JP3971517B2 - Composite material that changes from super water-repellent to super-hydrophilic surface - Google Patents

Composite material that changes from super water-repellent to super-hydrophilic surface Download PDF

Info

Publication number
JP3971517B2
JP3971517B2 JP26053898A JP26053898A JP3971517B2 JP 3971517 B2 JP3971517 B2 JP 3971517B2 JP 26053898 A JP26053898 A JP 26053898A JP 26053898 A JP26053898 A JP 26053898A JP 3971517 B2 JP3971517 B2 JP 3971517B2
Authority
JP
Japan
Prior art keywords
water
photocatalyst
composite material
super
och
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26053898A
Other languages
Japanese (ja)
Other versions
JP2000087016A5 (en
JP2000087016A (en
Inventor
林 弘 典 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP26053898A priority Critical patent/JP3971517B2/en
Publication of JP2000087016A publication Critical patent/JP2000087016A/en
Publication of JP2000087016A5 publication Critical patent/JP2000087016A5/ja
Application granted granted Critical
Publication of JP3971517B2 publication Critical patent/JP3971517B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、超撥水性表面から超親水性表面に変化する複合材料に関し、特に好適には各種パターニング技術、パターン形成部に各種の素子を形成する技術、例えば印写技術に関する。
【0002】
【従来の技術】
撥水性表面を備えた材料、あるいは親水性表面を備えた材料は、近年各種用途に応用されており、例えば、WO96/29375号公報には、光触媒を用いて基材の表面を超親水性とする方法をガラス表面に適用して、防曇性、清浄性表面とすることが開示されている。
【0003】
本発明者らは、この光触媒を利用した撥水性表面に光を照射することにより親水性表面に変化させることができる複合材料を提供し、その複合材料を利用する撥水性表面と親水性表面からなるパターンの形成について特願平10−165392号として出願した。しかしながら、このような撥水性、親水性のパターンを応用して各種デバイスを作成する際には、撥水性部分をより撥水性にして水系組成物をよりはじきやすくすることが求められる場合があった。さらに工程短縮のため、撥水性部分を親水性に変化せせるための光の照射時間の短縮を求められる場合があった。
【0004】
【発明が解決しようとする課題】
本発明は、上記のような要望に応えるためになされたものであり、本発明の目的は、水との接触角150°以上の撥水性表面を有し、かつ光の照射により水の接触角10°以下の親水性に変化する材料であって、しかも、短時間の光の照射によって濡れ性が変化する材料を提供することである。
【0005】
【課題を解決するための手段】
本発明者は、光触媒などの光により濡れ性が変化する材料を用いた複合材料の表面を微細凹凸構造とすることにより、上記課題を解決することができることを知見した。したがって、本発明の複合材料は、表面が微細凹凸構造を有し、水との接触角に換算して150°以上の撥水性を示す表面を有する複合材料であって、光を前記表面に照射することにより、前記表面が水との接触角に換算して10°以下の親水性に変化することを特徴としている。
【0006】
【発明の実施の形態】
以下、本発明を詳しく説明する。
【0007】
表面の微細凹凸構造
本発明の複合材料は、その表面を微細凹凸構造とすることを特徴としており、そのことにより、予想外にも短時間の光の照射によって濡れ性が急激に変化し、さらに未露光部の撥水性が高まる。
【0008】
この微細凹凸構造の粗度は、水との接触角に換算して150°以上の撥水性を示すことができ、かつ露光後に10°以下の親水性に変化する粗度であれば特に限定されない。しかしながら、表面粗度が小さい場合には、十分な撥水性が得られなことがあり、表面粗度が大きすぎる場合にも、十分な撥水性が得られないことがある。好ましい微細凹凸構造の粗度としては、具体的には、例えば、中心線平均粗さが0.1〜50μm、より好ましくは、1〜10μmと表すことができる。
【0009】
本発明における、微細凹凸構造の形成方法は、特に限定されるものではなく、公知の各種方法を用いることができる。このようなものとしては例えば、研磨処理、切削処理、酸溶液による処理、アルカリ溶液による処理、電気分解などを挙げることができる。また、複合材料に微粒子を加えて凹凸構造を形成してもよい。さらに複合材料自体を凹凸化するだけではなく、本発明の好適態様において設けることができる基体を凹凸化し、その上に本発明の複合材料の薄層を形成する方法、あるいは、基体と本発明の複合材料の間に設けることのできるプライマー層等を凹凸化してその上に本発明の複合材料の薄膜を形成する方法を挙げることができる。
【0010】
複合材料の材質
本発明の複合材料は、これに限定されるわけではないが、典型的には以下に説明する光触媒を含み、この光触媒の作用により濡れ性を変化させる。
【0011】
(濡れ性変化の原理)
本発明の好適態様においては、光の照射によって近傍の物質(バインダーなど)に化学変化を起こすことが可能な光触媒を用いて、光照射を受けた部分の濡れ性を変化させることができる。本発明の好適態様の光触媒による作用機構は、必ずしも明確なものではないが、光の照射によって光触媒に生成したキャリアが、バインダーなどの化学構造を直接変化させ、あるいは酸素、水の存在下で生じた活性酸素種によってバインダーなどの化学構造を変化させることにより、複合材料表面の濡れ性が変化すると考えられる。
【0012】
本発明の好適態様では、光触媒により、バインダーの一部である有機基や添加剤の酸化、分解などの作用を用いて、光照射部の濡れ性を変化させて親水性化し、非照射部分との濡れ性に大きな差を生じさせる。
【0013】
(光触媒材料)
本発明に好適に用いられる光触媒材料としては、例えば光半導体として知られている酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化すず(SnO2)・チタン酸ストロンチウム(SrTiO3)・酸化タングステン(WO3)、酸化ビスマス(Bi23)、酸化鉄(Fe23)のような金属酸化物を挙げることができるが、特に酸化チタンが好ましい。酸化チタンは、バンドギャップエネルギーが高く、化学的に安定であり、毒性もなく、入手も容易である点で有利である。
【0014】
光触媒としての酸化チタンにおいては、アナターゼ型とルチル型のいずれも使用することができるが、アナターゼ型酸化チタンが好ましい。具体的には例えば、塩酸解膠型のアナターゼ型チタニアゾル(石原産業(株)、STS−02、平均結晶子径7nm)、硝酸解膠型のアナターゼ型チタニアゾル(日産化学、TA−15、平均結晶子径12nm)を挙げることができる。
【0015】
光触媒の粒径は、粒径が小さいものの方が光触媒反応が効率的に生起するため好ましい。平均粒径が50nm以下のものが好ましく、より好ましくは20nm以下のものが好ましい。
【0016】
複合材料中の光触媒の量は、5〜60重量%であることが好ましく、20〜40重量%であることがより好ましい。
【0017】
(バインダー成分)
本発明の好適態様において複合材料に用いられるバインダーは、好ましくは露光により前記光触媒の作用によって分解される物質である。このバインダーは、好ましくは濡れ性変化のため部分的には分解されるが、主骨格が前記光触媒の光励起により分解されないような高い結合エネルギーを有するものであり、例えば、(1)ゾルゲル反応等によりクロロまたはアルコキシシラン等を加水分解、重縮合して大きな強度を発揮するオルガノポリシロキサン、あるいは(2)撥水性や撥油性に優れた反応性シリコーンを架橋したオルガノポリシロキサン等を挙げることができる。これらのうち好ましいものは、シリコーンであり、さらに好ましくはフルオロアルキル基を有するシリコーンである。
【0018】
前記(1)の場合、一般式YnSiX4-n(n=1〜3)で表される珪素化合物の1種または2種以上の加水分解縮合物、共加水分解化合物が主体であることができる。前記一般式では、Yは例えばアルキル基、フルオロアルキル基、ビニル基、アミノ基またはエポキシ基であることができ、Xは例えばハロゲン、メトキシル基、エトキシル基、またはアセチル基であることができる。
【0019】
具体的には、メチルトリクロルシラン、メチルトリブロムシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリt−ブトキシシラン;エチルトリクロルシラン、エチルトリブロムシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、エチルトリt−ブトキシシラン;n−プロピルトリクロルシラン、n−プロピルトリブロムシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−プロピルトリイソプロポキシシラン、n−プロピルトリt−ブトキシシラン;n−ヘキシルトリクロルシラン、n−ヘキシルトリブロムシラン、n−ヘキシルトリメトキシシラン、n−ヘキシルトリエトキシシラン、n−ヘキシルトリイソプロポキシシラン、n−ヘキシルトリt−ブトキシシラン;n−デシルトリクロルシラン、n−デシルトリブロムシラン、n−デシルトリメトキシシラン、n−デシルトリエトキシシラン、n−デシルトリイソプロポキシシラン、n−デシルトリt−ブトキシシラン;n−オクタデシルトリクロルシラン、n−オクタデシルトリブロムシラン、n−オクタデシルトリメトキシシラン、n−オクタデシルトリエトキシシラン、n−オクタデシルトリイソプロポキシシラン、n−オクタデシルトリt−ブトキシシラン;フェニルトリクロルシラン、フェニルトリブロムシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリイソプロポキシシラン、フェニルトリt−ブトキシシラン;テトラクロルシラン、テトラブロムシラン、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、ジメトキシジエトキシシラン;ジメチルジクロルシラン、ジメチルジブロムシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン;ジフェニルジクロルシラン、ジフェニルジブロムシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン;フェニルメチルジクロルシラン、フェニルメチルジブロムシラン、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン;トリクロルヒドロシラン、トリブロムヒドロシラン、トリメトキシヒドロシラン、トリエトキシヒドロシラン、トリイソプロポキシヒドロシラン、トリt−ブトキシヒドロシラン;ビニルトリクロルシラン、ビニルトリブロムシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、ビニルトリt−ブトキシシラン;トリフルオロプロピルトリクロルシラン、トリフルオロプロピルトリブロムシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、トリフルオロプロピルトリイソプロポキシシラン、トリフルオロプロピルトリt−ブトキシシラン;γ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリイソプロポキシシラン、γ−グリシドキシプロピルトリt−ブトキシシラン;γ−メタアクリロキシプロピルメチルジメトキシシラン、γ−メタアクリロキシプロピルメチルジエトキシシラン、γ−メタアクリロキシプロピルトリメトキシシラン、γ−メタアクリロキシプロピルトリエトキシシラン、γ−メタアクリロキシプロピルトリイソプロポキシシラン、γ−メタアクリロキシプロピルトリt−ブトキシシラン;γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリイソプロポキシシラン、γ−アミノプロピルトリt−ブトキシシラン;γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルトリイソプロポキシシラン、γ−メルカプトプロピルトリt−ブトキシシラン;β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン;および、それらの部分加水分解物;およびそれらの混合物を挙げることができる。
【0020】
また、バインダーとして、特に好ましくはフルオロアルキル基を含有するポリシロキサンを用いることができ、具体的には、下記のフルオロアルキルシランのの1種または2種以上の加水分解縮合物、共加水分解縮合物が挙げられ、また、一般にフッ素系シランカップリング剤として知られているものを使用してもよい。
CF3(CF23CH2CH2Si(OCH33
CF3(CF25CH2CH2Si(OCH33
CF3(CF27CH2CH2Si(OCH33
CF3(CF29CH2CH2Si(OCH33
(CF32CF(CF24CH2CH2Si(OCH33
(CF32CF(CF26CH2CH2Si(OCH33
(CF32CF(CF28CH2CH2Si(OCH33
CF3(C64)C24Si(OCH33
CF3(CF23(C64)C24Si(OCH33
CF3(CF25(C64)C24Si(OCH33
CF3(CF27(C64)C24Si(OCH33
CF3(CF23CH2CH2SiCH3(OCH32
CF3(CF25CH2CH2SiCH3(OCH32
CF3(CF27CH2CH2SiCH3(OCH32
CF3(CF29CH2CH2SiCH3(OCH32
(CF32CF(CF24CH2CH2SiCH3(OCH32
(CF32CF(CF26CH2CH2SiCH3(OCH32
(CF32CF(CF28CH2CH2SiCH3(OCH32
CF3(C64)C24SiCH3(OCH32
CF3(CF23(C64)C24SiCH3(OCH32
CF3(CF25(C64)C24SiCH3(OCH32
CF3(CF27(C64)C24SiCH3(OCH32
CF3(CF23CH2CH2Si(OCH2CH33
CF3(CF25CH2CH2Si(OCH2CH33
CF3(CF27CH2CH2Si(OCH2CH33
CF3(CF29CH2CH2Si(OCH2CH33
CF3(CF27SO2N(C25)C24CH2Si(OCH33
上記のようなフルオロアルキル基を含有するポリシロキサンをバインダーとして用いることにより、複合材料の非光照射部の撥水性が大きく向上し、素子形成用組成物などの付着を妨げる機能を発現する。
【0021】
前記(2)の反応性シリコーンとしては、下記一般式で表される骨格を持つ化合物を挙げることができる。
−(Si(R1)(R2)O)n
ただし、nは2以上の整数、R1、R2はそれぞれ炭素数1〜10の置換もしくは非置換のアルキル、アルケニル、アリールあるいはシアノアルキル基であることができる。好ましくは全体の40モル%以下がビニル、フェニル、ハロゲン化フェニルであることができる。また、R1および/またはR2がメチル基であるものが表面エネルギーが最も小さくなるので好ましく、好ましくはメチル基が60モル%以上であり、鎖末端または側鎖には、分子鎖中に少なくとも1個以上の水酸基などの反応性基を有する。
【0022】
また、前記のオルガノポリシロキサンとともにジメチルポリシロキサンのような架橋反応を起こさない安定なオルガノシリコン化合物をバインダーに混合してもよい。
【0023】
(複合材料に用いるその他の成分)
本発明に好適に用いられる複合材料には、未露光部の濡れ性を低下させるため界面活性剤を含有させることができる。この界面活性剤は光触媒により分解除去されるものであれば限定されないが、具体的には、好ましくは例えば日本サーファクタント工業製:NIKKOL BL、BC、BO、BBの各シリーズ等の炭化水素系の界面活性剤、デュポン社製:ZONYL FSN、FSO、旭硝子製:サーフロンS−141、145、大日本インキ製:メガファックF−141、144、ネオス製:フタージェントF−200、F251、ダイキン工業製:ユニダインDS−401、402、スリーエム製:フロラードFC−170、176等のフッ素系あるいはシリコーン系の非イオン界面活性剤を挙げることができる。また、カチオン系、アニオン系、両性界面活性剤を用いることもできる。
【0024】
また、本発明の複合材料には、他の成分、例えば、ポリビニルアルコール、不飽和ポリエステル、アクリル樹脂、ポリエチレン、ジアリルフタレート、エチレンプロピレンジエンモノマー、エポキシ樹脂、フェノール樹脂、ポリウレタン、メラミン樹脂、ポリカーボネート、ポリ塩化ビニル、ポリアミド、ポリイミド、スチレンブタジエンゴム、クロロプレンゴム、ポリプロピレン、ポリブチレン、ポリスチレン、ポリ酢酸ビニル、ナイロン、ポリエステル、ポリブタジエン、ポリベンズイミダゾール、ポリアクリロニトリル、エピクロルヒドリン、ポリサルファイド、ポリイソプレン等のオリゴマー、ポリマーを含むことができる。
【0025】
(複合材料の層の形成方法)
本発明の複合材料は層状の形態としてもよく、この場合複合材料の層の形成方法は特に限定されないが、例えば光触媒を含んだ塗布液を、スプレーコート、ディップコート、ロールコート、ビードコートなどの方法により基材に塗布して形成することができる。またバインダーとして紫外線硬化型の成分を含有している場合には、紫外線を照射して硬化処理を行うことにより、基材上に光触媒を含有した組成物の層を形成することができる。
【0026】
光触媒等を含む塗布液を用いる場合に、塗布液に使用することができる溶剤としては、特に限定されないが、例えばエタノール、イソプロパノール等のアルコール系の有機溶剤を挙げることができる。
【0027】
光照射
光触媒を作用させるための照射光線は、光触媒を励起することができれば限定されない。このようなものとしては紫外線、可視光線、赤外線の他、これらの光線よりもさらに短波長または長波長の電磁波、放射線であることができる。
【0028】
例えば光触媒として、アナターゼ型チタニアを用いる場合は、励起波長が380nm以下にあるので、光触媒の励起は紫外線により行うことができる。このような紫外線を発するものとしては水銀ランプ、メタルハライドランプ、キセノンランプ、エキシマレーザー、その他の紫外線光源を使用することができ、照度、照射量等を変えることにより、膜表面の濡れ性を連続的に変化させることができる。
【0029】
撥水性および親水性
本発明の複合材料は、未露光時には水との接触角に換算して150°以上(本明細書では、このような表面を超撥水性表面という)の撥水性、好ましくは160°以上の撥水性を示す表面を有し、露光後には水との接触角に換算して10°以下(本明細書では、このような表面を超親水性表面という)の親水性、好ましくは5°以下の親水性を示す表面を有するものである。
【0030】
しかしながら、本発明の複合材料の表面は常に水との接触角10°以下および/または150°以上を有している必要はなく、露光量を調節して、少なくとも一部を水との接触角に換算して10°から150°の間の親水性を示す表面としてもよい。このようにすることにより、例えば、複合材料表面と水との接触角が10°以上であっても、十分な接着力を得られる材料を素子用材料として用いる場合に、露光感度の点で有利である。
【0031】
パターン、デバイスおよび素子形成
本発明の複合材料は、好ましくはパターン露光をすることにより、複合材料の同一表面上に超撥水性部および超親水性部のパターン有するパターン形成体を製造することができる。また、本発明の複合材料に、必要とされる親水性に応じた量の露光を行うことにより、前記複合材料の表面に超撥水性部および/または超親水性部を備えてなるデバイスとすることができる。本発明の複合材料を用いたデバイスとしては、例えば撥水膜、積雪防止膜等を挙げることができる。さらに、パターン形成体の有する特定の濡れ性を利用して、本発明の複合材料上に素子を形成することができる。このような本発明の複合材料を用いた素子としては、例えば印刷版、レンズおよびカラーフィルターを挙げることができる。
【0032】
基体
本発明の複合材料は、一般的な基体の上に層形成することができる。またこの基体上の複合材料を用いて、パターン形成体、デバイスあるいは素子を形成してもよい。この基体を構成する材料は、用途に応じて通常使用される材料を使用でき、例えば、アルミニウムなどの金属、ガラス、セラミックスなどの無機材料およびプラスチックなどの有機材料が挙げられる。これらの材料から例えば板、フィルム、織物および不織布などを形成して基体とすることができる。
【0033】
【実施例】
実施例1
水500gに水酸化ナトリウムを20g加え、水酸化ナトリウム水溶液を用意した。次に基体としてアルミニウム(75×75×0.23mm三菱アルミニウム社製)を用意し、1時間浸漬し凹凸化処理した。表面粗さ(中心線平均粗さ)はDektak3030(Sloan Tecnorogy製)、水の接触角はCA−Z(協和界面化学製)によって測定した。結果を以下に示す。

Figure 0003971517
次いで、イソプロピルアルコール3g、オルガノシラン(東芝シリコーンTSL8113)0.4g、フルオロアルキルシランMF−160E(トーケムプロダクツ)0.04g、光触媒無機コーティング剤ST−K01(石原産業)1.5gを混合し、攪拌しながら20分間、100℃で加温した。この溶液をスピンコーティング法により、前記凹凸化処理したアルミニウム基体上に塗布した。これを150℃の温度で10分間乾燥することにより、加水分解、重縮合反応を進行させ、光触媒がオルガノポリシロキサン中に強固に固定された膜厚0.2μmの光触媒含有膜を得ることができた。同様に中心線平均粗さ及び水の接触角を測定した結果を以下に示す。
Figure 0003971517
次いで、この複合材料上に水銀ランプ(HAN型400NL日本電池(株))を70mW/cm2(365nm)の照度で100秒間、UV照射したときの水の接触角の経時変化を測定した。
【0034】
また、この複合材料上に同様に90秒間、直径50μmの網点が10μm間隔で配置されたネガ型フォトマスクを介してパターン露光し、超親水性及び超撥水性を備えたパターン形成体を作製した。
【0035】
比較例1
アルカリ処理による凹凸処理を施さないこと以外は実施例1同様に作製した複合材料の中心線平均粗さ及び水の接触角を以下に示す。
Figure 0003971517
図1にこのような実施例1のアルカリ処理により基体を粗面化した上に設けられた微細凹凸構造を有する複合材料と、比較例1のアルカリ処理などの粗面化処理をしなかった基体の上に設けられた微細凹凸構造を有しない複合材料について、光照射時間に応じた濡れ性変化を示したグラフを示す。露光前の水の接触角は、アルカリ処理したものは160°と未処理の120°よりも大きく、アルカリ処理により、疎水性が高まったことが分かる。さらに、露光によって接触角が0°になるまでの時間は、アルカリ処理したものは90秒であるのに対し、未処理のものは110秒であり、アルカリ処理したものが短時間で超親水性に変化することが確認できる。また、グラフの傾きもアルカリ処理を行ったものが急であることが確認できる。アルカリ処理を行ったものが露光量が少なくて超親水性に変化すること、つまり、アルカリ処理により、高感度化していることが分かる。
【0036】
実施例2
基体として青板ガラス(75×75×1.1mm)を用意した。次にサンドブラスト法により粗面化処理した。表面粗さ(中心線平均粗さ)はDektak3030(Sloan Tecnorogy製)、水の接触角はCA−Z(協和界面化学製)によって測定した。結果を以下に示す。
Figure 0003971517
次いで、イソプロピルアルコール3g、オルガノシラン(東芝シリコーンTSL8113)0.4g、フルオロアルキルシランMF−160E(トーケムプロダクツ)0.04g、光触媒無機コーティング剤ST−K01(石原産業)1.5gを混合し、攪拌しながら20分間、100℃で加温した。この溶液をスピンコーティング法により、前記凹凸化処理した青板ガラス基体上に塗布した。これを150℃の温度で10分間乾燥することにより、加水分解、重縮合反応を進行させ、光触媒がオルガノポリシロキサン中に強固に固定された膜厚0.6μmの光触媒含有膜を得ることができた。同様に中心線平均粗さ及び水の接触角を測定した結果を以下に示す。
Figure 0003971517
この複合材料上に同様に90秒間、直径50μmの網点が10μm間隔で配置されたネガ型フォトマスクを介してパターン露光し、超親水性及び超撥水性を備えたパターン形成体を作製した。
【0037】
次いで、水溶性UV硬化樹脂(エステルアクリレート樹脂、荒川化学工業製AQ−9)1000g、硬化開始剤(チバスペシャリティーケミカルズ製イルガキュア1173)50g、メチレンブルー水溶液(5重量%)を混合しビードコーティング法によって得られたパターン形成体上に全面塗布した、その結果、未露光部は、インキをはじき、露光部のみに選択的に塗布された。直径50μmの網点が10μm間隔で配置された藍色のパターンが得られた。
【0038】
【発明の効果】
本発明によって、水との接触角150°以上の撥水性表面を有し、かつ光の照射により水の接触角10°以下の親水性に変化する材料であって、しかも、短時間の光の照射によって濡れ性が変化する材料を提供することができる。
【図面の簡単な説明】
【図1】図1は、アルカリ処理により粗面化した基体上に設けられた微細凹凸構造を有する本発明の複合材料と、アルカリ処理などの粗面化処理をしなかった基体上に設けられた微細凹凸構造を有しない比較例の複合材料について、光照射時間に応じた濡れ性変化を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite material that changes from a super-water-repellent surface to a super-hydrophilic surface, and particularly preferably to various patterning techniques and techniques for forming various elements in a pattern forming portion, such as a printing technique.
[0002]
[Prior art]
In recent years, materials having a water-repellent surface or materials having a hydrophilic surface have been applied to various uses. For example, WO96 / 29375 discloses that the surface of a substrate is made superhydrophilic using a photocatalyst. It is disclosed that the method is applied to a glass surface to make it an antifogging and clean surface.
[0003]
The present inventors provide a composite material that can be changed to a hydrophilic surface by irradiating light to the water-repellent surface using this photocatalyst, and from the water-repellent surface and the hydrophilic surface using the composite material. The application for the formation of this pattern was filed as Japanese Patent Application No. 10-165392. However, when various devices are made by applying such a water-repellent and hydrophilic pattern, it may be required to make the water-based composition more water-repellent by making the water-repellent part more water-repellent. . Furthermore, in order to shorten the process, there is a case where it is required to shorten the light irradiation time for changing the water-repellent part to hydrophilic.
[0004]
[Problems to be solved by the invention]
The present invention has been made in order to meet the above-mentioned demands, and an object of the present invention is to have a water-repellent surface having a contact angle with water of 150 ° or more and contact angle with water by light irradiation. It is a material that changes to a hydrophilic property of 10 ° or less, and further, a material whose wettability changes when irradiated with light for a short time.
[0005]
[Means for Solving the Problems]
The present inventor has found that the above problem can be solved by making the surface of a composite material using a material such as a photocatalyst that changes wettability by light to have a fine uneven structure. Therefore, the composite material of the present invention is a composite material having a surface having a fine concavo-convex structure and a surface exhibiting water repellency of 150 ° or more in terms of a contact angle with water, and irradiating the surface with light. By doing so, the surface is converted to a hydrophilicity of 10 ° or less in terms of a contact angle with water.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0007]
Surface fine concavo-convex structure The composite material of the present invention is characterized in that the surface has a fine concavo-convex structure, which makes the wettability abruptly unexpectedly by irradiation with light for a short time. The water repellency of the unexposed area is increased.
[0008]
The roughness of this fine concavo-convex structure is not particularly limited as long as it can exhibit a water repellency of 150 ° or more in terms of a contact angle with water and changes to a hydrophilicity of 10 ° or less after exposure. . However, when the surface roughness is small, sufficient water repellency may not be obtained, and when the surface roughness is too large, sufficient water repellency may not be obtained. As the roughness of the preferable fine uneven structure, specifically, for example, the center line average roughness can be expressed as 0.1 to 50 μm, more preferably 1 to 10 μm.
[0009]
The method for forming the fine concavo-convex structure in the present invention is not particularly limited, and various known methods can be used. Examples of such a method include polishing treatment, cutting treatment, treatment with an acid solution, treatment with an alkaline solution, and electrolysis. Further, the concavo-convex structure may be formed by adding fine particles to the composite material. Furthermore, the composite material itself is not only made uneven, but also a method of making the substrate that can be provided in a preferred embodiment of the present invention uneven, and forming a thin layer of the composite material of the present invention thereon, or the substrate and the present invention. An example is a method in which a primer layer or the like that can be provided between composite materials is made uneven and a thin film of the composite material of the present invention is formed thereon.
[0010]
Material of Composite Material The composite material of the present invention includes, but is not limited to, a photocatalyst described below, and the wettability is changed by the action of the photocatalyst.
[0011]
(Principle of wettability change)
In a preferred embodiment of the present invention, the wettability of a portion irradiated with light can be changed by using a photocatalyst capable of causing a chemical change in a nearby substance (such as a binder) by light irradiation. The mechanism of action of the photocatalyst according to the preferred embodiment of the present invention is not necessarily clear, but the carrier generated in the photocatalyst by light irradiation directly changes the chemical structure of the binder or the like, or is generated in the presence of oxygen or water. It is considered that the wettability of the surface of the composite material is changed by changing the chemical structure of the binder or the like depending on the active oxygen species.
[0012]
In a preferred embodiment of the present invention, the photocatalyst is used to change the wettability of the light-irradiated part by using an action such as oxidation or decomposition of an organic group or additive that is part of the binder, It makes a big difference in the wettability.
[0013]
(Photocatalytic material)
Examples of the photocatalyst material suitably used in the present invention include titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), strontium titanate (SrTiO 3 ), and tungsten oxide, which are known as photo semiconductors. Metal oxides such as (WO 3 ), bismuth oxide (Bi 2 O 3 ), and iron oxide (Fe 2 O 3 ) can be mentioned, and titanium oxide is particularly preferable. Titanium oxide is advantageous in that it has a high band gap energy, is chemically stable, is not toxic, and is easily available.
[0014]
In titanium oxide as a photocatalyst, both anatase type and rutile type can be used, but anatase type titanium oxide is preferable. Specifically, for example, hydrochloric acid peptization type anatase titania sol (Ishihara Sangyo Co., Ltd., STS-02, average crystallite diameter 7 nm), nitrate peptization type anatase titania sol (Nissan Chemical, TA-15, average crystal) (Diameter 12 nm).
[0015]
The photocatalyst having a smaller particle size is preferable because the photocatalytic reaction occurs efficiently. The average particle diameter is preferably 50 nm or less, more preferably 20 nm or less.
[0016]
The amount of the photocatalyst in the composite material is preferably 5 to 60% by weight, and more preferably 20 to 40% by weight.
[0017]
(Binder component)
In the preferred embodiment of the present invention, the binder used for the composite material is preferably a substance that is decomposed by the action of the photocatalyst upon exposure. This binder is preferably partially decomposed due to a change in wettability, but has a high binding energy such that the main skeleton is not decomposed by photoexcitation of the photocatalyst. For example, (1) by sol-gel reaction or the like Examples include organopolysiloxanes that exhibit high strength by hydrolysis and polycondensation of chloro or alkoxysilane, or (2) organopolysiloxanes that are crosslinked with reactive silicones that are excellent in water and oil repellency. Among these, silicone is preferable, and silicone having a fluoroalkyl group is more preferable.
[0018]
In the case of (1), the main component is one or more hydrolyzed condensates or cohydrolyzed compounds of the silicon compound represented by the general formula Y n SiX 4-n (n = 1 to 3). Can do. In the general formula, Y can be, for example, an alkyl group, a fluoroalkyl group, a vinyl group, an amino group, or an epoxy group, and X can be, for example, a halogen, a methoxyl group, an ethoxyl group, or an acetyl group.
[0019]
Specifically, methyltrichlorosilane, methyltribromosilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, methyltri-t-butoxysilane; ethyltrichlorosilane, ethyltribromosilane, ethyltrimethoxysilane, Ethyltriethoxysilane, ethyltriisopropoxysilane, ethyltri-t-butoxysilane; n-propyltrichlorosilane, n-propyltribromosilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-propyltriisopropoxy Silane, n-propyltri-t-butoxysilane; n-hexyltrichlorosilane, n-hexyltribromosilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, n-hex Lutriisopropoxysilane, n-hexyltri-t-butoxysilane; n-decyltrichlorosilane, n-decyltribromosilane, n-decyltrimethoxysilane, n-decyltriethoxysilane, n-decyltriisopropoxysilane, n- Decyltri-t-butoxysilane; n-octadecyltrichlorosilane, n-octadecyltribromosilane, n-octadecyltrimethoxysilane, n-octadecyltriethoxysilane, n-octadecyltriisopropoxysilane, n-octadecyltrit-butoxysilane; Phenyltrichlorosilane, phenyltribromosilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriisopropoxysilane, phenyltri-t-butoxysilane; tetrachlorosilane Tetrabromosilane, tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, dimethoxydiethoxysilane; dimethyldichlorosilane, dimethyldibromosilane, dimethyldimethoxysilane, dimethyldiethoxysilane; diphenyldichlorosilane, diphenyldibromosilane, Diphenyldimethoxysilane, diphenyldiethoxysilane; phenylmethyldichlorosilane, phenylmethyldibromosilane, phenylmethyldimethoxysilane, phenylmethyldiethoxysilane; trichlorohydrosilane, tribromohydrosilane, trimethoxyhydrosilane, triethoxyhydrosilane, triisopropoxy Hydrosilane, tri-t-butoxyhydrosilane; vinyltrichlorosilane, vinyltribromosilane, vinyltri Methoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, vinyltrit-butoxysilane; trifluoropropyltrichlorosilane, trifluoropropyltribromosilane, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, trifluoropropyl Triisopropoxysilane, trifluoropropyltri-t-butoxysilane; γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxy Propyltriethoxysilane, γ-glycidoxypropyltriisopropoxysilane, γ-glycidoxypropyltri-t-butoxysilane; γ-methacryloxypropylmethyldimethyl Xysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-methacryloxypropyltriisopropoxysilane, γ-methacryloxypropyl Tri-t-butoxysilane; γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltriisopropoxysilane, γ- Aminopropyltri-t-butoxysilane; γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltrieth Xysilane, γ-mercaptopropyltriisopropoxysilane, γ-mercaptopropyltri-t-butoxysilane; β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane And partial hydrolysates thereof; and mixtures thereof.
[0020]
Further, a polysiloxane containing a fluoroalkyl group can be used as the binder, and specifically, one or two or more hydrolytic condensates or cohydrolytic condensations of the following fluoroalkylsilanes can be used. In addition, a material generally known as a fluorine-based silane coupling agent may be used.
CF 3 (CF 2 ) 3 CH 2 CH 2 Si (OCH 3 ) 3
CF 3 (CF 2 ) 5 CH 2 CH 2 Si (OCH 3 ) 3
CF 3 (CF 2 ) 7 CH 2 CH 2 Si (OCH 3 ) 3
CF 3 (CF 2 ) 9 CH 2 CH 2 Si (OCH 3 ) 3
(CF 3 ) 2 CF (CF 2 ) 4 CH 2 CH 2 Si (OCH 3 ) 3
(CF 3 ) 2 CF (CF 2 ) 6 CH 2 CH 2 Si (OCH 3 ) 3
(CF 3 ) 2 CF (CF 2 ) 8 CH 2 CH 2 Si (OCH 3 ) 3
CF 3 (C 6 H 4 ) C 2 H 4 Si (OCH 3 ) 3
CF 3 (CF 2) 3 ( C 6 H 4) C 2 H 4 Si (OCH 3) 3
CF 3 (CF 2 ) 5 (C 6 H 4 ) C 2 H 4 Si (OCH 3 ) 3
CF 3 (CF 2 ) 7 (C 6 H 4 ) C 2 H 4 Si (OCH 3 ) 3
CF 3 (CF 2 ) 3 CH 2 CH 2 SiCH 3 (OCH 3 ) 2
CF 3 (CF 2 ) 5 CH 2 CH 2 SiCH 3 (OCH 3 ) 2
CF 3 (CF 2 ) 7 CH 2 CH 2 SiCH 3 (OCH 3 ) 2
CF 3 (CF 2 ) 9 CH 2 CH 2 SiCH 3 (OCH 3 ) 2
(CF 3 ) 2 CF (CF 2 ) 4 CH 2 CH 2 SiCH 3 (OCH 3 ) 2
(CF 3 ) 2 CF (CF 2 ) 6 CH 2 CH 2 SiCH 3 (OCH 3 ) 2
(CF 3 ) 2 CF (CF 2 ) 8 CH 2 CH 2 SiCH 3 (OCH 3 ) 2
CF 3 (C 6 H 4) C 2 H 4 SiCH 3 (OCH 3) 2
CF 3 (CF 2 ) 3 (C 6 H 4 ) C 2 H 4 SiCH 3 (OCH 3 ) 2
CF 3 (CF 2 ) 5 (C 6 H 4 ) C 2 H 4 SiCH 3 (OCH 3 ) 2
CF 3 (CF 2 ) 7 (C 6 H 4 ) C 2 H 4 SiCH 3 (OCH 3 ) 2
CF 3 (CF 2 ) 3 CH 2 CH 2 Si (OCH 2 CH 3 ) 3
CF 3 (CF 2 ) 5 CH 2 CH 2 Si (OCH 2 CH 3 ) 3
CF 3 (CF 2 ) 7 CH 2 CH 2 Si (OCH 2 CH 3 ) 3
CF 3 (CF 2 ) 9 CH 2 CH 2 Si (OCH 2 CH 3 ) 3
CF 3 (CF 2 ) 7 SO 2 N (C 2 H 5 ) C 2 H 4 CH 2 Si (OCH 3 ) 3
By using a polysiloxane containing a fluoroalkyl group as described above as a binder, the water repellency of the non-light-irradiated part of the composite material is greatly improved, and the function of hindering adhesion of the element forming composition or the like is exhibited.
[0021]
Examples of the reactive silicone (2) include compounds having a skeleton represented by the following general formula.
-(Si (R 1 ) (R 2 ) O) n-
However, n can be an integer of 2 or more, and R 1 and R 2 can each be a substituted or unsubstituted alkyl, alkenyl, aryl or cyanoalkyl group having 1 to 10 carbon atoms. Preferably, 40 mol% or less of the total may be vinyl, phenyl, or phenyl halide. Further, it is preferable that R 1 and / or R 2 is a methyl group since the surface energy is the smallest, and preferably the methyl group is 60 mol% or more, and the chain end or side chain contains at least in the molecular chain. It has one or more reactive groups such as a hydroxyl group.
[0022]
Moreover, you may mix the stable organosilicon compound which does not raise | generate a crosslinking reaction like a dimethylpolysiloxane with the said organopolysiloxane in a binder.
[0023]
(Other components used in composite materials)
The composite material suitably used in the present invention can contain a surfactant in order to reduce the wettability of the unexposed area. The surfactant is not limited as long as it can be decomposed and removed by a photocatalyst, but specifically, preferably a hydrocarbon-based interface such as NIKKOL BL, BC, BO, BB series manufactured by Nippon Surfactant Kogyo Co., Ltd. Activator, manufactured by DuPont: ZONYL FSN, FSO, manufactured by Asahi Glass: Surflon S-141, 145, manufactured by Dainippon Ink Co., Ltd. Unidyne DS-401, 402, manufactured by 3M: Fluoro-based or silicone-based nonionic surfactants such as Florard FC-170, 176 can be mentioned. Cationic, anionic and amphoteric surfactants can also be used.
[0024]
Further, the composite material of the present invention includes other components such as polyvinyl alcohol, unsaturated polyester, acrylic resin, polyethylene, diallyl phthalate, ethylene propylene diene monomer, epoxy resin, phenol resin, polyurethane, melamine resin, polycarbonate, poly Including oligomers and polymers such as vinyl chloride, polyamide, polyimide, styrene butadiene rubber, chloroprene rubber, polypropylene, polybutylene, polystyrene, polyvinyl acetate, nylon, polyester, polybutadiene, polybenzimidazole, polyacrylonitrile, epichlorohydrin, polysulfide, polyisoprene be able to.
[0025]
(Method of forming composite material layer)
The composite material of the present invention may be in the form of a layer, and in this case, the method for forming the layer of the composite material is not particularly limited. For example, a coating solution containing a photocatalyst is applied to spray coating, dip coating, roll coating, bead coating, etc. It can be formed by applying to a substrate by a method. Further, in the case where an ultraviolet curable component is contained as a binder, a layer of a composition containing a photocatalyst can be formed on a substrate by irradiating with ultraviolet rays and performing a curing treatment.
[0026]
When a coating solution containing a photocatalyst or the like is used, the solvent that can be used for the coating solution is not particularly limited, and examples thereof include alcohol-based organic solvents such as ethanol and isopropanol.
[0027]
Light irradiation The irradiation light for causing the photocatalyst to act is not limited as long as it can excite the photocatalyst. Examples of such materials include ultraviolet rays, visible rays, and infrared rays, and electromagnetic waves and radiations having shorter or longer wavelengths than these rays.
[0028]
For example, when anatase type titania is used as a photocatalyst, the excitation wavelength is 380 nm or less, so that the photocatalyst can be excited by ultraviolet rays. Mercury lamps, metal halide lamps, xenon lamps, excimer lasers, and other ultraviolet light sources can be used to emit such ultraviolet rays. By changing the illuminance, irradiation amount, etc., the wettability of the film surface is continuously increased. Can be changed.
[0029]
Water repellency and hydrophilicity The composite material of the present invention has a water repellency of 150 ° or more (in this specification, such a surface is referred to as a super water repellent surface) in terms of a contact angle with water when not exposed. It has an aqueous surface, preferably a surface exhibiting water repellency of 160 ° or more, and is 10 ° or less in terms of a contact angle with water after exposure (in this specification, such a surface is referred to as a superhydrophilic surface). It has a surface exhibiting hydrophilicity, preferably 5 ° or less hydrophilicity.
[0030]
However, the surface of the composite material of the present invention does not always need to have a contact angle with water of 10 ° or less and / or 150 ° or more, and at least a part of the contact angle with water is adjusted by adjusting the exposure amount. It is good also as a surface which shows the hydrophilicity between 10 degrees and 150 degrees in conversion. By doing so, for example, when a material that can obtain a sufficient adhesive force is used as an element material even if the contact angle between the surface of the composite material and water is 10 ° or more, it is advantageous in terms of exposure sensitivity. It is.
[0031]
Pattern, device and element formation The composite material of the present invention is preferably subjected to pattern exposure to produce a pattern formed body having a pattern of a superhydrophobic part and a superhydrophilic part on the same surface of the composite material. can do. In addition, the composite material of the present invention is exposed to an amount corresponding to the required hydrophilicity to obtain a device having a super-water-repellent part and / or a super-hydrophilic part on the surface of the composite material. be able to. Examples of the device using the composite material of the present invention include a water-repellent film and a snow cover film. Furthermore, the element can be formed on the composite material of the present invention by utilizing the specific wettability of the pattern forming body. Examples of the element using the composite material of the present invention include a printing plate, a lens, and a color filter.
[0032]
Substrate The composite material of the present invention can be layered on a common substrate. Moreover, you may form a pattern formation body, a device, or an element using the composite material on this base | substrate. As the material constituting the substrate, materials that are usually used can be used depending on the application. Examples thereof include metals such as aluminum, inorganic materials such as glass and ceramics, and organic materials such as plastic. For example, a plate, a film, a woven fabric, and a non-woven fabric can be formed from these materials to form a substrate.
[0033]
【Example】
Example 1
20 g of sodium hydroxide was added to 500 g of water to prepare an aqueous sodium hydroxide solution. Next, aluminum (75 × 75 × 0.23 mm manufactured by Mitsubishi Aluminum Co., Ltd.) was prepared as a substrate, and the substrate was dipped for 1 hour for roughening. The surface roughness (center line average roughness) was measured by Dektak 3030 (manufactured by Sloan Technology), and the contact angle of water was measured by CA-Z (manufactured by Kyowa Interface Chemical). The results are shown below.
Figure 0003971517
Next, 3 g of isopropyl alcohol, 0.4 g of organosilane (Toshiba Silicone TSL8113), 0.04 g of fluoroalkylsilane MF-160E (Tochem Products), 1.5 g of the photocatalytic inorganic coating agent ST-K01 (Ishihara Sangyo) are mixed, The mixture was heated at 100 ° C. for 20 minutes with stirring. This solution was applied onto the aluminum substrate subjected to the roughening treatment by a spin coating method. By drying this at a temperature of 150 ° C. for 10 minutes, hydrolysis and polycondensation reactions can proceed to obtain a photocatalyst-containing film having a thickness of 0.2 μm in which the photocatalyst is firmly fixed in the organopolysiloxane. It was. Similarly, the results of measuring the center line average roughness and the contact angle of water are shown below.
Figure 0003971517
Subsequently, the time-dependent change in the contact angle of water was measured when a mercury lamp (HAN type 400NL Japan Battery Co., Ltd.) was irradiated with UV light at an illuminance of 70 mW / cm 2 (365 nm) for 100 seconds on the composite material.
[0034]
Similarly, pattern exposure is performed on this composite material for 90 seconds through a negative photomask in which halftone dots with a diameter of 50 μm are arranged at intervals of 10 μm, thereby producing a pattern forming body having super hydrophilicity and super water repellency. did.
[0035]
Comparative Example 1
The center line average roughness and water contact angle of the composite material produced in the same manner as in Example 1 except that the unevenness treatment by alkali treatment is not performed are shown below.
Figure 0003971517
FIG. 1 shows a composite material having a fine concavo-convex structure provided after roughening the substrate by the alkali treatment of Example 1 and a substrate not subjected to the roughening treatment such as the alkali treatment of Comparative Example 1. The graph which showed the wettability change according to light irradiation time about the composite material which does not have the fine concavo-convex structure provided on is shown. The contact angle of water before exposure is 160 ° for the alkali-treated and larger than 120 ° for the untreated, indicating that the hydrophobicity is increased by the alkali treatment. Furthermore, the time until the contact angle becomes 0 ° by exposure is 90 seconds for the alkali-treated material, whereas it is 110 seconds for the untreated material, and the alkali-treated material is superhydrophilic in a short time. Can be confirmed. It can also be confirmed that the slope of the graph is steep when the alkali treatment is performed. It can be seen that the alkali-treated one has a small exposure amount and changes to super hydrophilicity, that is, the sensitivity is increased by the alkali treatment.
[0036]
Example 2
Blue plate glass (75 × 75 × 1.1 mm) was prepared as a substrate. Next, the surface was roughened by sandblasting. The surface roughness (center line average roughness) was measured by Dektak 3030 (manufactured by Sloan Technology), and the contact angle of water was measured by CA-Z (manufactured by Kyowa Interface Chemical). The results are shown below.
Figure 0003971517
Next, 3 g of isopropyl alcohol, 0.4 g of organosilane (Toshiba Silicone TSL8113), 0.04 g of fluoroalkylsilane MF-160E (Tochem Products), 1.5 g of the photocatalytic inorganic coating agent ST-K01 (Ishihara Sangyo) are mixed, The mixture was heated at 100 ° C. for 20 minutes with stirring. This solution was applied onto the blue glass substrate subjected to the roughening treatment by a spin coating method. By drying this at a temperature of 150 ° C. for 10 minutes, a hydrolysis and polycondensation reaction can proceed to obtain a photocatalyst-containing film having a thickness of 0.6 μm in which the photocatalyst is firmly fixed in the organopolysiloxane. It was. Similarly, the results of measuring the center line average roughness and the contact angle of water are shown below.
Figure 0003971517
Similarly, this composite material was subjected to pattern exposure through a negative photomask in which halftone dots having a diameter of 50 μm were arranged at intervals of 10 μm for 90 seconds, thereby producing a pattern forming body having super hydrophilicity and super water repellency.
[0037]
Next, 1000 g of a water-soluble UV curable resin (ester acrylate resin, AQ-9 manufactured by Arakawa Chemical Industries), 50 g of a curing initiator (Irgacure 1173 manufactured by Ciba Specialty Chemicals), and a methylene blue aqueous solution (5% by weight) were mixed and mixed by a bead coating method. As a result, the unexposed part was repelled ink and selectively applied only to the exposed part. An indigo pattern in which halftone dots having a diameter of 50 μm were arranged at intervals of 10 μm was obtained.
[0038]
【The invention's effect】
According to the present invention, a material having a water-repellent surface having a contact angle with water of 150 ° or more and changing to a hydrophilic property with a water contact angle of 10 ° or less by irradiation with light, A material whose wettability is changed by irradiation can be provided.
[Brief description of the drawings]
FIG. 1 shows a composite material of the present invention having a fine relief structure provided on a substrate roughened by alkali treatment and a substrate not subjected to roughening treatment such as alkali treatment. It is the graph which showed the wettability change according to light irradiation time about the composite material of the comparative example which does not have the fine uneven structure.

Claims (7)

同一表面上に、表面が微細凹凸構造を有し、光触媒を含有しており、水との接触角に換算して150°以上の撥水性を示す超撥水性部、および表面が微細凹凸構造を有し、光触媒を含有しており、水との接触角に換算して10°以下の親水性を示す超親水性部のパターンを備えたことを特徴とする、パターン形成体。On the same surface, the surface has a fine concavo-convex structure, contains a photocatalyst, exhibits a water repellency of 150 ° or more in terms of a contact angle with water, and the surface has a fine concavo-convex structure. A pattern forming body comprising a superhydrophilic portion pattern having a photocatalyst and having a hydrophilicity of 10 ° or less in terms of a contact angle with water. 前記超撥水性部および前記超親水性部が、少なくとも光触媒と、露光により前記光触媒の作用によって分解される物質とを含むことを特徴とする、請求項1に記載のパターン形成体。 The pattern forming body according to claim 1, wherein the super water-repellent part and the super hydrophilic part include at least a photocatalyst and a substance decomposed by the action of the photocatalyst by exposure . 前記光触媒が、酸化チタンを含むものである、請求項1または請求項2に記載のパターン形成体。 The pattern formation body of Claim 1 or Claim 2 whose said photocatalyst contains a titanium oxide . 前記露光により光触媒の作用によって分解される物質が、シリコーンである、請求項2に記載のパターン形成体。 The pattern formation body of Claim 2 whose substance decomposed | disassembled by the effect | action of a photocatalyst by the said exposure is silicone . 前記シリコーンが、フルオロアルキル基を有するものである、請求項4に記載のパターン形成体。 The pattern forming body according to claim 4, wherein the silicone has a fluoroalkyl group . 請求項1から請求項5までのいずれかの請求項に記載のパターン形成体の有する特定の濡れ性を利用して、前記パターン形成体上に形成したことを特徴とする、素子。An element formed using the specific wettability of the pattern forming body according to any one of claims 1 to 5 on the pattern forming body . 前記素子が、レンズおよびカラーフィルターから選ばれるものである、請求項6に記載の素子。  The element according to claim 6, wherein the element is selected from a lens and a color filter.
JP26053898A 1998-09-14 1998-09-14 Composite material that changes from super water-repellent to super-hydrophilic surface Expired - Fee Related JP3971517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26053898A JP3971517B2 (en) 1998-09-14 1998-09-14 Composite material that changes from super water-repellent to super-hydrophilic surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26053898A JP3971517B2 (en) 1998-09-14 1998-09-14 Composite material that changes from super water-repellent to super-hydrophilic surface

Publications (3)

Publication Number Publication Date
JP2000087016A JP2000087016A (en) 2000-03-28
JP2000087016A5 JP2000087016A5 (en) 2005-04-07
JP3971517B2 true JP3971517B2 (en) 2007-09-05

Family

ID=17349364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26053898A Expired - Fee Related JP3971517B2 (en) 1998-09-14 1998-09-14 Composite material that changes from super water-repellent to super-hydrophilic surface

Country Status (1)

Country Link
JP (1) JP3971517B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001033574A1 (en) * 1999-11-02 2001-05-10 Tomoji Takamasa Method for improving wettability, and element placed under radiation environment
WO2003031060A1 (en) * 2000-09-22 2003-04-17 Japan Science And Technology Agency Transparent thin film and method for production thereof
JP2002097013A (en) * 2000-09-22 2002-04-02 Japan Science & Technology Corp Transparent thin film and its manufacturing method
WO2006028274A1 (en) 2004-09-08 2006-03-16 National University Corporation Nagoya University Production of cell culture product and material for use in said production
DE112010002076T5 (en) 2009-05-25 2013-01-03 Kawamura Institute Of Chemical Research Hydrophobic film, structural film with hydrophobic and hydrophilic regions and a process for its preparation
JP4616416B1 (en) * 2010-01-13 2011-01-19 財団法人川村理化学研究所 Patterned film having water-repellent and hydrophilic regions and method for producing the same
JP2013249999A (en) * 2012-05-31 2013-12-12 Konica Minolta Inc Drying device and drying method for coating film
JPWO2015033701A1 (en) * 2013-09-05 2017-03-02 コニカミノルタ株式会社 Antifogging film, antifogging glass, glass laminate and liquid crystal display device
JP2017080820A (en) * 2015-10-22 2017-05-18 学校法人立命館 Manufacturing method of fluid device, and the fluid device

Also Published As

Publication number Publication date
JP2000087016A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
JP3384544B2 (en) Pattern forming body and pattern forming method
JP3529306B2 (en) Color filter and manufacturing method thereof
JP3679943B2 (en) Method for producing pattern forming body
JP4236081B2 (en) Method for producing pattern forming body
JP3343811B2 (en) Manufacturing method of color filter
JP5458975B2 (en) Manufacturing method of mold for nanoimprint
JP4289522B2 (en) Manufacturing method of pattern forming body
JP3971517B2 (en) Composite material that changes from super water-repellent to super-hydrophilic surface
JP4275233B2 (en) Optical element and manufacturing method thereof
JP2002274077A (en) Pattern forming body and pattern forming method
JP4276724B2 (en) Optical element and manufacturing method thereof
JP4495777B2 (en) Pattern forming body and pattern forming method
JP4187840B2 (en) Method for manufacturing planar optical element
JP4413035B2 (en) Pattern forming body and pattern forming method
JP3827910B2 (en) Pattern forming body
JP3945799B2 (en) Method for producing pattern forming body
JP5516224B2 (en) Pattern formation method, nanoimprint mold, and transfer substrate for nanoimprint
JP4138200B2 (en) Photocatalyst-containing composition, wettability changing film, and method for producing wettability changing resin composition
JP3819205B2 (en) Method for producing pattern forming body
JP4381129B2 (en) Color filter and manufacturing method thereof
JP3881138B2 (en) Method for producing pattern forming body
JP3395841B2 (en) Color filter and manufacturing method thereof
JP2011245821A (en) Mold for nanoimprint, and method for producing the same
JP4348351B2 (en) Pattern forming body
JP4042200B2 (en) Planographic printing plate and method for preparing the planographic printing plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070327

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees