WO2001033574A1 - Method for improving wettability, and element placed under radiation environment - Google Patents

Method for improving wettability, and element placed under radiation environment Download PDF

Info

Publication number
WO2001033574A1
WO2001033574A1 PCT/JP2000/007680 JP0007680W WO0133574A1 WO 2001033574 A1 WO2001033574 A1 WO 2001033574A1 JP 0007680 W JP0007680 W JP 0007680W WO 0133574 A1 WO0133574 A1 WO 0133574A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide film
wettability
improving
titanium oxide
reactor
Prior art date
Application number
PCT/JP2000/007680
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoji Takamasa
Original Assignee
Tomoji Takamasa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoji Takamasa filed Critical Tomoji Takamasa
Priority to AU10526/01A priority Critical patent/AU1052601A/en
Priority to JP2001535180A priority patent/JP4320412B2/en
Publication of WO2001033574A1 publication Critical patent/WO2001033574A1/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a method for improving the wettability of a member surface, and more particularly to a method for improving the wettability of a member surface by disposing the member in a radiation environment, and an improved wettability. And a member having a surface exhibiting Background art
  • photocatalytic reaction When a semiconductor material such as titanium oxide is irradiated with ultraviolet light, photoelectrons can be extracted from the surface of the material by a photoelectrode reaction.
  • the chemical reaction of gas-liquid on the contact surface by the photoelectrons is called the so-called photocatalytic reaction.
  • photocatalytic reaction Common uses of titanium oxide photocatalyst include electrolysis, disinfection of contact gas-liquid by oxidation, and self-cleaning. According to the most recent research on physical properties, it has been clarified that this photocatalytic wall reduces the surface tension of the contacting liquid, and as shown in Fig. 1, improves the wettability of the contact surface.
  • Titanium oxide acts as a redox catalyst not only by light irradiation but also by irradiation of radiation, as disclosed in JP-A-2-95440, JP-A-8-184689, and JP-A-8-1. No. 83602 and Japanese Patent Application Laid-Open No. H10-2742459. However, there is no research report on the relationship between irradiation and the super-lyophilic phenomenon.
  • An object of the present invention is to improve the wettability of the member surface by irradiation with radiation.
  • Another object of the present invention is to improve boiling heat transfer characteristics by improving the wettability of the member surface in a radiation environment such as ⁇ -rays.
  • Another object of the present invention is to improve the wettability of a member surface in a plant or the like so that the member can be cooled well. Disclosure of the invention The technical means adopted by the present invention to solve the above-mentioned problems is characterized in that a substrate provided with a catalyst layer on the surface is arranged in a radiation environment to improve the wettability of the surface. It is.
  • disposed in a radiation environment means that the surface of a substrate is irradiated with radiation, the substrate is placed in a space where radiation exists, and the substrate itself has radiation. Includes when the radiation source is inside the substrate and the radiation is supplied from inside to the substrate surface.
  • the radiation is selected from alpha, zero, gamma, x-ray and neutron radiation.
  • the photocatalytic reaction of titanium oxide occurs with anatase-type titanium oxide, and it is said that photocatalytic reaction under ultraviolet light does not occur with rusyl-type titanium oxide that can withstand higher temperatures.
  • radiation having higher energy than ultraviolet rays eg, ⁇ -rays
  • Lucyl-type titanium oxide can withstand higher temperatures than anatase-type titanium oxide, and is therefore advantageous when it is desired to impart wettability to the member surface at high temperatures.
  • the surface of titanium metal is usually covered with a thin oxide film due to contact with oxygen in the air.
  • a test piece of metal titanium was prepared.
  • a test piece was prepared by irradiating the surface with high-temperature plasma and forming an oxide film on the surface with oxygen in the air.
  • the surface wettability was improved by irradiating the titanium oxide film with radiation.
  • zircaloy zirconium alloy
  • stainless copper improvement in wettability was observed in test pieces having a metal oxide film formed on the surface thereof.
  • an oxide film is to oxidize the surface of the metal substrate to form an oxide film on the surface.
  • the type of the metal is not limited, and examples thereof include titanium, stainless steel, zircaloy (zirconium alloy), aluminum, lead, and manganese.
  • Means for forming the oxide film is not limited to oxidation of the surface of the metal substrate.
  • an oxide film may be formed by spraying an oxide on the surface of the base material, or the oxide film may be formed by using sputtering.
  • the material of the base material is not limited to metal.
  • the catalyst layer is not limited to these, and other catalysts that exert a so-called photocatalytic effect by irradiation with radiation can be employed.
  • the improvement of the wettability was obtained by irradiating radiation for a long time.
  • the present invention is used to impart wettability to a member that is always in a radiation environment.
  • the member that is always under the radiation environment includes a case where the member itself has radiation or a case where a radiation source is present inside the member.
  • FIG. 1 is a diagram showing a change in contact angle when an aluminum plate coated with an anatase type titanium is placed under an ultraviolet ray environment;
  • FIG. 2 (A) is a schematic perspective view showing a device for measuring a contact angle of a water droplet using a CCD camera, and (B) is a diagram showing a definition of a contact angle;
  • FIG. 3 (A) is a perspective view showing a holder of a test piece used for measuring a contact angle of a water drop, and (B) is a test near a Co 60 source using the holder shown in (A).
  • Perspective view showing a state in which pieces are arranged;
  • Fig. 4 shows the change in wettability of a test piece obtained by spraying a scillated titanium oxide on a stainless steel plate;
  • Fig. 5 shows the change in contact angle by y- ray irradiation on a stainless steel sales plate sprayed with Lucyl type titanium oxide
  • Fig. 6 shows the change in wettability of a titanium plate specimen with an oxide film formed on the surface
  • Fig. 7 shows the change in contact angle due to ⁇ -ray irradiation on a titanium plate with an oxide film formed on the surface
  • Fig. 8 compares the change in wettability by gamma irradiation on titanium plate, zircaloy plate, and stainless steel each having an oxide film on the surface;
  • Fig. 9 shows the titanium film with an oxide film on the surface Of contact angle change by y-ray irradiation on sheet, Zircaloy sheet and stainless steel;
  • FIG. 10 is a diagram showing a boiling characteristic curve
  • Fig. 11 shows the experimental equipment for limiting heat flux
  • Fig. 12 shows the relationship between the ⁇ -ray irradiation dose and the critical heat flux
  • Fig. 13 shows the life of a water drop on a hot surface
  • FIG. 14 is a diagram showing a method for comparing the Leidenfrost phenomenon
  • FIG. 15 is a diagram showing experimental results comparing the Leidenfrost phenomenon before and after performing ⁇ -ray irradiation.
  • the present invention improves the wettability of the surface of a substrate having a catalyst layer on the surface thereof by irradiating the surface with radiation. Or an oxide film formed on the surface of the metal substrate.
  • Lucyl-type titanium oxide can withstand higher temperatures than anatase-type titanium oxide. Therefore, a lucyl type oxide that can withstand high temperatures If the wettability is improved by using a tongue, heat transfer characteristics can be improved in an environment such as inside a nuclear reactor.
  • a catalyst layer is formed on the surface of the metal member by forming an oxide film. It can be formed simply by doing.
  • the present invention in one preferred example, is applied to members constituting a nuclear reactor. This is because the inside of the reactor is always under the y-ray environment and one of the main components of the present invention, ie, irradiation, is satisfied.
  • the reactor includes a reactor core, a control rod inserted into the reactor core, a reactor vessel containing the reactor core, a shield disposed outside the reactor vessel, and a nuclear reactor provided outside. It consists of a containment vessel that houses the entire furnace.
  • the reactor core has nuclear fuel, coolant, and moderator. Nuclear fuel is usually used as fuel rods and fuel plates (both are referred to as fuel rods).
  • a fuel rod consists of a number of fuel pellets and a cladding tube containing a number of fuel pellets. In addition, many fuel rods are used as fuel assemblies.
  • heat is first generated inside nuclear fuel by fission. This heat is transferred to the cladding tube surrounding the fuel, and the heat transferred to the cladding tube reaches its surface by heat conduction inside the cladding wall. Here, it comes into contact with the coolant flowing outside the fuel rods, heat is transferred to the coolant by heat transfer, and the heat is carried out of the furnace.
  • a thin liquid film called a micro liquid film under boiling bubbles controls the heat transfer coefficient and the nucleate boiling phenomenon.
  • the behavior of the micro liquid film is greatly affected by the surface tension and wettability, but in general, the better the wettability, the more easily the liquid film is formed, and stable boiling of nucleus with a high heat transfer rate is performed. . Therefore, if the wettability of the fuel rod surface, that is, the cladding tube surface, can be improved, the heat transfer characteristics will be improved. Can be up. Also, in the event of a loss of cooling water in the reactor, when the cooling water inside the reactor decreases, dry patching of the fuel rod surface is difficult.
  • the use of a fuel rod having a surface coated with a rusil-type titanium oxide film improves the wettability of the fuel rod surface by the y-ray in the core.
  • the cladding of fuel rods is usually made of Zircaloy. If an oxide film is formed on the surface of Zircaloy, the wettability of the fuel rod surface will be improved by gamma rays in the core.
  • the experimental apparatus has a CCD camera 1, a movable table 2, a test piece 3 placed on a movable table 2, and illumination light 4, and a water drop 5 is dropped on the test piece 3. And observe with CCD camera 1.
  • test pieces are the following three.
  • Titanium plate with oxide film formed on its surface (30 X 30 X 1 mm)
  • the oxide film is formed by irradiating high-temperature plasma to the titanium surface and forming an oxide film on the titanium surface by oxygen in the air.
  • Anataze type titanium oxide is coated on stainless steel plate and aluminum plate.
  • the painted test piece changed its coatability due to ultraviolet light (ultraviolet light 400 nm or less). If the test specimen, which has been exposed to ultraviolet rays and has become highly wettable, is placed in an environment where the ultraviolet rays are blocked, the wettability of titanium oxide will decrease. Thereafter, when the ultraviolet rays are again irradiated, the wettability is improved again.
  • test pieces are the following two.
  • the oxide film is formed by irradiating high-temperature plasma to the titanium surface and forming an oxide film on the titanium surface by oxygen in the air.
  • Titanium plate with oxide film formed on the surface (30 X 30 X 1 mm)
  • the oxide film is formed by irradiating high-temperature plasma to the metal surface and forming an oxide film on the metal surface by oxygen in the air.
  • FIGS. 8 and 9 show The time-dependent change in wettability due to continuous gamma-ray irradiation. The results are shown in FIGS. 8 and 9.
  • Fig. 8 shows a comparison of three test pieces before and after irradiation with y / ray for 90 hours.
  • FIG. 9 is a graph showing changes in contact angle due to ⁇ -ray irradiation.
  • solid lines, broken lines, and dashed lines indicate changes in a titanium plate, a zircaloy plate, and a stainless steel plate, respectively.
  • Figure 10 shows the boiling characteristic curve.
  • the characteristics of boiling heat transfer can be expressed by the difference between the ripening flux of the heat transfer surface, the temperature of the heat transfer surface, and the saturation temperature of the liquid.
  • the area between A ⁇ is the natural convection region of a non-boiling liquid single phase
  • the point B is the boiling start point
  • the area between BD is nucleate boiling
  • D is the maximum heat flux point (critical heat flux)
  • DE is the transition.
  • E is the minimum heat flux point, and exceeding E results in film boiling.
  • the fuel rod surface temperature is higher than the boiling temperature If it is not high, it is nucleate boiling, and if it is sufficiently high, it becomes a film boiling.
  • the heat flux is small when the difference between the fuel rod and the saturation temperature of water is small, but when the temperature of the fuel rod increases and the temperature difference increases, the heat flux increases due to nucleate boiling. In the intermediate region between nucleate boiling and film boiling, a considerable portion of the fuel rod surface becomes covered with steam, heat transfer becomes unstable, and the heat flux decreases as the temperature difference increases. . For heat transfer phenomena due to phase changes such as boiling and condensation, it is ultimately necessary that the material and the liquid be in contact. This is because the thermal conductivity of vapor or gas is remarkably low, typically about 100,000 for liquid, and the vapor phase covering the member surface impedes heat transfer.
  • the heat transfer coefficient is improved due to the movement caused by vigorous boiling bubble generation as the heat transfer surface temperature increases.
  • the amount of boiling bubbles generated also increases, and the action of the vapor bubbles covering the heat transfer surface occurs.
  • the vapor bubbles cover the entire heat transfer surface, causing a rapid decrease in heat transfer coefficient (boiling transition). Therefore, it would be advantageous if the maximum heat flux point (critical heat flux) could be increased.
  • the critical heat flux was measured using the experimental device shown in Fig. 11. Heat flux (W / m 2) is due Ri is calculated on the surface area of the power consumption (W) and a test piece obtained from the voltage and circuit current of the test pieces (m 2). The critical heat flux is the heat flux when the test piece breaks.
  • the test pieces were rod-shaped titanium oxide and rod-shaped titanium (an oxide film was formed on the surface).
  • Fig. 12 shows the experimental results, and it can be seen that as the ⁇ -ray irradiation amount increases, the critical heat flux also increases.
  • FIG. 13 shows the life of a water drop on a hot surface.
  • the evaporation time droplet life
  • the temperature gradually decreases from the minimum value (the maximum point of the evaporation time from the viewpoint of a short evaporation time) to the maximum value, and then gradually decreases again with the temperature.
  • the minimum value the maximum point of the evaporation time from the viewpoint of a short evaporation time
  • a vapor film is formed between the droplet and the hot surface.
  • Leidenfrost phenomenon The phenomenon in which droplets are separated from the surface by the vapor film and do not wet the surface as a result is called Leidenfrost phenomenon.
  • the surface of titanium is irradiated with high-temperature plasma, and a test piece having an oxide film formed on the surface of titanium is irradiated with ⁇ -rays (800 kGy) by oxygen in the air, and treated with ⁇ -rays. It was compared with the test piece without.
  • the experiment was performed at 235 ° C, 240, and 260 ° C. C, 280. C, 300. C, 320 ° C, 340. The same was done at 7 points.
  • droplets were dropped on the surface of a rectangular test piece using a micro syringe and observed visually. The left test piece was not gamma-ray treated, and the right test piece was gamma-ray treated.
  • INDUSTRIAL APPLICABILITY can be used for improving a heat transfer mechanism in a radiation environment such as a nuclear reactor and a spacecraft.
  • INDUSTRIAL APPLICABILITY The present invention is applied to the improvement of a heat transfer mechanism by simultaneously providing a radiation environment even in a normal radiation environment.
  • INDUSTRIAL APPLICABILITY The present invention is used for improving a mechanism that requires wettability such as lubrication and chemisorption in a normal radiation environment or when a radiation environment is simultaneously applied.

