silk Silk is not particularly limited, and examples thereof include those obtained from waste products such as silk clothing and scrap materials, and those obtained from cocoons.
The kite is not particularly limited, but may be a rabbit or a savage.

蚕の繭からシルクを得る方法は、特に限定されないが、尿素とメルカプトエタノールとトリス(ヒドロキシメチル)アミノメタン(Tris)とを含む処理水に蚕の繭を入れてセリシンを溶解除去する脱セリシン処理で得る方法を例示できる。
脱セリシン処理に用いられる処理水の各成分の濃度は、特に限定されないが、尿素の濃度は6〜10M、メルカプトエタノールの濃度は1〜5体積%、Trisの濃度は20〜100mMを例示できる。また、脱セリシン処理時の処理水の温度は、特に限定されないが、70〜100℃を例示できる。
The method for obtaining silk from the cocoon cocoons is not particularly limited, but the sericin treatment is performed by dissolving and removing sericin by putting the cocoon cocoons in treated water containing urea, mercaptoethanol, and tris (hydroxymethyl) aminomethane (Tris). The method obtained by (1) can be illustrated.
Although the density | concentration of each component of the treated water used for a desericin process is not specifically limited, The density | concentration of urea can illustrate 6-10M, the density | concentration of mercaptoethanol 1-5 volume%, and the density | concentration of Tris can illustrate 20-100 mM. Moreover, although the temperature of the treated water at the time of a desericin process is not specifically limited, 70-100 degreeC can be illustrated.

2.リチウム塩
リチウム塩としては、特に限定されないが、チオシアン酸リチウム、臭化リチウム、硝酸リチウム、塩化リチウム等を例示できる。
2. Lithium salt The lithium salt is not particularly limited, and examples thereof include lithium thiocyanate, lithium bromide, lithium nitrate, and lithium chloride.

3.フッ素系の有機溶媒
フッ素系の有機溶媒としては、特に限定されないが、ヘキサフルオロイソプロパノール(HFIP)、フルオロアセトン(HFA)等を例示でき、フィブロインの溶解性が高く、高濃度のフィブロイン有機溶液が得やすいことから、HFIPが好ましい。
3. Fluorine-based organic solvent The fluorine-based organic solvent is not particularly limited, and examples thereof include hexafluoroisopropanol (HFIP), fluoroacetone (HFA), etc., and high fibroin solubility and a high-concentration fibroin organic solution can be obtained. HFIP is preferred because it is easy.

4.水溶解処理
水溶解処理に用いられるリチウム塩を含む水溶液のリチウム塩濃度は、特に限定されないが、質量比で水の1〜1.3倍、即ち、水100gに対して、リチウム塩は100〜130gの量を例示できる。
フィブロインに対するリチウム塩を含む水溶液の量は、特に限定されないが、質量比でフィブロインの40〜100倍、即ち、フィブロイン1gに対して、リチウム塩を含む水溶液は40〜100gの量を例示できる。
フィブロインを溶解する時の温度、即ち、液温は、特に限定されないが、20〜40℃を例示できる。
4). Water dissolution treatment The lithium salt concentration of the aqueous solution containing the lithium salt used in the water dissolution treatment is not particularly limited, but it is 1 to 1.3 times as much water as the mass ratio, that is, the lithium salt is 100 to 100 g of water. An amount of 130 g can be exemplified.
Although the quantity of the aqueous solution containing the lithium salt with respect to fibroin is not specifically limited, 40-100 times of fibroin by mass ratio, ie, the aqueous solution containing lithium salt with respect to 1g of fibroin can illustrate the quantity of 40-100g.
Although the temperature at the time of melt | dissolving fibroin, ie, a liquid temperature, is not specifically limited, 20-40 degreeC can be illustrated.

5.脱塩処理
脱塩処理の方法は、特に限定されないが、透析、限外ろ過、ゲルろ過クロマトグラフィー、脱塩カラム等を例示でき、処理量によって使い分けることができることから、透析が好ましい。
5. Desalting Treatment The desalting treatment method is not particularly limited, but dialysis, ultrafiltration, gel filtration chromatography, desalting column, and the like can be exemplified, and dialysis is preferred because they can be used properly depending on the amount of treatment.

6.乾燥処理
乾燥処理の方法は、特に限定されないが、HFIP等の有機溶媒に溶け易い(多孔質状の)乾燥フィブロインが得られることから、脱塩処理後のフィブロイン水溶液を凍結乾燥して乾燥フィブロインを得る方法が好ましい。
6). Drying treatment The method of the drying treatment is not particularly limited, but a (fibrous) dried fibroin that is easily soluble in an organic solvent such as HFIP can be obtained. Thus, the desiccated fibroin aqueous solution is freeze-dried to obtain dried fibroin. The obtaining method is preferred.

7.有機溶解処理
乾燥フィブロインに対するフッ素系の有機溶媒の量は、特に限定されないが、乾燥フィブロイン1gに対して、6〜20mLの量を例示できる。
乾燥フィブロインを溶解する時の温度、即ち、液温は、特に限定されないが、30〜60℃を例示できる。
7). Organic dissolution treatment The amount of the fluorine-based organic solvent relative to the dried fibroin is not particularly limited, but an amount of 6 to 20 mL can be exemplified with respect to 1 g of the dried fibroin.
Although the temperature at the time of melt | dissolving dry fibroin, ie, a liquid temperature, is not specifically limited, 30-60 degreeC can be illustrated.

8.再生シルクの形状
再生シルクの形状は、特に限定されないが、糸状、フィルム状、多孔質状(スポンジ状)等を例示できる。
糸状の再生シルクの態様は、特に限定されないが、中実糸であってもよいし、中空糸であってもよい。
8). Shape of regenerated silk The shape of regenerated silk is not particularly limited, and examples thereof include a thread shape, a film shape, and a porous shape (sponge shape).
The form of the thread-like recycled silk is not particularly limited, but may be a solid thread or a hollow thread.

9.成形処理
成形処理に用いられるアルコールとしては、特に限定されないが、メタノール、エタノール、プロパノール、イソプロパノール等を例示できる。
9. Molding process The alcohol used for the molding process is not particularly limited, and examples thereof include methanol, ethanol, propanol, and isopropanol.

本発明によれば、フィブロインを成形してなる再生シルクに様々な菌に対する抗菌性を付与することができる。また、本発明で製造された再生シルクと熱硬化性や熱可塑性の樹脂との複合化により、再生シルクが有する、様々な菌に対しての抗菌性・消臭性を維持したまま樹脂成形品を得ることもできるようにし、もって該樹脂成形品の衛生用品等への活用も期待できるようにする。   ADVANTAGE OF THE INVENTION According to this invention, the antibacterial property with respect to various microbe can be provided to the reproduction | regeneration silk formed by shape | molding fibroin. In addition, by combining the regenerated silk produced in accordance with the present invention with a thermosetting or thermoplastic resin, the resin molded product maintains the antibacterial and deodorant properties against various fungi possessed by the regenerated silk. Thus, the resin molded product can be expected to be used for hygiene products.

次に示す本発明の実施例の方法により、糸状又はフィルム状の抗菌性の再生シルクを製造した。   A thread-like or film-like antibacterial recycled silk was produced by the following method of the present invention.

<脱セリシン処理>
家蚕の繭20個を切りきざんで得た9.0gの原料繭を、尿素、メルカプトエタノール及びトリス(ヒドロキシメチル)アミノメタン(Tris)を水に溶かした400mLの処理水(尿素濃度が8M、メルカプトエタノール濃度が2体積%、Tris濃度が50mM)に入れ、80℃で5時間半攪拌して、原料繭に含まれているセリシンを処理水中に溶解させた。
その後、この処理水から不溶分のシルク(フィブロイン)をろ別し、ろ別で得られたシルクを蒸留水で洗浄した後、30℃の恒温槽中に約半日間静置して乾燥し、6.7gのシルクを得た。
<Desericin treatment>
9.0 mL of raw material obtained from chopping 20 rabbits was treated with 400 mL of treated water (urea concentration 8M, mercapto) in which urea, mercaptoethanol and tris (hydroxymethyl) aminomethane (Tris) were dissolved in water. The ethanol concentration was 2% by volume and the Tris concentration was 50 mM), and the mixture was stirred at 80 ° C. for 5 and a half hours to dissolve sericin contained in the raw material koji in the treated water.
Thereafter, insoluble silk (fibroin) is filtered off from the treated water, and the silk obtained by filtration is washed with distilled water, and then left to stand in a thermostatic bath at 30 ° C. for about half a day and dried. 6.7 g of silk was obtained.

<水溶解処理>
上記で得られた6.7gのシルクを、130gのチオシアン酸リチウムを100mLの水に溶かした水溶液に浸し、シルクを溶解させて、約200mLのフィブロイン水溶液を得た。
<Water dissolution treatment>
6.7 g of the silk obtained above was immersed in an aqueous solution obtained by dissolving 130 g of lithium thiocyanate in 100 mL of water, and the silk was dissolved to obtain about 200 mL of an aqueous fibroin solution.

<脱塩処理>
上記で得られた約200mLのフィブロイン水溶液を、再生セルロースからなる10本の透析チューブに約20mLずつ入れた後、処理されるフィブロイン水溶液の約50〜65倍の量(体積)の蒸留水が入れられた容器に各透析チューブを4〜6日間浸して、透析によりチオシアン酸リチウムを除去した。なお、各透析チューブを蒸留水に浸している期間中に各容器中の蒸留水を2回入れ替えた。
<Desalination treatment>
About 20 mL of the about 200 mL of fibroin aqueous solution obtained above is put into 10 dialysis tubes made of regenerated cellulose, and then about 50 to 65 times (volume) of distilled water is added to the fibroin aqueous solution to be treated. Each dialysis tube was immersed in the resulting container for 4 to 6 days, and lithium thiocyanate was removed by dialysis. In addition, the distilled water in each container was replaced twice during the period in which each dialysis tube was immersed in distilled water.

<乾燥処理>
上記で得られた、チオシアン酸リチウムが除去されたフィブロイン水溶液を、四等分し、それぞれを−50℃のエタノール浴中に約1時間静置して予備凍結を行った後、1〜2日間凍結乾燥を行い、6.0gの多孔質状の乾燥フィブロインを得た。なお、得られた乾燥フィブロインは、100ppmのチオシアン酸リチウムを含有していた。
<Drying process>
The fibroin aqueous solution from which lithium thiocyanate was removed, obtained as described above, was divided into four equal parts, each was allowed to stand in an ethanol bath at -50 ° C. for about 1 hour and pre-frozen, and then for 1-2 days. Freeze drying was performed to obtain 6.0 g of porous dry fibroin. The obtained dry fibroin contained 100 ppm of lithium thiocyanate.

<有機溶解処理>
上記で得られた1.76gの乾燥フィブロインを、17.6mLのヘキサフルオロイソプロパノール(HFIP)に入れ、50℃で3日間攪拌して、フィブロインHFIP溶液を得た。
<Organic dissolution treatment>
1.76 g of the dried fibroin obtained above was placed in 17.6 mL of hexafluoroisopropanol (HFIP) and stirred at 50 ° C. for 3 days to obtain a fibroin HFIP solution.

<糸状再生シルク成形処理>
上記で得られたフィブロインHFIP溶液を、内径0.25mmのノズル(長さが30mm)が付けられた2.5mLのシリンジに入れ、ノズルの先端部をエタノール中につけた状態で、フィブロインHFIP溶液をノズルの先端開口からエタノール中に吐出して、フィブロインを糸状に成形してなる、直径が約120μmの糸状再生シルクを得た。
<Thread-like recycled silk molding process>
The fibroin HFIP solution obtained above is put into a 2.5 mL syringe with a nozzle (length: 30 mm) having an inner diameter of 0.25 mm, and the fibroin HFIP solution is placed in a state where the tip of the nozzle is placed in ethanol. A filamentous regenerated silk having a diameter of about 120 μm, which was formed by discharging fibroin into a thread shape, was discharged into ethanol from the nozzle tip opening.

<フィルム状再生シルク成形処理>
上記で得られたフィブロインHFIP溶液をアルミニウム製の容器に流し込み、アルミニウム容器ごとドラフト内に入れ、20〜30℃の温度の常圧中で24時間静置し、フィブロインHFIP溶液からHFIPを蒸発させて、フィブロインをフィルム状に成形してなるフィルム状再生シルクを得た。
<Film-like recycled silk molding process>
The fibroin HFIP solution obtained above is poured into an aluminum container, and the aluminum container is placed in a fume hood and allowed to stand for 24 hours at a normal pressure of 20 to 30 ° C. to evaporate HFIP from the fibroin HFIP solution. A film-like recycled silk obtained by forming fibroin into a film was obtained.

上記で得られた糸状又はフィルム状の抗菌性の再生シルクの抗菌性及び消臭性を測定した。   The antibacterial properties and deodorizing properties of the antibacterial recycled silks obtained as described above were measured.

(1)糸状再生シルクの抗菌性試験
JIS L1902(繊維製品の抗菌性試験方法及び抗菌効果)を準用して糸状再生シルクの抗菌性試験を行い、黄色ぶどう球菌に対する結果を表1に、大腸菌に対する結果を表2に示す。また、比較試料として、家蚕繭(家蚕繭そのもの)、脱セリシン繭(前記脱セリシン処理で得られたシルク)、PET(ポリエチレンテレフタレート)繊維及びナイロン繊維についても抗菌性試験を行い、その結果を表1、2に示す。なお、JIS L1902の標準布には、綿を用いた。
(1) Antibacterial test of filamentous regenerated silk JIS L1902 (antibacterial test method and antibacterial effect of textile products) was applied mutatis mutandis, and the antibacterial property test of filamentous regenerated silk was performed. The results are shown in Table 2. As comparative samples, rabbits (rabbit itself), de-sericin lees (silk obtained by the de-sericin treatment), PET (polyethylene terephthalate) fibers, and nylon fibers were also tested for antibacterial properties. 1 and 2. In addition, cotton was used for the standard cloth of JIS L1902.

Figure 2013245427
Figure 2013245427

Figure 2013245427
Figure 2013245427

○試験条件
定量試験:菌液吸収法
生菌数の測定法:混釈平板培養法
試験菌種:黄色ぶどう球菌(Staphylococcus aureus NBRC12732)
:大腸菌(Escherichia coli NBRC3301)
検体数:各試料3
検体重さ:0.2g
接種菌液量:0.1mL
試験菌懸濁液:非イオン界面活性剤0.05%添加
○ Test conditions Quantitative test: Bacterial liquid absorption method Viable count method: Pour plate culture method Test strain: Staphylococcus aureus NBRC12732
: E. coli (Escherichia coli NBRC3301)
Number of specimens: each sample 3
Sample weight: 0.2g
Inoculum volume: 0.1 mL
Test bacteria suspension: 0.05% nonionic surfactant added

○試験操作
バイアル瓶中に検体(0.2g)を入れ、菌液(0.1mL)を検体に接種した後、バイアル瓶のキャップを締める。その後、37℃で18時間培養した。その後、検体から菌を洗い出して、生菌数を測定した。
○ Test operation Put a sample (0.2 g) in a vial, inoculate a sample with a bacterial solution (0.1 mL), and then tighten the cap of the vial. Then, it culture | cultivated at 37 degreeC for 18 hours. Thereafter, the bacteria were washed out from the specimen, and the number of viable bacteria was measured.

○測定項目
各試料ごとに生菌数の常用対数値の平均値及び殺菌活性値を求めた。
○ Measurement item The average value of the common logarithm of the number of viable bacteria and the bactericidal activity value were determined for each sample.

表1、2に示すように、本実施例の方法で製造された糸状再生シルクは、黄色ぶどう球菌及び大腸菌の殺菌活性値が0以上であることから、黄色ぶどう球菌及び大腸菌に対する抗菌効果が認められた。これに対し、脱セリシン繭を含め、全ての比較試料は、黄色ぶどう球菌及び大腸菌の殺菌活性値が0未満であることから、黄色ぶどう球菌及び大腸菌に対する抗菌効果が認められなかった。   As shown in Tables 1 and 2, the filamentous regenerated silk produced by the method of this example has an antibacterial activity against Staphylococcus aureus and Escherichia coli because the bactericidal activity value of Staphylococcus aureus and Escherichia coli is 0 or more. It was. On the other hand, since all the comparative samples including de-sericin sputum had bactericidal activity values of Staphylococcus aureus and Escherichia coli of less than 0, antibacterial effects against Staphylococcus aureus and Escherichia coli were not recognized.

(2)フィルム状再生シルクの抗菌性試験
JIS Z2801(抗菌加工製品−抗菌性試験方法・抗菌効果 フィルム密着法)に準じてフィルム状再生シルクの抗菌性試験を行い、黄色ぶどう球菌に対する結果を表3に、大腸菌に対する結果を表4に示す。また、比較試料としてナイロンフィルムについても抗菌性試験を行い、その結果を表3に示す。なお、JIS Z2801の無加工試験片としてポリエチレンフィルムを用いた。
(2) Antibacterial test of film-like recycled silk Antibacterial test of film-like recycled silk was performed according to JIS Z2801 (antibacterial processed product-antibacterial test method / antibacterial effect film adhesion method), and the results for Staphylococcus aureus were expressed. 3 shows the results for E. coli. Moreover, the antibacterial property test was done also about the nylon film as a comparative sample, and the result is shown in Table 3. A polyethylene film was used as an unprocessed test piece of JIS Z2801.

Figure 2013245427
Figure 2013245427

Figure 2013245427
Figure 2013245427

○試験条件
試験菌種:黄色ぶどう球菌(Staphylococcus aureus NBRC12732)
:大腸菌(Escherichia coli NBRC3972)
菌液調製溶液:1/500NB培地
試験片数:各試料3
試験片大きさ:5cm×5cm
試験菌液接種量:0.4mL
無加工試料:ポリエチレンフィルム
○ Test conditions Test species: Staphylococcus aureus NBRC12732
: E. coli (Escherichia coli NBRC3972)
Bacterial solution preparation solution: 1/500 NB medium Number of test pieces: Each sample 3
Test piece size: 5cm x 5cm
Test bacterial solution inoculum: 0.4 mL
Unprocessed sample: Polyethylene film

○試験操作
試験面を上にして試験片(5cm×5cm)を滅菌済みシャーレ内に置き、試験菌液(0.4mL)を試験片に滴下した後、滴下した試験菌液の上にフィルムをかぶせて試験菌液がフィルム全体に行きわたるようにして、シャーレのふたをする。その後、24時間培養した。その後、試験片から試験菌を洗い出して菌液を完全に回収し、生菌数を測定した。
○ Test operation Place the test piece (5cm × 5cm) in the sterilized petri dish with the test surface facing up, drop the test bacterial solution (0.4mL) on the test piece, and then place the film on the dropped test bacterial solution. Cover the petri dish so that the test solution spreads over the entire film. Thereafter, the cells were cultured for 24 hours. Thereafter, the test bacteria were washed out from the test piece, the bacterial solution was completely recovered, and the number of viable bacteria was measured.

○測定項目
各試料ごとに生菌数の常用対数値の平均値及び抗菌活性値を求めた。
○ Measurement items The average value of the common logarithm of the number of viable bacteria and the antibacterial activity value were determined for each sample.

表3、4に示すように、本実施例の方法で製造されたフィルム状再生シルクは、黄色ぶどう球菌及び大腸菌の抗菌活性値が2.0以上であることから、黄色ぶどう球菌及び大腸菌に対する抗菌効果が認められた。これに対し、ナイロンフィルムは、黄色ぶどう球菌の抗菌活性値が2.0未満であることから、黄色ぶどう球菌に対する抗菌効果が認められなかった。   As shown in Tables 3 and 4, since the film-like regenerated silk produced by the method of this example has an antibacterial activity value of Staphylococcus aureus and Escherichia coli of 2.0 or more, antibacterial activity against Staphylococcus aureus and Escherichia coli The effect was recognized. On the other hand, the nylon film has an antibacterial activity against Staphylococcus aureus because the antibacterial activity of Staphylococcus aureus is less than 2.0.

(3)フィルム状再生シルクの消臭効果試験
フィルム状再生シルクの消臭効果試験を行い、その結果を表5に示す。
(3) Deodorizing effect test of film-like recycled silk Deodorizing effect test of film-like recycled silk was conducted, and the results are shown in Table 5.

Figure 2013245427
Figure 2013245427

○試験方法
予め重さを計っておいた試験片をテドラーバッグ5L内に入れた後、各テドラーバッグ内にアンモニアガス10L(アンモニア100ppm、バランスガスは窒素を使用)を入れて試験を行った。なお、アンモニアガスの初期濃度は116ppmであった。
Test Method A test piece weighed in advance was placed in the Tedlar bag 5L, and then 10 L of ammonia gas (100 ppm of ammonia, nitrogen was used as the balance gas) was placed in each Tedlar bag. The initial concentration of ammonia gas was 116 ppm.

○測定項目
所定時間経過後のテドラーバッグ内のアンモニアガスの濃度を、検知管(GASTEC社製のアンモニア用、No.3La、No.3L)を用いて、検知管法により測定した。なお、24時間後の測定は、8時間後のテドラーバッグから行った。
○ Measurement item The concentration of ammonia gas in the Tedlar bag after the lapse of a predetermined time was measured by a detection tube method using a detection tube (for ammonia manufactured by GASTEC, No. 3La, No. 3L). The measurement after 24 hours was carried out from a Tedlar bag after 8 hours.

表5に示すように、本実施例の方法で製造されたフィルム状再生シルクが入れられたテドラーバッグ内のアンモニアガスの濃度が、ブランクのテドラーバッグ内のアンモニアガスの濃度より低く推移していることから、本実施例の方法で製造されたフィルム状再生シルクは、アンモニアの消臭効果があるものと認められた。   As shown in Table 5, the concentration of ammonia gas in the Tedlar bag containing the film-like recycled silk produced by the method of the present example is lower than the concentration of ammonia gas in the blank Tedlar bag. The film-like recycled silk produced by the method of this example was recognized as having a deodorizing effect on ammonia.

以上より、本発明の実施例で製造された抗菌性の再生シルクは、黄色ぶどう球菌及び大腸菌に対しての抗菌性及び消臭性を備えている。
それ故、本発明の実施例で製造された抗菌性の再生シルクを熱硬化性や熱可塑性の樹脂と複合化することにより、様々な菌に対する抗菌性・消臭性がある樹脂成形品を得ることができ、得られた樹脂成形品を衛生用品等に適用することができる。
また、本発明の実施例で製造された抗菌性の再生シルクは、銀イオン等の抗菌性金属イオンや無機微粒子が添加されていなくても抗菌性を備えている。なお、本発明は、銀イオン等の抗菌性金属イオンや無機微粒子が添加されたものを排除するものではない。
本発明は、フィブロインを溶解して用いることから、糸状だけでなくフィルム状やスポンジ状等の多様な形態の抗菌性の再生シルクを得ることができる。
本発明は、フィブロインを溶解して用いることから、絹糸として使えないくず繭を原料として有効利用することができる。
From the above, the antibacterial regenerated silk produced in the examples of the present invention has antibacterial and deodorant properties against Staphylococcus aureus and Escherichia coli.
Therefore, by combining the antibacterial regenerated silk produced in the examples of the present invention with a thermosetting or thermoplastic resin, a resin molded product having antibacterial and deodorizing properties against various bacteria is obtained. The obtained resin molded product can be applied to hygiene products and the like.
In addition, the antibacterial regenerated silk produced in the examples of the present invention has antibacterial properties even when antibacterial metal ions such as silver ions and inorganic fine particles are not added. The present invention does not exclude the addition of antibacterial metal ions such as silver ions or inorganic fine particles.
In the present invention, fibroin is dissolved and used, so that various forms of antibacterial regenerated silk such as film and sponge can be obtained as well as yarn.
In the present invention, since fibroin is dissolved and used, waste cocoons that cannot be used as silk thread can be effectively used as a raw material.

なお、本発明は前記実施例に限定されるものではなく、発明の趣旨から逸脱しない範囲で適宜変更して具体化することができる。
例えば、糸状再生シルクの成形処理において、糸状再生シルクを空気中で2〜3倍に引き伸ばして延伸することにより、糸状再生シルクの繊維強度を向上させる。
In addition, this invention is not limited to the said Example, In the range which does not deviate from the meaning of invention, it can change suitably and can be actualized.
For example, in the forming process of the filamentous recycled silk, the fiber strength of the filamentous recycled silk is improved by stretching the filamentous recycled silk by 2 to 3 times in the air and stretching.

Claims (7)

シルクから得たフィブロインをリチウム塩を含む水溶液に溶解してフィブロイン水溶液を得る水溶解処理と、
前記フィブロイン水溶液から前記リチウム塩を除去する脱塩処理と、
前記脱塩処理後の前記フィブロイン水溶液を乾燥して乾燥フィブロインを得る乾燥処理と、
前記乾燥フィブロインをフッ素系の有機溶媒に溶解してフィブロイン有機溶液を得る有機溶解処理と、
前記フィブロイン有機溶液をアルコール中に入れて又は前記フィブロイン有機溶液から前記有機溶媒を蒸発させて、フィブロインを所定形状に成形してなる抗菌性の再生シルクを得る成形処理とを含む抗菌性再生シルクの製造方法。
Water dissolution treatment for dissolving fibroin obtained from silk in an aqueous solution containing lithium salt to obtain an aqueous fibroin solution;
A desalting treatment for removing the lithium salt from the fibroin aqueous solution;
Drying treatment for drying the fibroin aqueous solution after the desalting treatment to obtain dry fibroin;
An organic dissolution treatment in which the dried fibroin is dissolved in a fluorine-based organic solvent to obtain a fibroin organic solution;
An antibacterial regenerated silk comprising: an antibacterial regenerated silk obtained by placing the fibroin organic solution in alcohol or evaporating the organic solvent from the fibroin organic solution to obtain a regenerated antibacterial silk by forming fibroin into a predetermined shape. Production method.
前記有機溶媒は、ヘキサフルオロイソプロパノールである請求項1記載の抗菌性再生シルクの製造方法。   The method for producing antibacterial recycled silk according to claim 1, wherein the organic solvent is hexafluoroisopropanol. 前記リチウム塩は、チオシアン酸リチウムである請求項1又は2記載の抗菌性再生シルクの製造方法。   The method for producing antibacterial regenerated silk according to claim 1 or 2, wherein the lithium salt is lithium thiocyanate. 前記乾燥処理は、凍結乾燥による処理である請求項1〜3のいずれか一項に記載の抗菌性再生シルクの製造方法。   The said drying process is a process by freeze-drying, The manufacturing method of the antibacterial reproduction | regeneration silk as described in any one of Claims 1-3. 前記脱塩処理は、透析による処理である請求項1〜4のいずれか一項に記載の抗菌性再生シルクの製造方法。   The method for producing an antibacterial regenerated silk according to any one of claims 1 to 4, wherein the desalting treatment is a treatment by dialysis. 前記所定形状は、糸状又はフィルム状である請求項1〜5のいずれか一項に記載の抗菌性再生シルクの製造方法。   The said predetermined shape is a thread form or a film form, The manufacturing method of the antibacterial reproduction | regeneration silk as described in any one of Claims 1-5. 前記シルクは、尿素とメルカプトエタノールとトリス(ヒドロキシメチル)アミノメタンとを含む処理水に蚕の繭を入れてセリシンを溶解除去する脱セリシン処理で得られたものである請求項1〜6のいずれか一項に記載の抗菌性再生シルクの製造方法。   7. The silk according to claim 1, wherein the silk is obtained by a de-sericin treatment in which cocoons are added to treated water containing urea, mercaptoethanol, and tris (hydroxymethyl) aminomethane to dissolve and remove sericin. A method for producing an antibacterial recycled silk according to claim 1.
JP2012122212A 2012-05-29 2012-05-29 Method for producing antibacterial regenerated silk Withdrawn JP2013245427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012122212A JP2013245427A (en) 2012-05-29 2012-05-29 Method for producing antibacterial regenerated silk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012122212A JP2013245427A (en) 2012-05-29 2012-05-29 Method for producing antibacterial regenerated silk

Publications (1)

Publication Number Publication Date
JP2013245427A true JP2013245427A (en) 2013-12-09

Family

ID=49845431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012122212A Withdrawn JP2013245427A (en) 2012-05-29 2012-05-29 Method for producing antibacterial regenerated silk

Country Status (1)

Country Link
JP (1) JP2013245427A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160026487A (en) * 2014-09-01 2016-03-09 경북대학교 산학협력단 Regenerated silk composition and preparation method thereof
JP2016223027A (en) * 2015-05-29 2016-12-28 豊田合成株式会社 Method for producing antimicrobial regenerated silk
JP2021000263A (en) * 2019-06-21 2021-01-07 株式会社 日本医療機器技研 Stent
US11453975B2 (en) 2014-12-02 2022-09-27 Evolved By Nature, Inc. Silk performance apparel and products and methods of preparing the same
US11512425B2 (en) 2015-07-14 2022-11-29 Evolved By Nature, Inc. Silk performance apparel and products and methods of preparing the same
WO2023038153A1 (en) 2021-09-13 2023-03-16 Spiber株式会社 Deodorant material, agent for imparting deodorant properties, and method for imparting deodorant properties

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07503288A (en) * 1992-01-27 1995-04-06 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Silkworm fibroin fiber spinnable solution
JP2001163899A (en) * 1999-12-09 2001-06-19 Natl Inst Of Sericultural & Entomological Science Method for producing functional silk fibroin and its use
JP3972092B2 (en) * 2001-03-14 2007-09-05 国立大学法人東京農工大学 Methods for producing fibers, films and nonwoven fabrics of silk and silk-like materials, and fibers, films or nonwoven fabrics produced by these methods
JP2009221401A (en) * 2008-03-18 2009-10-01 Tokyo Univ Of Agriculture & Technology Reclaimed silk material and method of producing the same
JPWO2008004356A1 (en) * 2006-07-04 2009-12-03 国立大学法人東京農工大学 Spinning liquid composition, method for producing regenerated silk fiber using the same, and regenerated silk fiber obtained by the production method
JP2011196001A (en) * 2010-03-23 2011-10-06 Shinshu Univ Silk nanofiber derived from aquatic insect, silk compound nanofiber, and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07503288A (en) * 1992-01-27 1995-04-06 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Silkworm fibroin fiber spinnable solution
JP2001163899A (en) * 1999-12-09 2001-06-19 Natl Inst Of Sericultural & Entomological Science Method for producing functional silk fibroin and its use
JP3972092B2 (en) * 2001-03-14 2007-09-05 国立大学法人東京農工大学 Methods for producing fibers, films and nonwoven fabrics of silk and silk-like materials, and fibers, films or nonwoven fabrics produced by these methods
JPWO2008004356A1 (en) * 2006-07-04 2009-12-03 国立大学法人東京農工大学 Spinning liquid composition, method for producing regenerated silk fiber using the same, and regenerated silk fiber obtained by the production method
JP2009221401A (en) * 2008-03-18 2009-10-01 Tokyo Univ Of Agriculture & Technology Reclaimed silk material and method of producing the same
JP2011196001A (en) * 2010-03-23 2011-10-06 Shinshu Univ Silk nanofiber derived from aquatic insect, silk compound nanofiber, and method for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160026487A (en) * 2014-09-01 2016-03-09 경북대학교 산학협력단 Regenerated silk composition and preparation method thereof
KR101631703B1 (en) 2014-09-01 2016-06-17 경북대학교 산학협력단 Regenerated silk composition and preparation method thereof
US11453975B2 (en) 2014-12-02 2022-09-27 Evolved By Nature, Inc. Silk performance apparel and products and methods of preparing the same
US11649585B2 (en) 2014-12-02 2023-05-16 Evolved By Nature, Inc. Silk performance apparel and products and methods of preparing the same
JP2016223027A (en) * 2015-05-29 2016-12-28 豊田合成株式会社 Method for producing antimicrobial regenerated silk
US11512425B2 (en) 2015-07-14 2022-11-29 Evolved By Nature, Inc. Silk performance apparel and products and methods of preparing the same
JP2021000263A (en) * 2019-06-21 2021-01-07 株式会社 日本医療機器技研 Stent
JP7475003B2 (en) 2019-06-21 2024-04-26 株式会社 日本医療機器技研 Stents
WO2023038153A1 (en) 2021-09-13 2023-03-16 Spiber株式会社 Deodorant material, agent for imparting deodorant properties, and method for imparting deodorant properties

Similar Documents

Publication Publication Date Title
Li et al. Superhydrophobic hierarchical fiber/bead composite membranes for efficient treatment of burns
JP2013245427A (en) Method for producing antibacterial regenerated silk
JP5186671B2 (en) Silk protein nanofiber and method for producing the same, silk protein composite nanofiber and method for producing the same
Ehrmann Non-toxic crosslinking of electrospun gelatin nanofibers for tissue engineering and biomedicine—A review
Srivastava et al. Enhanced potential of biomimetic, silver nanoparticles functionalized Antheraea mylitta (tasar) silk fibroin nanofibrous mats for skin tissue engineering
Magaz et al. Porous, aligned, and biomimetic fibers of regenerated silk fibroin produced by solution blow spinning
Ko et al. Effect of degumming condition on the solution properties and electrospinnablity of regenerated silk solution
TWI392780B (en) Wet melt with a mold, antibacterial and deodorant function of cellulose non-woven system
Li et al. Silk fibroin-based scaffolds for tissue engineering
JP5470569B2 (en) Silk composite nanofiber and method for producing the same
CN106149203B (en) A kind of medicament-carrying nano-fiber membrane and its application
Yoon et al. Effects of degumming conditions on electro-spinning rate of regenerated silk
Shekh et al. Nano silver-embedded electrospun nanofiber of poly (4-chloro-3-methylphenyl methacrylate): use as water sanitizer
Cha et al. Structural characteristics and biological performance of silk fibroin nanofiber containing microalgae spirulina extract
US10611888B2 (en) Processes of increasing crystallinity alignment of protein films and products thereof
El Seoud et al. Cellulose, chitin and silk: The cornerstones of green composites
Rubio-Valle et al. Electrospun nanofibres with antimicrobial activities
Yazawa et al. Silkworm cocoon waste revitalization: regenerated fibers using higher-molecular-weight fibroin achieve high strength and toughness
KR102158145B1 (en) A method for preparing antibacterial fiber
Shalaby et al. Antibacterial silver embedded nanofibers for water disinfection
JP5704687B2 (en) Silk fibroin porous material
Tentori et al. Fabrication and applications of biological fibers
Opálková Šišková et al. Hr uza
JP6102708B2 (en) Method for producing filamentous antibacterial recycled silk
Ruhal et al. Antimicrobial nanocomposite of silver and gelatin nanofibers for medical applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20150619