Abstract

A method for providing a surface having improved wettability which comprises placing a substrate having a coating film of a rutile-type titanium oxide formed on its surface under a η-ray environment to thereby improve the wettability of the surface, or placing a metal substrate having a film of an oxide of the metal formed on its surface under a η-ray environment to thereby improve the wettability of the surface; and a method for improving the heat transfer efficiency of a fuel rod of an atomic reactor, characterized as comprising forming a coating film of a rutile-type titanium oxide or an oxide of a zirconium alloy on the surface of the rod.

Description

明 細 書 濡れ性向上方法、 および放射線環境下に配される部材 技術分野  Description Method for improving wettability and components placed under radiation environment
本発明は、 部材表面の濡れ性向上方法に係 り 、 詳 し く は、 部材を 放射線環境下に配設する こ と によ る部材表面の濡れ性向上方法、 お よび、 向上された濡れ性を呈する表面を備えた部材に関する。 背景技術  The present invention relates to a method for improving the wettability of a member surface, and more particularly to a method for improving the wettability of a member surface by disposing the member in a radiation environment, and an improved wettability. And a member having a surface exhibiting Background art
酸化チタンなどの半導体材料に、 紫外線を照射する と、 光電極反応に よ り 、 光電子を材料表面よ り取り 出すこ とができる。 この光電子によ り 接触面に気液体が化学反応するこ とを、 いわゆる光触媒反応という。 酸 化チタン光触媒の一般的利用には、 電気分解、 酸化による接触気液体の 除菌、 セルフク リーニングなどがある。 ごく最近の物性関連の研究によ れば、 この光触媒壁面は接触する液体の表面張力を減じ、 第 1図に示す よ う に、 接触面の濡れ性が向上することが明らかになつている。 光触媒 効果による超親液性付与のメ力ニズムについては明確には解明されてい ないが、 光触媒効果が基材に対して超親液性を与えることについては、 例えば、 特開平 1 1 — 7 0 6 1 3、 特開 2 00 0— 7 5 1 1 4、 特開 2 0 0 0— 8 7 0 1 6、特開 2 0 0 0— 1 1 9 5 5 1号に記載されている。 一方、 最近の熱流動関連の研究によ り、 プラン トにおける一般的熱伝 達形態である沸騰現象において、 沸騰気泡下のミ ク口液膜と呼ばれる薄 い液膜が熱伝達率や核沸騰現象を支配していることが明らかにされてい る。このミ ク口液膜の挙動は、表面張力や濡れ性に大き く影響されるが、 一般的に濡れ性が良いほど液膜が形成されやすく なり 、 安定した高熱伝 達率の核沸騰が行われる。 When a semiconductor material such as titanium oxide is irradiated with ultraviolet light, photoelectrons can be extracted from the surface of the material by a photoelectrode reaction. The chemical reaction of gas-liquid on the contact surface by the photoelectrons is called the so-called photocatalytic reaction. Common uses of titanium oxide photocatalyst include electrolysis, disinfection of contact gas-liquid by oxidation, and self-cleaning. According to the most recent research on physical properties, it has been clarified that this photocatalytic wall reduces the surface tension of the contacting liquid, and as shown in Fig. 1, improves the wettability of the contact surface. The mechanism of super lyophilicity imparted by the photocatalytic effect has not been elucidated clearly, but it has been reported that the photocatalytic effect imparts super lyophilicity to the substrate, for example, as disclosed in Japanese Patent Application Laid-Open No. 11-70. 61, JP-A-2000-75011, JP-A-200-0-87016, and JP-A-2000-119595. On the other hand, recent studies on heat flow have shown that in the boiling phenomenon, which is a general form of heat transfer in plants, a thin liquid film called a micro-mouth liquid film under boiling bubbles has a heat transfer coefficient and nucleate boiling. It has been shown to dominate the phenomenon. The behavior of the liquid film at the mouth of the mixer is greatly affected by surface tension and wettability. Generally, the better the wettability, the more easily the liquid film is formed, and the more stable the heat transfer. Nucleate boiling is achieved.
したがって、 濡れ性が良好な、 すなわち親液性を備えた壁面を沸騰 熱伝熱壁面に用いる ことができれば、 壁面を熱損傷する こ となく 、 核 沸騰遷移条件の高熱伝達側への移行、 すなわち高効率核沸騰の安定化 が達成でき る。 これによつて、 プラン トの著しい高熱効率化が達成で きる と期待される。  Therefore, if a wall having good wettability, that is, a wall having lyophilicity can be used for the boiling heat transfer wall, the transition of the nucleate boiling transition condition to the high heat transfer side without heat damage to the wall, that is, Highly efficient nucleate boiling stabilization can be achieved. It is expected that this will enable the plant to achieve significantly higher thermal efficiency.
また、 壁面の濡れ性が良いほど、 凝縮による加熱壁面の冷却が促進 される こ とが明らかになつている。 したがって、 例えば、 原子炉格納 容器の壁面に親液性を備えた壁面を用いる こ とができれば、 事故時に 該壁面を急速に凝縮冷却する こ とができる。 これによつて、 安定した 熱除去が可能とな り 、 原子炉の事故時の安全性を向上させるこ とがで さる。  It is also clear that the better the wettability of the wall, the faster the cooling of the heated wall by condensation. Therefore, for example, if a wall surface having lyophilicity can be used for the wall surface of the containment vessel, the wall surface can be rapidly condensed and cooled in an accident. As a result, stable heat removal is possible, and safety in the event of a nuclear reactor accident is improved.
酸化チタンは、 光照射だけでなく、 放射線照射によって酸化還元触媒 と して作用することは、 特開平 2— 9 5 44 0号、 特開平 8— 1 84 6 8 9号、 特開平 8— 1 8 3 6 0 2号、 特開平 1 0— 2 7 24 5 9号に開 示されている。 しかしながら、 放射線照射と超親液化現象との関係につ いての研究報告はない。  Titanium oxide acts as a redox catalyst not only by light irradiation but also by irradiation of radiation, as disclosed in JP-A-2-95440, JP-A-8-184689, and JP-A-8-1. No. 83602 and Japanese Patent Application Laid-Open No. H10-2742459. However, there is no research report on the relationship between irradiation and the super-lyophilic phenomenon.
本発明の 目 的は、 放射線照射によって部材表面の濡れ性を向上さ せる こ と にある。  An object of the present invention is to improve the wettability of the member surface by irradiation with radiation.
本発明の他の 目的は、 γ線等の放射線環境下において、 部材表面 の濡れ性を向上させる こ と で、 沸騰熱伝達特性を向上させる こ と に ある。  Another object of the present invention is to improve boiling heat transfer characteristics by improving the wettability of the member surface in a radiation environment such as γ-rays.
本発明の他の目的は、 プラン ト等において、 部材表面の濡れ性を向上 させることで、 部材の冷却を良好に行なえるよ う にすることにある。 発明の開示 上記課題を解決するために本発明が採用 した技術手段は、 表面に 触媒層を備えた基材を、 放射線環境下に配して、 該表面の濡れ性を 向上させる こ と を特徴とする ものである。 本明細書において、 「放 射線環境下に配して」 と は、 基材の表面に放射線を照射する こ と 、 基材を放射線が存在する空間に置く こ と 、 基材自体が放射線を有し ている場合、 基材の内部に放射線源があ り 内側から基材表面に放射 線が供給される場合、 を含む。 放射線は、 α線、 0線、 γ線、 X線、 中性子線から選択される。 Another object of the present invention is to improve the wettability of a member surface in a plant or the like so that the member can be cooled well. Disclosure of the invention The technical means adopted by the present invention to solve the above-mentioned problems is characterized in that a substrate provided with a catalyst layer on the surface is arranged in a radiation environment to improve the wettability of the surface. It is. In this specification, “disposed in a radiation environment” means that the surface of a substrate is irradiated with radiation, the substrate is placed in a space where radiation exists, and the substrate itself has radiation. Includes when the radiation source is inside the substrate and the radiation is supplied from inside to the substrate surface. The radiation is selected from alpha, zero, gamma, x-ray and neutron radiation.
一般に酸化チタ ンの光 (紫外線) 触媒反応はアナターゼ型酸化チ タ ンで生じ、 よ り 高温に耐え られるルシル型酸化チタ ンでは紫外線 下での光触媒反応は生じないと されている。 しかしなが ら、 紫外線 よ り もエネルギーの大きい放射線 (例えば γ線) によ り 、 濡れ性が 向上する こ と がわかった。 ルシル型酸化チタ ンは、 アナターゼ型酸 化チタ ンに比べて高温に耐えるので、 高温下で部材表面に濡れ性を 付与 したい場合には有利である。  In general, the photocatalytic reaction of titanium oxide occurs with anatase-type titanium oxide, and it is said that photocatalytic reaction under ultraviolet light does not occur with rusyl-type titanium oxide that can withstand higher temperatures. However, it was found that radiation having higher energy than ultraviolet rays (eg, γ-rays) improved wettability. Lucyl-type titanium oxide can withstand higher temperatures than anatase-type titanium oxide, and is therefore advantageous when it is desired to impart wettability to the member surface at high temperatures.
また金属チタン表面は、 空気中の酸素に接触しているこ とによ り、 通 常、 薄い酸化被膜で覆われている。 この酸化被膜にいわゆる光触媒効果 があるかどうか確認するために、 金属チタ ンの試験片を用意した。 さ ら によ り強固な酸化被膜を作るために、 表面に高温プラズマを照射し、 空 気中の酸素によ り表面に酸化被膜を形成してなる試験片も用意した。 実 験の結果、 金属チタンの酸化被膜に放射線を照射するこ とで、 表面の濡 れ性が向上することがわかった。また、ジルカロイ(ジルコニウム合金)、 ステンレス銅についても、 これらの表面に金属酸化被膜を形成した試験 片において、 濡れ性の向上が観察された。 濡れ性の向上は、 放射線のェ ネルギ一が大きいことに起因するものと考えられ、 他の酸化被膜におい ても同様の効果を奏するものと考えられる。 酸化被膜を形成する一つの手段は、 金属基材の表面を酸化させること で該表面に酸化被膜を形成することである。 この場合、 該金属の種類は 限定されず、 例えば、 チタ ン、 ステンレス鋼、 ジルカロイ (ジルコニゥ ム合金)、 アルミ ニウム、 鉛、 マンガン等が挙げられる。 酸化被膜を形成 する手段は金属基材表面の酸化に限定されない。 他の手段と しては、 基 材表面に酸化物を溶射するこ とで酸化被膜を形成したり、 あるいはスパ ッタ リ ングを用いて酸化被膜を形成してもよい。 この場合には、 基材の 材質は金属には限定されない。 In addition, the surface of titanium metal is usually covered with a thin oxide film due to contact with oxygen in the air. In order to confirm whether the oxide film has a so-called photocatalytic effect, a test piece of metal titanium was prepared. In order to create a more robust oxide film, a test piece was prepared by irradiating the surface with high-temperature plasma and forming an oxide film on the surface with oxygen in the air. As a result of the experiment, it was found that the surface wettability was improved by irradiating the titanium oxide film with radiation. In addition, with respect to zircaloy (zirconium alloy) and stainless copper, improvement in wettability was observed in test pieces having a metal oxide film formed on the surface thereof. The improvement in wettability is considered to be due to the large energy of the radiation, and it is considered that the same effect is exerted on other oxide films. One means of forming an oxide film is to oxidize the surface of the metal substrate to form an oxide film on the surface. In this case, the type of the metal is not limited, and examples thereof include titanium, stainless steel, zircaloy (zirconium alloy), aluminum, lead, and manganese. Means for forming the oxide film is not limited to oxidation of the surface of the metal substrate. As another means, an oxide film may be formed by spraying an oxide on the surface of the base material, or the oxide film may be formed by using sputtering. In this case, the material of the base material is not limited to metal.
触媒層はこれらに限定されるものではなく 、 放射線照射によって、 い わゆる光触媒効果を奏するよ う な他の触媒も採用することができる。 実験の結果、濡れ性の向上は放射線を長時間照射することで得られた。 すなわち、 濡れ性の向上は放射線照射量に大き く依存する と考えられ、 また、 放射線照射を停止すると、 濡れ性は元に戻ってしま う。 したがつ て、 有利には、 本発明は常時放射線環境下にある部材に対して濡れ性を 付与することに利用される。 また、 常時放射線澴境下にある部材とは、 該部材自体が放射線を有している場合、 あるいは該部材内部に放射線源 がある場合を含む。 図面の簡単な説明  The catalyst layer is not limited to these, and other catalysts that exert a so-called photocatalytic effect by irradiation with radiation can be employed. As a result of the experiment, the improvement of the wettability was obtained by irradiating radiation for a long time. In other words, it is thought that the improvement in wettability largely depends on the radiation dose, and when radiation irradiation is stopped, wettability returns to the original. Therefore, advantageously, the present invention is used to impart wettability to a member that is always in a radiation environment. The member that is always under the radiation environment includes a case where the member itself has radiation or a case where a radiation source is present inside the member. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 アナタ一ゼ型チタンで被覆したアルミ二ゥム板を紫外線澴 境下に置いた際の接触角の変化を示す図 ;  FIG. 1 is a diagram showing a change in contact angle when an aluminum plate coated with an anatase type titanium is placed under an ultraviolet ray environment;
第 2図において、 (A )は C C Dカメ ラによる水滴の接触角測定装置を 示す概略斜視図、 (B ) は接触角の定義を示す図 ;  In FIG. 2, (A) is a schematic perspective view showing a device for measuring a contact angle of a water droplet using a CCD camera, and (B) is a diagram showing a definition of a contact angle;
第 3図において、 (A ) は、 水滴の接触角を測定するために用いる試験 片のホルダを示す斜視図、 ( B ) は ( A ) に示すホルダを用いて C o 6 0 源近傍に試験片を配設した状態を示す斜視図 ; 第 4図は、 ステンレス鋼板にルシル型酸化チタンを溶射した試験片の 濡れ性の変化を示す図 ; In FIG. 3, (A) is a perspective view showing a holder of a test piece used for measuring a contact angle of a water drop, and (B) is a test near a Co 60 source using the holder shown in (A). Perspective view showing a state in which pieces are arranged; Fig. 4 shows the change in wettability of a test piece obtained by spraying a scillated titanium oxide on a stainless steel plate;
第 5図は、 ルシル型酸化チタンを溶射したステンレス銷板での y線照 射による接触角変化を示す図 ; Fig. 5 shows the change in contact angle by y- ray irradiation on a stainless steel sales plate sprayed with Lucyl type titanium oxide;
第 6図は、 表面に酸化被膜を形成したチタン板試験片の濡れ性の変化 を示す図 ;  Fig. 6 shows the change in wettability of a titanium plate specimen with an oxide film formed on the surface;
第 7図は、 表面に酸化被膜を形成したチタン板での γ線照射による接 触角変化を示す図 ;  Fig. 7 shows the change in contact angle due to γ-ray irradiation on a titanium plate with an oxide film formed on the surface;
第 8図は、 それぞれ表面に酸化被膜を形成したチタン板、 ジルカロイ 板、 ステンレス鋼での γ線照射による濡れ性の変化を比較する図 ; 第 9図は、 それぞれ表面に酸化被膜を形成したチタン板、 ジルカロイ 板、 ステンレス鋼での y線照射による接触角変化を示す図 ;  Fig. 8 compares the change in wettability by gamma irradiation on titanium plate, zircaloy plate, and stainless steel each having an oxide film on the surface; Fig. 9 shows the titanium film with an oxide film on the surface Of contact angle change by y-ray irradiation on sheet, Zircaloy sheet and stainless steel;
第 1 0図は、 沸騰特性曲線を示す図 ;  FIG. 10 is a diagram showing a boiling characteristic curve;
第 1 1 図は、 限界熱流束の実験装置を示す図 ;  Fig. 11 shows the experimental equipment for limiting heat flux;
第 1 2図は、 γ線照射量と限界熱流束との関係を示す図 ;  Fig. 12 shows the relationship between the γ-ray irradiation dose and the critical heat flux;
第 1 3図は、 高温面上の水滴の寿命を示す図 ;  Fig. 13 shows the life of a water drop on a hot surface;
第 1 4図は、 ライデンフロス ト現象を比較する場合の手法を示す図 ; 第 1 5図は、 γ線照射を行な う前後においてライデンフロス ト現象を 比較した実験結果を示す図である。 発明を実施するための好ま しい実施の形態  FIG. 14 is a diagram showing a method for comparing the Leidenfrost phenomenon; FIG. 15 is a diagram showing experimental results comparing the Leidenfrost phenomenon before and after performing γ-ray irradiation. Preferred embodiments for carrying out the invention
本発明は、 表面に触媒層を備えた基材の該表面に放射線を照射するこ とで該表面の濡れ性を向上させるものであるが、 該触媒層は、 好ま しく は、 ルシル型酸化チタン、 あるいは金属基材表面に形成した酸化被膜で ある。 ルシル型酸化チタンは、 アナターゼ型酸化チタンに比べて、 高温 に耐えることができる。 したがって、 高温に耐えられるルシル型酸化チ タンを用いて濡れ性を向上させれば、 原子炉内部等の環境下で熱伝達特 性を向上させることができる。 The present invention improves the wettability of the surface of a substrate having a catalyst layer on the surface thereof by irradiating the surface with radiation. Or an oxide film formed on the surface of the metal substrate. Lucyl-type titanium oxide can withstand higher temperatures than anatase-type titanium oxide. Therefore, a lucyl type oxide that can withstand high temperatures If the wettability is improved by using a tongue, heat transfer characteristics can be improved in an environment such as inside a nuclear reactor.
金属基材の表面を酸化させるこ とで酸化被膜を形成し、 該表面に放射 線を照射するこ とで濡れ性が向上するのであれば、 触媒層を金属製部材 の表面に酸化被膜を形成するだけで形成することができる。  If the surface of the metal substrate is oxidized to form an oxide film, and the surface is irradiated with radiation to improve wettability, a catalyst layer is formed on the surface of the metal member by forming an oxide film. It can be formed simply by doing.
本発明は、 一つの好ま しい例では、 原子炉を構成する部材に適用され る。 原子炉内は、 常時 y線環境下にあり、 放射線照射という本発明の主 要な構成要素の一つが満たされているからである。 原子炉は、 炉心と、 該炉心に挿入される制御棒、 該炉心を内装する原子炉容器と、 該原子炉 容器の外側に配設された遮蔽体と、 さ らに外側に設けられて原子炉全体 を格納する格納容器とから構成される。 さ らに、 炉心は、 核燃料、 冷却 材、 減速材とを有している。 核燃料は通常、 燃料棒、 燃料板 (両者を含 めて燃料棒という) と して用いられる。 燃料棒は、 多数の燃料ペレッ ト と、 多数の燃料ペレッ トを入れる被覆管とから構成される。 さ らに、 多 数の燃料棒は燃料集合体と して用いられる。  The present invention, in one preferred example, is applied to members constituting a nuclear reactor. This is because the inside of the reactor is always under the y-ray environment and one of the main components of the present invention, ie, irradiation, is satisfied. The reactor includes a reactor core, a control rod inserted into the reactor core, a reactor vessel containing the reactor core, a shield disposed outside the reactor vessel, and a nuclear reactor provided outside. It consists of a containment vessel that houses the entire furnace. In addition, the reactor core has nuclear fuel, coolant, and moderator. Nuclear fuel is usually used as fuel rods and fuel plates (both are referred to as fuel rods). A fuel rod consists of a number of fuel pellets and a cladding tube containing a number of fuel pellets. In addition, many fuel rods are used as fuel assemblies.
原子炉においては、 まず核燃料の内部に核分裂よつて熱が発生する。 この熱は燃料を包んでいる被覆管に伝達され、被覆管に伝達された熱は、 被覆管壁面内部の熱伝導によってその表面に達する。 ここで燃料棒の外 を流れる冷却材に接触し、 熱伝達によって熱は冷却材に伝達され、 熱が 炉外に運び出される。  In a nuclear reactor, heat is first generated inside nuclear fuel by fission. This heat is transferred to the cladding tube surrounding the fuel, and the heat transferred to the cladding tube reaches its surface by heat conduction inside the cladding wall. Here, it comes into contact with the coolant flowing outside the fuel rods, heat is transferred to the coolant by heat transfer, and the heat is carried out of the furnace.
既に述べたよ う に、 一般的熱伝達形態である沸騰現象において、 沸騰 気泡下のミ クロ液膜と呼ばれる薄い液膜が熱伝達率や核沸騰現象を支配 している。 このミ クロ液膜の挙動は、 表面張力や濡れ性に大き く影響さ れるが、 一般的に濡れ性が良いほど液膜が形成されやすく なり 、 安定し た高熱伝達率の核沸騰が行われる。 したがって、 燃料棒の表面、 すなわ ち被覆管の表面の濡れ性を向上させることができれば、 熱伝達特性を向 上させることができる。 また、 原子炉冷却水喪失事故において、 炉内の 冷却水が減少する際にも、 燃料棒表面の ドライパッチができにく い。 表面にルシル型酸化チタンの被膜を形成した燃料棒を用いれば、 炉心 における y線によって、 燃料棒表面の濡れ性が向上する。 また、 燃料棒 の被覆管は通常ジルカロィから形成されている。 ジルカロイの表面の表 面に酸化被膜を形成すれば、 炉心における γ線によって、 燃料棒表面の 濡れ性が向上する。 As already mentioned, in the boiling phenomenon, which is a general form of heat transfer, a thin liquid film called a micro liquid film under boiling bubbles controls the heat transfer coefficient and the nucleate boiling phenomenon. The behavior of the micro liquid film is greatly affected by the surface tension and wettability, but in general, the better the wettability, the more easily the liquid film is formed, and stable boiling of nucleus with a high heat transfer rate is performed. . Therefore, if the wettability of the fuel rod surface, that is, the cladding tube surface, can be improved, the heat transfer characteristics will be improved. Can be up. Also, in the event of a loss of cooling water in the reactor, when the cooling water inside the reactor decreases, dry patching of the fuel rod surface is difficult. The use of a fuel rod having a surface coated with a rusil-type titanium oxide film improves the wettability of the fuel rod surface by the y-ray in the core. The cladding of fuel rods is usually made of Zircaloy. If an oxide film is formed on the surface of Zircaloy, the wettability of the fuel rod surface will be improved by gamma rays in the core.
また、 壁面の濡れ性が良いほど、 凝縮による加熱壁面の冷却が促進 される こ とが明らかになつている。 したがって、 例えば、 原子炉容器 の壁面に親液性を付与すれば、 事故時に該壁面を急速に凝縮冷却する こ とができる。  It is also clear that the better the wettability of the wall, the faster the cooling of the heated wall by condensation. Therefore, for example, if lyophilicity is given to the wall surface of the reactor vessel, the wall surface can be rapidly condensed and cooled in an accident.
Α . 濡れ性の測定実験 Α. Wettability measurement experiment
実験体に 5 μ 1 の水滴を落と し、 C C Dカメ ラによ り 、 接触角を測定 する。 第 2図に示すよ うに、 実験装置は、 C C Dカメ ラ 1 、 可動テープ ル 2、 可動テーブル 2に載置した試験片 3、 照明光 4を有し、 試験片 3 の上に水滴 5 を滴下して、 C C Dカメ ラ 1 で観察する。  A 5 μl drop of water is dropped on the test body, and the contact angle is measured with a CCD camera. As shown in Fig. 2, the experimental apparatus has a CCD camera 1, a movable table 2, a test piece 3 placed on a movable table 2, and illumination light 4, and a water drop 5 is dropped on the test piece 3. And observe with CCD camera 1.
[実験 1 ]  [Experiment 1]
予備的実験と して、 紫外線照射実験を行なった。  As a preliminary experiment, an ultraviolet irradiation experiment was performed.
試験片は以下の三つのである。  The test pieces are the following three.
( 1 )アナタ一ゼ型の酸化チタンを塗布したアルミ ニウム板、 ステンレ ス鋼板、 ( 30 X 30 X 3 ram)  (1) Aluminum plate, stainless steel plate coated with anatase type titanium oxide, (30 X 30 X 3 ram)
( 2 )ルシル型の酸化チタンを溶射したステンレス鋼板 (30 X 30 X 3 mm) (2) Stainless steel plate (30 X 30 X 3 mm) sprayed with Lucyl type titanium oxide
( 3 )表面に酸化被膜を形成したチタン板 (30 X 30 X 1 mm) (3) Titanium plate with oxide film formed on its surface (30 X 30 X 1 mm)
酸化被膜の形成は、 チタン表面に高温プラズマを照射し、 空気中の酸 素によ りチタン表面に酸化被膜を形成したものである。  The oxide film is formed by irradiating high-temperature plasma to the titanium surface and forming an oxide film on the titanium surface by oxygen in the air.
アナタ一ゼ型酸化チタンをステンレス鋼板、 アルミニウム板にコ一テ イ ングした試験片は紫外線 (紫外線ライ ト 400nm以下) による塗れ性変 化を生じた。 紫外線を受け、 塗れ性の良く なつた実験体を紫外線を遮断 した環境下に置く と、 酸化チタ ンの塗れ性は低下する。 この後、 再度、 紫外線を照射すると塗れ性は再び向上する。 Anataze type titanium oxide is coated on stainless steel plate and aluminum plate. The painted test piece changed its coatability due to ultraviolet light (ultraviolet light 400 nm or less). If the test specimen, which has been exposed to ultraviolet rays and has become highly wettable, is placed in an environment where the ultraviolet rays are blocked, the wettability of titanium oxide will decrease. Thereafter, when the ultraviolet rays are again irradiated, the wettability is improved again.
しかしながら、 表面にルシル型酸化チタンを設けた試験片及び、 表面 に酸化被膜を形成した試験片においては濡れ性の変化が見られなかった, これは紫外線ライ トで照射できる紫外線のエネルギーがルシル型のバン ドギャップを超えていないためであると考えられる。  However, no change was observed in the wettability of the test piece having the surface provided with the lucyl type titanium oxide and the test piece having the oxide film formed on the surface. It is considered that this is because the band gap has not been exceeded.
[実験 2 ]  [Experiment 2]
C o -60線源実験施設においての Ί線照射実験を行なった。  X-ray irradiation experiments were performed at the Co-60 source experimental facility.
試験片は以下の二つである。  The test pieces are the following two.
( 1 )ノレシル型の酸化チタンを溶射したステンレス鋼板 (30 X 30 X 3 mra) ( 2 )表面に酸化被膜を形成したチタン板 (30 X 30 X 1 ram)  (1) Stainless steel plate (30 X 30 X 3 mra) sprayed with nolesil-type titanium oxide (2) Titanium plate (30 X 30 X 1 ram) with an oxide film formed on the surface
酸化被膜の形成は、 チタン表面に高温プラズマを照射し、 空気中の酸 素によ りチタン表面に酸化被膜を形成したものである。  The oxide film is formed by irradiating high-temperature plasma to the titanium surface and forming an oxide film on the titanium surface by oxygen in the air.
y線照射量が 10〜20kGy/h という非常に多量の y線を短時間に照射す ることが可能な施設で実験を行なった。 第 3図 (A ) に示したよ うな木 製のホルダ 6 に試験片 3 を 15〜20片設置し、 第 3図 ( B ) に示すよ う に Co- 60線源 7の近く に配設して γ線照射を行った。 約 10 日間の連続照射 実験を 2回行なった。 その結果、 両者に大きな濡れ性の変化があった。 ルシル型酸化チタンを溶射したステンレス鋼板における実験結果を第 4図、 第 5図に示す。 第 4図において、 「 1 」 は γ線照射前、 「 2」 は γ 線を 10 日間照射したものを示し、 γ線照射によつて接触角が小さ く なつ ているのが観察できる。 「 3」は γ線照射を遮断して暗室に 2週間放置し たものを示し、 接触角が y線照射前に近づく こ とがわかる。 その後、 再 ぴ y線を照射したものが「 4」, 「 5」である。 「 5」では濡れ性が良すぎ、 接触角が 5度以下となるため、接触角は測定できなかった。 「 6」は「 5 」 の状態から暗室に 1 1 0分放置したもので、 濡れ性が悪く なっているの がわかる。 尚、 「 1」 一 「 3」 シリーズに比較して 「 4」 ― 「 6」 シリー ズは、 試験片を γ線源の近く に置いた。 第 5図に示すよ う に、 γ線照射 後 1 0 日で接触角 0 が変化 (ほぼ半減) する。 この後、 再び γ線を遮断 し、暗室保存 (暗室に 2週間放置)すると接触角は y線照射前に近づく。 表面に酸化被膜を形成したチタン板における実験結果を第 6図、 第 7 図に示す。 第 6図において、 「 1 」 は γ線照射前、 「 2」 は γ線を 1 0 日 間照射したものを示し、 γ線照射によって接触角が小さ く なっているの が観察できる。 「 3」は y線照射を遮断して暗室に 1 1 0分放置したもの を示し、 接触角が y線照射前に近づいていく こ とがわかる。 第 7図に示 すよ う に、 接触角は y線照射前と照射後では、 線量に依存して、 約半分 から 1 0分の 1 ほどになる。 The experiment was conducted at a facility that can irradiate a very large amount of y-rays in a short time with a dose of 10 to 20 kGy / h. 15 to 20 test pieces 3 are placed on a wooden holder 6 as shown in Fig. 3 (A), and placed near the Co-60 source 7 as shown in Fig. 3 (B). Gamma irradiation was performed. Two continuous irradiation experiments for about 10 days were performed. As a result, there was a large change in wettability of both. Figures 4 and 5 show the experimental results of a stainless steel plate sprayed with Lucyl type titanium oxide. In FIG. 4, “1” indicates the result before γ-ray irradiation, and “2” indicates the result after γ-ray irradiation for 10 days. It can be observed that the contact angle is reduced by the γ-ray irradiation. “3” indicates that the sample was left in a dark room for 2 weeks after γ-ray irradiation was cut off, indicating that the contact angle was closer to that before y-ray irradiation. After that, the re-irradiated y-rays are “4” and “5”. "5" has too good wettability, The contact angle could not be measured because the contact angle was less than 5 degrees. “6” was left in the dark room for 110 minutes from the state of “5”, indicating that the wettability was poor. In addition, in the “4”-“6” series compared to the “1”-“3” series, the test piece was placed near the γ-ray source. As shown in Fig. 5, the contact angle 0 changes (almost halved) 10 days after gamma irradiation. After this, the γ-rays are cut off again and the contact angle approaches that before y-ray irradiation when stored in a dark room (left in a dark room for 2 weeks). The experimental results for a titanium plate with an oxide film formed on the surface are shown in FIGS. 6 and 7. In FIG. 6, “1” indicates that the sample was irradiated with γ-rays for 10 days, and “2” indicates that the sample was irradiated with γ-rays for 10 days. It can be observed that the contact angle was reduced by the γ-ray irradiation. “3” indicates a case where the y-ray irradiation was cut off and left in a dark room for 110 minutes, and it can be seen that the contact angle approaches before the y-ray irradiation. As shown in Fig. 7, the contact angle before and after y-irradiation is about half to about one-tenth, depending on the dose.
数々の実験ピースの設置によ り 、 濡れ性の変化が y線の波長や時間よ り も照射線量に大き く起因する ことがわかった。 Co- 60 線源の γ線を同 時間受けても、 線源からの距離に反比例して接触角の変化は減少する。 濡れ性変化を生じたルシル型と酸化被膜チタン板表面の物理化学的状 況を把握するために、 電子顕微鏡と X線回折による観察を行った 3 電子 顕微鏡写真から、 ルシル型チタ ンの表面は 2 0 — 3 0 の比較的不定 形の粒子によって構成されているのに対し、 酸化被膜の表面は、 平均直 径 7 — 8 mの粒子が規則的に並んでいるこ とがわかった。 X 線回折は 表面からおよそ 5 0 μ mの深さまでの組成を調べることができる。 ルシ ル型チタンの表面はほとんどルシル型ではあるが、 アナタ一ゼ型酸化チ タンが含まれていることがわかった。 また酸化被膜チタン板表面の組成 はほとんどチタンからなつているが薄いルシル型の酸化被膜が存在する ことカ ゎ力 つた。 [実験 3 ] With the installation of a number of experimental pieces, it was found that the change in wettability was caused more largely by the irradiation dose than by the wavelength and time of the y-ray. The change in contact angle decreases in inverse proportion to the distance from the source even when the gamma rays from the Co-60 source are received for the same time. To understand Lucille type that produced the wettability change physicochemical like situation oxide film titanium plate surface, the three electron micrograph was observed with an electron microscope and X-ray diffraction, the surface of Lucille type titanium emission are The surface of the oxide film was found to be regularly arranged with particles with an average diameter of 7 to 8 m, while the particles were composed of relatively irregular particles of 20 to 30. X-ray diffraction can examine the composition from the surface to a depth of about 50 μm. It was found that the surface of the lucyl-type titanium is almost lucyl-type, but contains anatase-type titanium oxide. The composition of the surface of the oxide-coated titanium plate was almost entirely made of titanium, but the existence of a thin rusil-type oxide film was important. [Experiment 3]
C o -60線源実験施設においての γ線照射実験を行なった。  A gamma irradiation experiment was performed at the Co-60 source experimental facility.
試験片は以下の 3つである。  The following three test pieces were used.
( 1 )表面に酸化被膜を形成したチタン板 (30 X 30 X 1 mm) (1) Titanium plate with oxide film formed on the surface (30 X 30 X 1 mm)
( 2 )表面に酸化被膜を形成したジルカロイ板 (30 X 30 X 0. 5 mm) (2) Zircaloy plate (30 X 30 X 0.5 mm) with an oxide film on the surface
( 3 )表面に酸化被膜を形成したステンレス鋼板 (30 X 30 X 3 ram) (3) Stainless steel plate with an oxide film on the surface (30 X 30 X 3 ram)
酸化被膜の形成は、 金属表面に高温プラズマを照射し、 空気中の酸素 によ り金属表面に酸化被膜を形成したものである。  The oxide film is formed by irradiating high-temperature plasma to the metal surface and forming an oxide film on the metal surface by oxygen in the air.
γ線連続照射による濡れ性の時間的変化を測定しチタン板との比較を 行った。 結果を第 8図、 第 9図に示す。 第 8図は、 ,/線照射前と 9 0時 間 y線照射後とを、 3つの試験片で比較したものである。 第 9図は、 γ 線照射による接触角の変化を示すグラフであり 、 図中において実線、 破 線、 一点破線はそれぞれチタン板、 ジルカロイ板、 ステンレス鋼板の変 化を表す。 図中で、 ステン レス鋼板については濡れ性の大きな向上は見 られないが、 ジルカロイ板についてはチタン板同様、 濡れ性の向上が照 射時間の変化に伴い見られた。 これは金属チタン同様の酸化被膜が表面 に形成されたためと考えられる。 連続照射時間が長く なるほど濡れ性の 向上がみられ、 さ らに照射時間の延長を施せば超親液状態になる ことが 予想される。  The time-dependent change in wettability due to continuous gamma-ray irradiation was measured and compared with the titanium plate. The results are shown in FIGS. 8 and 9. Fig. 8 shows a comparison of three test pieces before and after irradiation with y / ray for 90 hours. FIG. 9 is a graph showing changes in contact angle due to γ-ray irradiation. In the figure, solid lines, broken lines, and dashed lines indicate changes in a titanium plate, a zircaloy plate, and a stainless steel plate, respectively. In the figure, no significant improvement in the wettability was observed for the stainless steel sheet, but for the Zircaloy sheet, similar to the titanium plate, the improvement in the wettability was observed with the change in the irradiation time. This is probably because an oxide film similar to titanium metal was formed on the surface. The longer the continuous irradiation time, the more the wettability is improved, and if the irradiation time is further extended, it is expected that a super-lyophilic state will be obtained.
Β . 限界熱流束と γ線照射量との関係  Β. Relationship between critical heat flux and γ-ray dose
第 1 0 図は沸騰特性曲線を示 している。 沸騰伝熱の特性は伝熱面 の熟流束と伝熱面温度と液体の飽和温度との差で表すこ と ができ る。 図中の A Β間は非沸騰の液体単相の自然対流域、 B点が沸騰開始点、 B D間は核沸騰であ り 、 Dは極大熱流束点 (限界熱流束) 、 D E間 は遷移沸騰であ り 、 Eは極小熱流束点、 Eを超える と膜沸騰と なる。 例えば、 原子炉において、 燃料棒表面温度が沸騰温度よ り もあま り 高 く ないと きは核沸騰であ り 、 十分高いと膜沸縢と なる。 一般に燃 料棒と水の飽和温度と の差が小さい間は熱流束は小さいが、 燃料棒 の温度が上がって温度差が大き く なる と 、 核沸騰を生 じて熱流束が 上昇する。 そ して核沸騰と膜沸騰の中間領域になる と燃料棒表面の 相当部分が蒸気で覆われる よ う にな り 熱伝達が不安定になって、 温 度差が増すと熱流束が減少する。 沸騰や凝縮な どの相変化による熱 伝達現象においては、 部材と液体が接触している こ と が最終的に必 要になる。 これは、 蒸気やガスの熱伝導率が通常液体の 1 ノ 1 0 0 0程度と著し く 低く 、 蒸気相が部材表面を覆う こ と は熱伝達を阻害 する こ と になるからである。 核沸騰領域では伝熱表面温度の上昇に 伴い激しい沸騰気泡生成によ る運動のために、 熱伝達率は良く なつ ていく 。 しかしなが ら、 一方、 沸騰気泡の発生量も多く な り 、 蒸気 泡が伝熱面を覆う 作用が生じてく る。 最後には、 蒸気泡が熱伝達面 全体を覆って しまい、 急速な熱伝達率減少を生 じる (沸騰遷移) 。 したがって、 極大熱流束点 (限界熱流束) を大き く する こ とができ れば、 有利である。 Figure 10 shows the boiling characteristic curve. The characteristics of boiling heat transfer can be expressed by the difference between the ripening flux of the heat transfer surface, the temperature of the heat transfer surface, and the saturation temperature of the liquid. In the figure, the area between A Β is the natural convection region of a non-boiling liquid single phase, the point B is the boiling start point, the area between BD is nucleate boiling, D is the maximum heat flux point (critical heat flux), and DE is the transition. Boiling, E is the minimum heat flux point, and exceeding E results in film boiling. For example, in a nuclear reactor, the fuel rod surface temperature is higher than the boiling temperature If it is not high, it is nucleate boiling, and if it is sufficiently high, it becomes a film boiling. In general, the heat flux is small when the difference between the fuel rod and the saturation temperature of water is small, but when the temperature of the fuel rod increases and the temperature difference increases, the heat flux increases due to nucleate boiling. In the intermediate region between nucleate boiling and film boiling, a considerable portion of the fuel rod surface becomes covered with steam, heat transfer becomes unstable, and the heat flux decreases as the temperature difference increases. . For heat transfer phenomena due to phase changes such as boiling and condensation, it is ultimately necessary that the material and the liquid be in contact. This is because the thermal conductivity of vapor or gas is remarkably low, typically about 100,000 for liquid, and the vapor phase covering the member surface impedes heat transfer. In the nucleate boiling region, the heat transfer coefficient is improved due to the movement caused by vigorous boiling bubble generation as the heat transfer surface temperature increases. However, on the other hand, the amount of boiling bubbles generated also increases, and the action of the vapor bubbles covering the heat transfer surface occurs. Eventually, the vapor bubbles cover the entire heat transfer surface, causing a rapid decrease in heat transfer coefficient (boiling transition). Therefore, it would be advantageous if the maximum heat flux point (critical heat flux) could be increased.
[実験 4 ]  [Experiment 4]
第 1 1 図に示す実験装置を用いて、 限界熱流束の測定を行なった。 熱流速 (W / m 2 ) は、 試験片間の電圧と回路電流から求め られる消 費電力 (W ) と試験片の表面積 (m 2 ) によ り 計算される。 限界熱流 束は試験片が切れた時の熱流束である。 このよ う な実験装置および 方法は周知である。 試験片は棒状の酸化チタ ンおよび棒状のチタ ン (表面に酸化被膜を形成 したもの) である。 第 1 2 図は実験結果を 示してお り 、 γ線照射量が多く なるに したがって、 限界熱流束も大 き く なる こ とがわかる。 The critical heat flux was measured using the experimental device shown in Fig. 11. Heat flux (W / m 2) is due Ri is calculated on the surface area of the power consumption (W) and a test piece obtained from the voltage and circuit current of the test pieces (m 2). The critical heat flux is the heat flux when the test piece breaks. Such experimental devices and methods are well known. The test pieces were rod-shaped titanium oxide and rod-shaped titanium (an oxide film was formed on the surface). Fig. 12 shows the experimental results, and it can be seen that as the γ-ray irradiation amount increases, the critical heat flux also increases.
C . ライデンフロス ト現象 第 1 3 図は高温面上の水滴の寿命を示している。 高温面上に一定 の大き さの液滴を滴下し、 蒸発完了までの時間を測定する と 、 蒸発 時間 (液滴の寿命) は高温面の温度と と もに最初の う ちは速やかに 低下し、 やがて極小値 (蒸発時間が短いと い う観点からは蒸発時間 の極大点) から極大値を経て、 再び温度と と もに徐々 に低下する。 蒸発時間の極大点よ り 高温側では、 液滴と高温面と の間に蒸気膜が 形成される。 液滴が蒸気膜によって表面から分離され、 結果と して 表面を濡ら さ ない現象をライ デンフ ロ ス ト現象と レ、 う。 ライデンフ ロ ス ト現象の現れる下限、 すなわち蒸発時間の極大点をライデンフ ロ ス ト点とレ、 う。 C. Leidenfrost phenomenon Figure 13 shows the life of a water drop on a hot surface. When a droplet of a certain size is dropped on a hot surface and the time until evaporation is measured, the evaporation time (droplet life) decreases rapidly with the temperature of the hot surface at the beginning. Eventually, the temperature gradually decreases from the minimum value (the maximum point of the evaporation time from the viewpoint of a short evaporation time) to the maximum value, and then gradually decreases again with the temperature. On the hot side from the maximum point of the evaporation time, a vapor film is formed between the droplet and the hot surface. The phenomenon in which droplets are separated from the surface by the vapor film and do not wet the surface as a result is called Leidenfrost phenomenon. The lower limit of the Leidenfrost phenomenon, that is, the maximum point of the evaporation time, is called the Leidenfrost point.
[実験 5 ]  [Experiment 5]
チタ ン表面に高温プラ ズマを照射 し、 空気中の酸素によ り チタ ン 表面に酸化被膜を形成 してなる試験片に γ線を照射させ ( 8 0 0 k G y ) 、 γ線処理していない試験片と比較した。 実験は、 2 3 5 °C、 2 4 0で、 2 6 0 。C、 2 8 0 。C、 3 0 0 。C、 3 2 0 °C、 3 4 0。じの 7点で行なった。 第 1 4 図に示すよ う に、 方形状の試験片の表面に マイ ク ロ シ リ ンジを用いて液滴を滴下させて、 目視によって観察 し た。 左の試験片が γ線処理を していないもの、 右の試験片が γ線処 理を したものである。 試験片の表面は凹面ではないので、 蒸発しな い場合には液滴は試験片表面を転動 して試験片表面から外れる。 結 果を第 1 5 図に示す。 図中〇は液滴が球状のまま、 試験片から転が つて外れたものを意味する。 X、 △は液滴が瞬時に蒸発 したこ と を 意味する。 口は液滴が瞬時に蒸発する ものではないが、 液滴がさ ら に小さい球状の液滴を形成しなが ら分解蒸発されたよ う な場合を示 す。 この結果から、 y線を照射する こ と によって、 ライデンフ ロ ス ト点が高温側にシフ トする こ と がわかる。 すなわち、 y線を照射す る こ と によって、 2 3 0 °じから 3 0 0 °じの高温範囲にぉぃても、 濡 れ性を向上させる こ とができ る こ と を示している。 産業上の利用可能性 The surface of titanium is irradiated with high-temperature plasma, and a test piece having an oxide film formed on the surface of titanium is irradiated with γ-rays (800 kGy) by oxygen in the air, and treated with γ-rays. It was compared with the test piece without. The experiment was performed at 235 ° C, 240, and 260 ° C. C, 280. C, 300. C, 320 ° C, 340. The same was done at 7 points. As shown in Fig. 14, droplets were dropped on the surface of a rectangular test piece using a micro syringe and observed visually. The left test piece was not gamma-ray treated, and the right test piece was gamma-ray treated. Since the surface of the test piece is not concave, if it does not evaporate, the droplet rolls on the test piece surface and comes off the test piece surface. Figure 15 shows the results. In the figure, 〇 means that the droplet was rolled off the test piece while remaining spherical. X and △ indicate that the droplet was instantaneously evaporated. The mouth does not mean that the droplet evaporates instantaneously, but shows a case where the droplet is decomposed and evaporated while forming a smaller spherical droplet. From this result, it can be seen that the Leidenfrost point shifts to the higher temperature side by irradiation with y-rays. That is, irradiate y-rays This shows that the wettability can be improved even in a high temperature range from 230 ° to 300 °. Industrial applicability
本発明は、 原子炉や宇宙船な どの放射線環境下にある熱伝達機構 の改善に利用 し得る。 本発明は、 放射線環境を同時に付与する こ と によ り 、 通常放射線環境下にない場合においても、 熱伝達機構の改 善に利用 し う る。 本発明は、 通常の放射線環境下も し く は、 放射線 環境を同時に付与 した場合の、 潤滑 · 化学吸着などの濡れ性を必要 とする機構の改善に利用 し う る。  INDUSTRIAL APPLICABILITY The present invention can be used for improving a heat transfer mechanism in a radiation environment such as a nuclear reactor and a spacecraft. INDUSTRIAL APPLICABILITY The present invention is applied to the improvement of a heat transfer mechanism by simultaneously providing a radiation environment even in a normal radiation environment. INDUSTRIAL APPLICABILITY The present invention is used for improving a mechanism that requires wettability such as lubrication and chemisorption in a normal radiation environment or when a radiation environment is simultaneously applied.

Claims

請 求 の 範 囲 The scope of the claims
I . 表面に触媒層を備えた基材を、 放射線環境下に配して、 該表面 の濡れ性を向上させる こ と を特徴とする濡れ性向上方法。 I. A method for improving wettability, comprising disposing a substrate having a catalyst layer on the surface thereof in a radiation environment to improve the wettability of the surface.
2 . 請求の範囲 1 において、 基材の該表面に放射線を照射する こ と で該表面の濡れ性を向上させる こ と を特徴とする濡れ性向上方法。  2. The method for improving wettability according to claim 1, wherein the surface of the substrate is irradiated with radiation to improve the wettability of the surface.
3 . 請求の範囲 1 において、 放射線は、 α線、 0線、 y線、 X線、 中性子線から選択される こ と を特徴とする濡れ性向上方法。 3. The method for improving wettability according to claim 1, wherein the radiation is selected from α rays, 0 rays, y rays, X rays, and neutron rays.
4 . 請求の範囲 1 において、 該触媒層は酸化チタ ンである こ と を特 徴とする濡れ性向上方法。 4. The method for improving wettability according to claim 1, wherein the catalyst layer is titanium oxide.
5 . 請求の範囲 4 において、 該酸化チタ ンはルシル型酸化チタ ンで ある こ と を特徴とする濡れ性向上方法。  5. The method for improving wettability according to claim 4, wherein the titanium oxide is a lusyl-type titanium oxide.
6 . 請求の範囲 1 において、 該触媒層は該基材の表面に形成した酸化被 膜であることを特徴とする濡れ性向上方法。  6. The method for improving wettability according to claim 1, wherein the catalyst layer is an oxide film formed on the surface of the substrate.
7 . 請求の範囲 6において、 該基材は金属であり 、 該触媒層は該金属の 酸化被膜であることを特徴とする濡れ性向上方法。  7. The method for improving wettability according to claim 6, wherein the substrate is a metal, and the catalyst layer is an oxide film of the metal.
8 . 請求の範囲 7において、 該金属はステンレス鋼、 ジルカロイ、 チタ ンから選択されるものであるこ とを特徴とする濡れ性向上方法。  8. The method for improving wettability according to claim 7, wherein the metal is selected from stainless steel, Zircaloy, and titanium.
9 . 表面にルシル型酸化チタ ンの被膜を形成した部材を、 y線環境下に 配して該表面の濡れ性を向上させることを特徴とする濡れ性向上方法。 9. A method for improving wettability, comprising disposing a member having a surface formed with a film of rutile-type titanium oxide in a y-ray environment to improve the wettability of the surface.
1 0 . 表面に酸化被膜を形成した部材を、 γ線環境下に配して該表面の 濡れ性を向上させることを特徴とする濡れ性向上方法。 10. A method for improving wettability, comprising disposing a member having an oxide film formed on a surface thereof in a gamma ray environment to improve the wettability of the surface.
I I . 請求の範囲 1 0において、 該基材は金属であり 、 該酸化被膜は該 金属の酸化物であることを特徴とする濡れ性向上方法。  I I. The method for improving wettability according to claim 10, wherein the base material is a metal, and the oxide film is an oxide of the metal.
1 2 . 請求の範囲 1 1 において、 該金属はステンレス鋼、 ジルカロイ、 チタン選択されるものであることを特徴とする濡れ性向上方法。 12. The method according to claim 11, wherein the metal is selected from stainless steel, Zircaloy, and titanium.
1 3. 表面にルシル型酸化チタンの被膜が形成されており、 常時 γ線環 境下に配設されている部材。 1 3. A member whose surface is coated with a Lucyl-type titanium oxide film and is always placed under the gamma-ray environment.
1 4.請求の範囲 1 3において、該部材は原子炉を構成する部材である。 1 4. In claim 13, the member is a member constituting a nuclear reactor.
1 5. 請求の範囲 1 4において、 該部材は炉心を構成する部材である。1 5. In claim 14, the member is a member constituting a core.
1 6. 請求の範囲 1 5において、 該部材は燃料集合体を構成する部材で ある。 1 6. In claim 15, the member is a member constituting a fuel assembly.
1 7 請求の範囲 1 6において、 該部材は燃料棒である。  17 In claim 16, the member is a fuel rod.
1 8 請求の範囲 1 4において、 該部材は、 炉心を内装する原子炉容器 である。 18 In claim 14, the member is a reactor vessel having a reactor core therein.
1 9. 請求の範囲 1 4において、 該部材は、 原子炉の格納容器である。 2 0. 表面に酸化被膜が形成されており 、 常時 γ線環境下に配設されて いる部材。  1 9. In claim 14, the member is a containment vessel of a nuclear reactor. 20. A member that has an oxide film formed on its surface and is always placed in a gamma-ray environment.
2 1.請求の範囲 2 0において、該部材は原子炉を構成する部材である。 2 2. 請求の範囲 2 1において、 該部材は炉心を構成する部材である。 2 3. 請求の範囲 2 2において、 該部材は燃料集合体を構成する部材で ある。  2 1. In Claim 20, the member is a member constituting a nuclear reactor. 2 2. In Claim 21, the member is a member constituting a core. 23. In Claim 22, the member is a member constituting a fuel assembly.
2 4 請求の範囲 2 3において、 該部材は燃料棒である。 24 In claim 23, the member is a fuel rod.
2 5 請求の範囲 2 0において、 該部材は炉心を内装する原子炉容器で ある 25 In claim 20, the member is a reactor vessel having a reactor core therein.
2 6 請求の範囲 2 0において、 該部材は原子炉の格納容器である。 2 7 原子炉の燃料棒の表面にルシル型酸化チタンの被膜を設けること で、 燃料棒から冷却材への熱伝達の効率を向上させることを特徴とする 熱伝達向上方法。 26 In claim 20, the member is a containment vessel of a nuclear reactor. 27 A method for improving heat transfer, characterized by improving the efficiency of heat transfer from the fuel rods to the coolant by providing a film of rutile titanium oxide on the surface of the fuel rods of the nuclear reactor.
2 8. 原子炉の燃料棒の表面に酸化被膜を形成することで、 燃料棒から 冷却材への熱伝達の効率を向上させるこ とを特徴とする熱伝達向上方法 2 9. 請求の範囲 2 8において、 該酸化被膜は、 チタン、 あるいはジル 力ロイの酸化被膜であることを特徴とする熱伝達向上方法。 2 8. A method for improving heat transfer characterized by improving the efficiency of heat transfer from the fuel rods to the coolant by forming an oxide film on the surface of the fuel rods of the reactor 2 9. Claims 2 8, the oxide film may be made of titanium or zircon. A method for improving heat transfer, characterized in that it is an oxide film of force roy.
3 0 . 外表面にルシル型酸化チタンの被膜が形成されている燃料棒。 30. Fuel rods with a sulcil-type titanium oxide coating on the outer surface.
3 1 . 外表面に酸化被膜が形成されている燃料棒。 3 1. Fuel rods with an oxide film formed on the outer surface.
3 2 . 請求の範囲 3 1 において、 該酸化被膜はジルカロイの酸化被膜で あることを特徴とする燃料棒。  32. The fuel rod according to claim 31, wherein the oxide film is a zircaloy oxide film.
3 3 . 壁面にルシル型酸化チタンの被膜を形成したことを特徴とする原 子炉容器。  3 3. A nuclear reactor vessel characterized in that a rusil type titanium oxide film is formed on the wall.
3 4 . 壁面に酸化被膜を形成したこ とを特徴とする原子炉容器。  3 4. Reactor vessel characterized by having an oxide film formed on the wall.
3 5 . 壁面にルシル型酸化チタンの被膜を形成したことを特徴とする原 子炉格納容器。  3. Reactor containment vessel characterized in that the wall is coated with a Lucyl-type titanium oxide film.
3 6 · 壁面に酸化被膜を形成したことを特徴とする原子炉格納容器。  3 6 · A containment vessel characterized by having an oxide film formed on the wall.
PCT/JP2000/007680 1999-11-02 2000-11-01 Method for improving wettability, and element placed under radiation environment WO2001033574A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU10526/01A AU1052601A (en) 1999-11-02 2000-11-01 Method for improving wettability, and element placed under radiation environment
JP2001535180A JP4320412B2 (en) 1999-11-02 2000-11-01 Method for improving wettability, and member arranged in a radiation environment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/312159 1999-11-02
JP31215999 1999-11-02

Publications (1)

Publication Number Publication Date
WO2001033574A1 true WO2001033574A1 (en) 2001-05-10

Family

ID=18025960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007680 WO2001033574A1 (en) 1999-11-02 2000-11-01 Method for improving wettability, and element placed under radiation environment

Country Status (3)

Country Link
JP (1) JP4320412B2 (en)
AU (1) AU1052601A (en)
WO (1) WO2001033574A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234476A (en) * 2005-02-23 2006-09-07 Toshiba Corp Fuel assembly for boiling water nuclear reactor, and channel box for boiling water nuclear reactor
JP2008184357A (en) * 2007-01-30 2008-08-14 National Institute Of Advanced Industrial & Technology Method of making surface of oxide amphiphilic

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101511734B1 (en) 2014-07-18 2015-04-13 경희대학교 산학협력단 Surface modification method of ceramic materials

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238395A (en) * 1990-02-16 1991-10-24 Nuclear Fuel Ind Ltd Cylinder for receiving nuclear fuel assembly
JPH03245089A (en) * 1990-02-23 1991-10-31 Nuclear Fuel Ind Ltd Nuclear fuel assembly
JPH06214091A (en) * 1993-01-14 1994-08-05 Hitachi Ltd Radioactivity removing device in nuclear reactor pressure vessel
JPH07228963A (en) * 1994-02-17 1995-08-29 Nuclear Fuel Ind Ltd Precipitation-hardened nickel-base alloy for atomic fuel
JPH07270592A (en) * 1994-03-29 1995-10-20 Ishikawajima Harima Heavy Ind Co Ltd Structural member of reactor and corrosion-proof method therefor
JPH08201578A (en) * 1995-01-27 1996-08-09 Ishikawajima Harima Heavy Ind Co Ltd Structural material for reactor and method for preventing it form corroding
JPH10130805A (en) * 1996-10-25 1998-05-19 Ishikawajima Harima Heavy Ind Co Ltd Production of titanium oxide film for prevention of corrosion and corrosion preventive titanium oxide film
JPH10204666A (en) * 1997-01-21 1998-08-04 Ishikawajima Harima Heavy Ind Co Ltd Reactor fuel rod and its corrosion preventive method
JPH10225639A (en) * 1997-02-13 1998-08-25 Toto Ltd Photocatalytic hydrophilic member, its production and photocatalytic hydrophilic coating composition
JPH1112539A (en) * 1997-06-20 1999-01-19 Nippon Parkerizing Co Ltd Functional coating material composition and method for forming functional coating film
JPH1123757A (en) * 1997-07-07 1999-01-29 Hitachi Ltd Fuel cladding pipe and method and device for its anodization treatment
JPH1161372A (en) * 1997-08-27 1999-03-05 Ishikawajima Harima Heavy Ind Co Ltd Production of titanium oxidized coating and titanium oxidized coating
JPH1176833A (en) * 1997-09-04 1999-03-23 Toto Ltd Photocatalystic hydrophilic member
JPH11262655A (en) * 1998-01-13 1999-09-28 Fuji Xerox Co Ltd Composite, its production and semiconductor device
JP2000087016A (en) * 1998-09-14 2000-03-28 Dainippon Printing Co Ltd Composite material with surface which can turn from ultra-water-repellent one to ultra-hydrophilic one
JP2000227506A (en) * 1999-02-08 2000-08-15 Dainippon Printing Co Ltd Optical device and its production

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238395A (en) * 1990-02-16 1991-10-24 Nuclear Fuel Ind Ltd Cylinder for receiving nuclear fuel assembly
JPH03245089A (en) * 1990-02-23 1991-10-31 Nuclear Fuel Ind Ltd Nuclear fuel assembly
JPH06214091A (en) * 1993-01-14 1994-08-05 Hitachi Ltd Radioactivity removing device in nuclear reactor pressure vessel
JPH07228963A (en) * 1994-02-17 1995-08-29 Nuclear Fuel Ind Ltd Precipitation-hardened nickel-base alloy for atomic fuel
JPH07270592A (en) * 1994-03-29 1995-10-20 Ishikawajima Harima Heavy Ind Co Ltd Structural member of reactor and corrosion-proof method therefor
JPH08201578A (en) * 1995-01-27 1996-08-09 Ishikawajima Harima Heavy Ind Co Ltd Structural material for reactor and method for preventing it form corroding
JPH10130805A (en) * 1996-10-25 1998-05-19 Ishikawajima Harima Heavy Ind Co Ltd Production of titanium oxide film for prevention of corrosion and corrosion preventive titanium oxide film
JPH10204666A (en) * 1997-01-21 1998-08-04 Ishikawajima Harima Heavy Ind Co Ltd Reactor fuel rod and its corrosion preventive method
JPH10225639A (en) * 1997-02-13 1998-08-25 Toto Ltd Photocatalytic hydrophilic member, its production and photocatalytic hydrophilic coating composition
JPH1112539A (en) * 1997-06-20 1999-01-19 Nippon Parkerizing Co Ltd Functional coating material composition and method for forming functional coating film
JPH1123757A (en) * 1997-07-07 1999-01-29 Hitachi Ltd Fuel cladding pipe and method and device for its anodization treatment
JPH1161372A (en) * 1997-08-27 1999-03-05 Ishikawajima Harima Heavy Ind Co Ltd Production of titanium oxidized coating and titanium oxidized coating
JPH1176833A (en) * 1997-09-04 1999-03-23 Toto Ltd Photocatalystic hydrophilic member
JPH11262655A (en) * 1998-01-13 1999-09-28 Fuji Xerox Co Ltd Composite, its production and semiconductor device
JP2000087016A (en) * 1998-09-14 2000-03-28 Dainippon Printing Co Ltd Composite material with surface which can turn from ultra-water-repellent one to ultra-hydrophilic one
JP2000227506A (en) * 1999-02-08 2000-08-15 Dainippon Printing Co Ltd Optical device and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234476A (en) * 2005-02-23 2006-09-07 Toshiba Corp Fuel assembly for boiling water nuclear reactor, and channel box for boiling water nuclear reactor
JP2008184357A (en) * 2007-01-30 2008-08-14 National Institute Of Advanced Industrial & Technology Method of making surface of oxide amphiphilic

Also Published As

Publication number Publication date
JP4320412B2 (en) 2009-08-26
AU1052601A (en) 2001-05-14

Similar Documents

Publication Publication Date Title
TWI273608B (en) Nuclear power plant, method of forming corrosion-resistant coating therefor, and method of operating nuclear power plant
Takamasa et al. Radiation induced surface activation on Leidenfrost and quenching phenomena
Seshadri et al. Why ionizing radiation enhances surface wettability
Cui et al. Role of microchannels in breakaway oxidation of Zr alloy under high-temperature steam oxidation at 1000℃
EP4029032A2 (en) Physical vapor deposition of ceramic coatings on zirconium alloy nuclear fuel rods
WO2001033574A1 (en) Method for improving wettability, and element placed under radiation environment
Ali et al. Ion irradiation effects on Cr-coated zircaloy-4 surface wettability and pool boiling critical heat flux
Ashcheulov et al. Layer protecting the surface of zirconium used in nuclear reactors
KR19990023919A (en) Zirconium-Tin-Iron Alloys for High Combustion Nuclear Fuel Rods and Structural Materials
JP4430372B2 (en) Metal structure excellent in corrosion resistance, material for producing the metal structure, and method for producing the metal structure
JP4233027B2 (en) Anticorrosion member and metal structure having the anticorrosion member attached
Vesel et al. Sequential oxidation and reduction of tungsten/tungsten oxide
Nouduru et al. High temperature and high pressure oxidation behavior of Zr-2.5 Nb pressure tube material–Effect of β phase composition and surface machining
US11923097B2 (en) Sensors for passively measuring a maximum temperature of a nuclear reactor, and related methods
Choi et al. Effects of super-hydrophilicity and orientation of heater surface on bubble behavior and the critical heat flux in pool boiling
Samanta et al. Susceptibility of Zr-2.5 (wt.%) Nb alloy to undergo nodular corrosion in water and steam environments: Effect of surface, cold work, temperature
JP2001228289A (en) Reactor power plant and its operation method
Nouduru et al. Uniform oxidation in steam and nodular corrosion in gas phase of Zr-2.5 Nb pressure tube material-effect of nature of initial oxide
JP2017155320A (en) Beryllide and surface treatment method for beryllide
Wang et al. Radiation-induced surface wettability enhancement of an indium tin oxide and titanium oxide film-coated sapphire
RU2382120C1 (en) Method of corrosion protection of products from zirconium and its alloys
Li et al. Activation characterization of non-evaporable Ti–Zr–V getter films by synchrotron radiation photoemission spectroscopy
US6126762A (en) Protective coarsening anneal for zirconium alloys
DE2144192A1 (en) Alloys for gettering moisture and reactive gases
US20120045030A1 (en) Method for forming roughness on surface of nuclear fuel rod cladding including zirconium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 535180

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase