JP3970415B2 - Ship collision prevention assistance apparatus and vessel collision prevention assistance method - Google Patents

Ship collision prevention assistance apparatus and vessel collision prevention assistance method Download PDF

Info

Publication number
JP3970415B2
JP3970415B2 JP07612098A JP7612098A JP3970415B2 JP 3970415 B2 JP3970415 B2 JP 3970415B2 JP 07612098 A JP07612098 A JP 07612098A JP 7612098 A JP7612098 A JP 7612098A JP 3970415 B2 JP3970415 B2 JP 3970415B2
Authority
JP
Japan
Prior art keywords
ship
risk
collision
virtual
navigation state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07612098A
Other languages
Japanese (ja)
Other versions
JPH11272999A (en
Inventor
秀雄 山口
修 八木
喜男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Inc filed Critical Tokyo Keiki Inc
Priority to JP07612098A priority Critical patent/JP3970415B2/en
Publication of JPH11272999A publication Critical patent/JPH11272999A/en
Application granted granted Critical
Publication of JP3970415B2 publication Critical patent/JP3970415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自船と他船との衝突の危険度に関する情報を提供する船舶衝突予防援助装置及び船舶衝突予防援助方法に関し、例えば単独または船舶用レーダ表示器または電子海図表示器等に備えまたは適用することができる船舶衝突予防援助装置及び船舶衝突予防援助方法に関する。
【0002】
【従来の技術】
従来、この種の船舶衝突予防援助装置(ARPA)においては、現在の自船の位置、針路及び速力と現在の他船の位置、針路及び速力のデータから、DCPA(最接近距離:自他船がそのまま直進すると仮定して二船が最も近づいたときの二船が最も近づいたときの二船間の距離)とTCPA(最接近時間:最接近点に到達するまでの時間)を危険度として求め、その数値を表示したり設定値と比較警報を出している。しかしながら、この種類の数値は、以下の問題がある。即ち、
・直進航行以外の変針点の先の危険度がわからない。
・一隻の他船に対して瞬間的に近づき簡単に避けられるのか、長い時間近づく難しい局面なのかわからない。
・一隻の他船だけ避ければ良いのか、次々の危険な船と出会うのか、がわからない。
【0003】
これに対して、本出願人の出願による特開平7−304495号公報に記載されたものがあり、この装置では、自船周囲の他船の他船航行情報を求める他船航行情報算出手段と、自船航行情報を求める自船航行情報算出手段と、自船の予定航路を設定する予定航路設定手段と、前記他船航行情報から将来の他船の予測位置を求めると共に前記自船航行情報から前記予定航路に沿って前記自船速力で自船位置より航行するときの将来の自船の位置を求め、将来の自船の位置と将来の他船の予測位置とで衝突危険性に関する予測情報を演算する状況予測手段を備えている。そして、自船の予定航路に沿って上記予測情報を表示することが開示されており、これにより、操船者は、予定航路に沿った将来の各時点での衝突危険性が分かるので、時間的空間的余裕のある時点で危険回避のための予定航路の修正設定等を行うことができるものである。
【0004】
【発明が解決しようとする課題】
しかしながら、上記公報に記載された船舶衝突予防援助装置では、有効範囲内であれば最も近づく他船が注目されてしまうので、その他船と出会うまでの時間的な余裕が加味されておらず、近くの他船も遠くの他船も同じ危険度基準で評価されてしまい、実際の操船者の危険感覚とは異なる判断結果を与える場合があるという課題がある。
【0005】
そのため、操船者が本当の意味での危険状態を知るためには、操船の知識や経験を前提として、操船者自身が前記表示された情報を含め下記のような種々の情報のとりまとめを行い判断をしなければならない。
・接近したときの状態
・最接近点までの時間
・危険を感じる時間的な長さ(位置関係から読み取る)
・危険な船の数
本発明はかかる課題に鑑みなされたもので、請求項1ないし請求項18の発明は、より実際の危険感覚に近い基準で将来の危険度に関する情報を提供することができる船舶衝突予防援助装置及び船舶衝突予防援助方法を提供することをその目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために請求項1記載の発明は、自船と他船との衝突の危険度に関する情報を提供する船舶衝突予防援助装置であって、
自船が予め定められた航行予定に基づいて航行したときの自船の将来の状態である自船仮想航行状態を順次予測する自船仮想航行状態予測手段と、
他船の現在の状態である他船基準航行状態から他船の将来の状態である他船仮想航行状態を順次予測する他船仮想航行状態予測手段と、
自船が前記自船仮想航行状態になり、他船がそれに対応する前記他船仮想航行状態になったと仮想したときのその仮想航行状態時点での自船と他船衝突危険度を求め、さらに求めた衝突危険度に対してその仮想航行状態時点に至るまでの到達時間で重み付けをして時間的な確信度を考慮した衝突危険度を順次算出する危険度算出手段と、
を備え、これによって航行予定の衝突危険度に関する情報を提供する。
【0007】
また、請求項2記載の発明は、請求項1記載のものにおいて、前記自船の航行予定を、自船の予定航路とする。
また、請求項3記載の発明は、請求項2記載のものにおいて、前記自船仮想航行状態予測手段が、現在の自船位置から自船の予定航路上に伸ばした垂線と自船の予定航路との交点を「仮想自船位置」とし、自船の予定航路が屈曲しており、自船位置から垂線を下ろせない場合には、該屈曲点を「仮想自船位置」とし、前記「仮想自船位置」を起点として任意の時間間隔または任意の距離間隔毎に順次、自船仮想航行状態を算出する。
【0008】
また、請求項4記載の発明は、請求項1記載のものにおいて、前記自船の航行予定は、自船の針路または速力の変化する「行動変化点」が指定されたものであり、前記危険度算出手段は前記自船の「行動変化点」における衝突危険度を算出すると共に、「行動変化点」間の衝突危険度の推移を求める。
また、請求項5記載の発明は、請求項4記載のものにおいて、前記他船仮想航行状態予測手段が、他船の針路または速力が変化する「行動変化点」を推定し、前記危険度算出手段が、さらに前記他船の「行動変化点」における衝突危険度を算出すると共に「行動変化点」間の衝突危険度の推移を求める。
【0009】
また、請求項6記載の発明は、請求項1ないし5のいずれかに記載のものにおいて、前記他船仮想航行状態予測手段が、自船仮想航行状態になる時刻に対応して他船仮想航行状態を順次予測する。
また、請求項7記載の発明は、請求項1ないし6のいずれかに記載のものにおいて、さらに、危険度算出手段によって順次算出された衝突危険度を総合化し、総合化された危険度を算出する航行予定危険度算出手段を備える。
【0010】
また、請求項8記載の発明は、請求項7記載のものにおいて、前記総合化された危険度として、自船の航行予定に基づいて順次算出された衝突危険度の最大値を採用する。
また、請求項9記載の発明は、請求項7記載のものにおいて、前記総合化された危険度として、自船の航行予定に基づいて順次算出された衝突危険度の平均値を採用する。
【0011】
また、請求項10記載の発明は、自船と他船との衝突の危険度に関する情報を操船者に提供して衝突予防の援助を行う船舶衝突予防援助方法であって、
自船が予め定められた航行予定に基づいて航行したときの自船の将来の状態である自船仮想航行状態を順次予測し、
他船の現在の状態である他船基準航行状態から他船の将来の状態である他船仮想航行状態を順次予測し、
自船が前記自船仮想航行状態になり、他船がそれに対応する前記他船仮想航行状態になったと仮想したときのその仮想航行状態時点での自船と他船衝突危険度を求め、さらに求めた衝突危険度に対してその仮想航行状態時点に至るまでの到達時間で重み付けをして時間的な確信度を考慮した衝突危険度を順次算出し、
航行予定の衝突危険度に関する情報を提供する。
【0012】
また、請求項11記載の発明は、請求項10記載のものにおいて、前記自船の航行予定を、自船の予定航路とする。
また、請求項12記載の発明は、請求項11記載のものにおいて、自船仮想航行状態の算出は、現在の自船位置から自船の予定航路上に伸ばした垂線と自船の予定航路との交点を「仮想自船位置」とし、自船の予定航路が屈曲しており、自船位置から垂線を下ろせない場合には、該屈曲点を「仮想自船位置」とし、前記「仮想自船位置」を起点として任意の時間間隔または任意の距離間隔毎に順次自船状態を算出して行う。
【0013】
また、請求項13記載の発明は、請求項10記載のものにおいて、前記自船の航行予定は、自船の針路または速力の変化する「行動変化点」を指定したものとし、自船の「行動変化点」の衝突危険度を算出すると共に「行動変化点」間の衝突危険度の推移を求めることにより前記時間的な確信度を考慮した衝突危険度を順次算出する。
【0014】
また、請求項14記載の発明は、請求項13記載のものにおいて、さらに、他船の針路または速力が変化する「行動変化点」を推定し、さらに前記他船の「行動変化点」の衝突危険度を算出すると共に「行動変化点」間の衝突危険度の推移を求めることにより前記時間的な確信度を考慮した衝突危険度を順次算出する。
また、請求項15記載の発明は、請求項10ないし14のいずれかに記載のものにおいて、他船仮想航行状態は、自船仮想航行状態になる時刻に対応して順次予測する。
【0015】
また、請求項16記載の発明は、請求項10ないし15のいずれかに記載のものにおいて、さらに順次算出した衝突危険度を総合化し、総合化された危険度を算出して操船者に提供する。
また、請求項17記載の発明は、請求項16記載のものにおいて、前記総合化された危険度は、自船の航行予定に基づいて順次算出された衝突危険度の平均値を採用する。
また、請求項18記載の発明は、請求項16記載のものにおいて、前記総合化された危険度は、自船の航行予定に基づいて順次算出された衝突危険度の平均値を採用する。
【0016】
【発明の実施の形態】
以下、図1ないし図8を参照しながら本発明の第1の実施の形態を説明する。本発明の船舶衝突予防援助装置及び船舶衝突予防援助方法が実行される船舶衝突予防援助装置10は、自船の現在の状態を求める自船基準航行状態推定手段11と、他船の現在の状態を求める他船基準航行状態推定手段12と、自船の航行予定が設定される自船航行予定設定手段13と、自船の将来の状態を予測する自船仮想航行状態予測手段14と、他船の将来の状態を予測する他船仮想航行状態予測手段15と、自船と他船の将来の危険度を求める危険度算出手段16と、危険度算出手段16で求められた危険度を航行予定で総合化する航行予定危険度算出手段17と、航行予定危険度算出手段17で総合化された危険度を表示する表示手段18とを備えている。各手段を以下に説明する。
【0017】
自船基準航行状態推定手段11は、ジャイロコンパス、GPS、スピードログからのセンサー出力を取り込み、これらから「自船基準航行状態」である現在の自船の針路、位置、速力を求めるものである。
自船航行予定設定手段13は、予めオペレータが付設された操作部から予定航路の経路(図2参照)や変針点データ(図2参照)等を入力し、自船予定航路データを指定したり、または予め設定されている複数の自船予定航路データベースの中から適する自船予定航路データを選択したりすることにより、指定または選択された「自船予定航路」が「自船の航行予定」として設定されるものである。
【0018】
自船基準航行状態推定手段11からの「自船基準航行状態」情報と、自船航行予定設定手段13からの「自船予定航路」情報は、自船仮想航行状態予測手段14へと送られる。自船仮想航行状態予測手段14は、送られた情報から自船が「自船予定航路」に基づいて航行したときの自船の将来の状態である「自船仮想航行状態」を順次予測するものであり、より具体的に言うと、自船航行予定設定手段13で指定または選択された自船予定航路上のある位置までの到達時刻、その位置での針路及び速力などを予測して「自船仮想航行状態」として算出するものである。「自船仮想航行状態」を算出するために、自船仮想航行状態予測手段14では、まず「仮想自船位置」を設定する。この「仮想自船位置」とは、例えばトラッキング操船中ではあるが、制御の誤差によって自船の現在位置が自船予定航路上に一致しない場合や、予定航路に沿って操船者が操船する場合で、自船の現在位置が自船予定航路上に一致しない場合に、自船予定航路上に一致する現在の仮想自船位置を言う。この「仮想自船位置」を設定する処理としては、以下の方法が考えられる。
【0019】
(1)自船予定航路上で現在の自船位置に近接する位置を仮想自船位置と判断する方法。
図2に示すように、「自船基準航行状態」情報の現在の自船位置から、自船予定航路上に垂線の足を伸ばし、この垂線と自船予定航路との交点を現在の「仮想自船位置」と判断する。もし、図3に示すように、自船予定航路が屈曲しており、「自船基準航行状態」情報の自船位置がこの屈曲点、即ち、変針点の近くにあって、垂線を下ろせない場合は、前記変針点を現在の「仮想自船位置」と判断する。また、自船予定航路の複数の線分に垂線を下ろすことができる場合は、各線分との距離が最も短い線分を対象とする。
(2)自船予定航路上、任意の間隔で予め設定された「自船仮想到達位置」の中で、「自船基準航行状態」情報の自船位置に最短距離にある「自船仮想到達位置」を選んで「仮想自船位置」と判断する方法。
(3)図4に示すように、「自船基準航行状態」情報からの現在の自船位置を「仮想自船位置」とし、次に目指す自船予定航路の変針点を結んだ線を新たな「自船予定航路」とする方法。
この場合、この新たな「自船予定航路」が、自船航行予定設定手段13で設定し直される。
【0020】
以上に例示した方法のどれかを用いて「仮想自船位置」を設定する。次に、この設定された「仮想自船位置」から自船予定航路上に任意の間隔で複数の将来的な「自船到達点」を決定し(図5)、将来的に自船が「自船到達点」に至った際の、到達時刻・針路・速力等を予測し算出する。
【0021】
ここで、到達時刻は、現在の自船位置または「仮想自船位置」から各「自船到達点」までの距離を算出し、自船速力で割算することによって到達時間を求め、現在時刻に加算することで算出する。自船予定航路が屈曲しており注目している「自船到達点」が屈曲点よりも遠方にある場合は、自船予定航路に沿った距離を基にして自船速力で割算しても良いし、屈曲点を航行する際の変針による速度低下を考慮して到達時間を算出しても良い。
【0022】
また、各「自船到達点」における針路は、自船予定航路と一致する針路を採用すると良い。さらに、「自船到達点」における自船速力は現在の速力が保持されるものとすると良い。
こうして、求められた各「自船到達点」における到達時間・針路・速力が「自船仮想航行状態」情報として算出される。
【0023】
他方、他船基準航行状態推定手段12は、レーダ装置に接続されるARPA装置(衝突予防援助装置Automatic Radar Plotting Aids)等で構成することができ、レーダ装置からの信号を処理して、「他船基準航行状態」である他船の位置・針路・速力を予測するものである。
他船基準航行状態推定手段12からの「他船基準航行状態」情報は、他船仮想航行状態予測手段15へと送られる。他船仮想航行状態予測手段15は、送られた情報から自船が前記「自船到達点」へ至った時点での「他船仮想航行状態」を予測するものである。この「他船仮想航行状態」の算出は、「自船到達点」までの到達時間の間、他船がその運動、即ち針路及び速力を継続すると仮定して、運動を外挿することで算出する(図5)。
【0024】
次に、危険度算出手段16は、「自船到達点」ごとに「自船仮想航行状態」と「他船仮想航行状態」の結果から、自船が各「自船到達点」に至った時のそれぞれの他船との衝突危険度を算出する。
衝突危険度の算出については、いくつかの計算方法が提唱されており、例えば、長澤の衝突危険度または今津の衝突危険度を採用することができる。
長澤の衝突危険度は、次式で求められる(日本航海学会論文集88号「避航操船環境の困難度II」137頁〜144頁 平成5年3月)。
【0025】
【数1】

Figure 0003970415
【0026】
今津の衝突危険度は、次式で求められる。
【0027】
【数2】
Figure 0003970415
【0028】
何れの評価方法も、前記「自船仮想航行状態」と前記「他船仮想航行状態」から算出することができる。
さらに、危険度算出手段16は、「自船到達点」毎に算出された自船と他船の衝突危険度に対して自船到達点に至るまでの到達時間によって定められる重み付け関数W(T)を掛けることによって、時間による確信度を考慮に入れた衝突危険度を算出する。
【0029】
到達時間による重み付け関数W(T)は、時間が経つにつれて係数が減少する関数が好ましい。図6はその一例であり、一定時間は定数であるが、それ以降長時間は係数が小さくなるような重み付け関数W(T)である。このような重み付け関数W(T)を掛けることによって、現状に近い所定の範囲は確信度の高い衝突危険度としてそのまま評価し、時間経過が大きくなる到達点の衝突危険度は、他船が行動し衝突危険度が小さくなる可能性を考慮して、衝突危険度を小さく評価することができるので、時間による危険の確信度を考慮した衝突危険度を得ることができる。
【0030】
次に、航行予定危険度算出手段17では、前記衝突危険度を総合化してこの「自船予定航路」で航行する場合の総合化された危険度を決定する。この総合化としては、次の方法が考えられる。
(1) 全ての衝突危険度の中で最大値をその自船予定航路の総合化された危険度として採用する。
(2) 全ての衝突危険度の平均値をその自船予定航路の総合化された危険度として採用する。
(3) 全ての衝突危険度の中間値をその自船予定航路の総合化された危険度として採用する。
(4) 自船到達点ごとに衝突危険度の最大値を求め、これらの最大値の平均値を自船予定航路の総合化された危険度として採用する。
(5) 自船到達点ごとに衝突危険度の最大値を求め、これらの最大値の中間値を自船予定航路の総合化された危険度として採用する。
(6) 全ての衝突危険度の積算値をその自船予定航路の総合化された危険度として採用する。
これらの方法の中のいずれかを採用することができ、また目的にあわせてどの方法で総合化された危険度とするかを適宜切り換えるようにすることもできる。
【0031】
次に、表示手段18では、航行予定危険度算出手段17で決定された総合化された危険度を表示することによって、操船者に採用された自船予定航路の安全性を提供するものである。
表示方法としては次のような方法が考えられる。
(1) 表示画面内に総合化された危険度を数値データとして表示する。
(2) 総合化された危険度に対応した値を棒グラフ・メータ状のグラフまたは円グラフ等で表示する。
(3) 総合化された危険度に応じて段階的に予め決められた基準に従って、自船予定航路シンボルの色を変化させる。例えば、安全であれば白、やや危険であれば黄色、危険であれば赤とする。
(4) 上記表示方法に加えて、総合化された危険度が一定の基準以上になれば警報表示または警報音を発生する。
さらに、例えば危険度が最大値となる他船を認識できるように、その他船の映像上に危険船であることを示すシンボルを付したり、もしくは前記他船の識別番号を表示画面内に表示することで、危険船が容易に識別できるようにする。図7に表示画面の一例を示す。他船2が危険船であることを表している。
【0032】
以上説明した手段は、ハードウエアまたはコンピュータ内部においてプログラム制御により実行されるソフトウエアによって構成することができる。例えば、自船仮想航行状態予測手段14、他船仮想航行状態予測手段15、危険度算出手段16及び航行予定危険度算出手段17は以下の処理を実行するソフトウエアで実現することができる。そのフローチャートを図8に示す。
【0033】
まず、予め衝突危険度を考慮する最大時間範囲Tendと時間の経過によって変化する重み付け関数W(T)を設定しておく(ステップS1)。次に、自船仮想航行状態予測手段14では、ステップS2で、自船航行予定設定手段13から送られた自船の予定航路上で自船の現在位置から最も近い点を「仮想自船点」(xo(T0),yo(T0))として設定する。次に、ステップS3で、仮想自船位置(xo(T0),yo(T0))を起点として予定航路上で最大時間範囲Tendに達するまでの範囲で、任意の時間間隔毎に自船が通過する複数の点(xo(T1),yo(T1)),(xo(T2),yo(T2)),・・・(xo(Tend),yo(Tend))を決定し、これを「自船到達点」とする。但し、任意の時間間隔毎の代わりに距離の等間隔毎としても良い。次いで、ステップS4で、上記決定した「自船到達点」での「自船仮想航行状態」、即ち、方位ψo、速力vo等を求める。
【0034】
次に、他船仮想航行状態予測手段15は、ステップS5で「自船到達点」の到達時間における「他船仮想航行状態」即ち、各他船毎(添字1,2,3・・・で表す)に他船の位置(xt1(Tn),yt1(Tn)),(xt2(Tn),yt2(Tn)),(xt3(Tn),yt3(Tn))・・・、針路ψt1,ψt2,ψt3,・・・、速力vt1,vt2,vt3・・・等を予測する。
次に、危険度算出手段16は、ステップS6で各到達時間Tnにおける衝突危険度Rnを各他船毎に求め、到達時間によって決まる重み付け関数W(T)の値をかけた衝突危険度R'nを求める。
次に、航行予定危険度算出手段17は、ステップS7で各他船毎に求めた複数の衝突危険度R'nを総合化して自船の予定航路の危険度Rtotalを求め、表示手段18にデータを送る。
以上のステップS2からステップS7までを繰り返して行う。
尚、以上の処理手順に限定されるものではなく、本装置の機能を満たすものであれば良いことは言うまでもない。
【0035】
本実施の形態によれば、自船到達点に至るまでの到達時間によって定められる重み付け関数W(T)を掛けることによって、時間による確信度を考慮に入れた衝突危険度を算出するため、操船者の危険感覚に近い判断が可能となる。例えば、時間の重み付けを行わず、各「自船到達点」における自他船の接近距離から衝突危険度を求め、各「自船到達点」における衝突危険度の最大値から総合化された危険度を求めた場合、他船の遭遇までの時間に拘らず、最も接近するときの時間で衝突危険度が決まってしまう。しかしながら、遭遇するまでの時間的余裕が十分ある場合は、他船が行動を変化させて危険が解消される可能性や、自船が早い段階から対処することで容易に対処できるため、一般的に感じる危険度は低い。一般的には、時間的余裕をTCPAなどによって表現するが、変針点の先などの任意の位置に進んだ位置での計算をすると、その位置でのTCPAは実際に対象船と遭遇するまでの時間と大きく異なる。従って、本実施の形態の如く、時間の重み付けをして時間的な確信度を考慮した衝突危険度を算出することにより、このような遭遇までの時間による衝突危険度の違いを加味することができる。
【0036】
また、自船予定航路の総合化された危険度を操船者に提供するため、操船者は危険の有無を瞬時に把握することができる。操船者は必ずしも特別な知識や経験を持っている必要はない。総合化として、例えば、複数他船の衝突危険度の最大値を採用すれば、最も緊迫するときの度合いが表せ、または、複数他船の衝突危険度の平均値や積算値を採用すれば、連続的に緊迫する度合いが表せる。状況に応じて適切な総合化を行うことにより、実際の操船者の危険感覚に近い情報を提供することができる。
【0037】
次に、本発明の第2の実施の形態を説明する。
本実施の形態は、「自船の航行予定」として、自船予定航路を設定する代わりに、変針予定、速力操作予定及びその時刻を設定する点で、第1の実施の形態と異なっている。全体構成は、図1に示した構成と同じであり、図1中の自船航行予定設定手段13で、「自船の航行予定」を以下の表のように自船の設定方位・設定速力・設定時刻の組として設定する。
【0038】
【表1】
Figure 0003970415
【0039】
自船基準航行状態推定手段11から出力される「自船基準航行状態」情報と、自船航行予定設定手段13からの上記「自船の航行予定」情報は、自船仮想航行状態予測手段14へと送られる。自船仮想航行状態予測手段14では、「自船基準航行状態」情報を最初の「自船仮想航行状態」とし、任意の時間毎に自船の運動方程式を解くことで、「自船仮想航行状態」を予測する。運動方程式としては、KT一次モデル、KT二次モデル、MMGモデル等を使用することができ、これらを使用して任意の時間毎の自船の位置、その位置での針路及び速力を求める。
以降の処理は、第1の実施の形態と同一に行うことができる。
【0040】
次に、本発明の第3の実施の形態を説明する。
本実施の形態は、「行動変化点」毎に衝突危険度を求め、「行動変化点」の間の衝突危険度の推移を求め、その衝突危険度の推移を求める点で、前実施の形態と異なっている。全体構成は、図1に示した構成と同じであり、図1中の自船航行予定設定手段13で、「自船の航行予定」上の針路または速力の変化する点を「行動変化点」として設定する。この「行動変化点」の設定方法としては、次の方法が考えられる。
【0041】
(1) 「自船の航行予定」が変針点と変針点を結ぶ直線により構成される自船予定航路である場合、その変針点を「行動変化点」とする。
(2) (1)の変針点に加えて、自船予定航路上に速力変化が指定される場合、変針点と速力変化が指定された点を「行動変化点」とする。
(3) 前記表1のように「自船の航行予定」を自船の設定方位、設定速力、設定時刻の組として設定した場合に、その操船指示するときを「行動変化点」とする。
【0042】
自船仮想航行状態予測手段14では、上記自船の「行動変化点」における「自船仮想航行状態」を予測する。ここで、針路、速力については、行動を変化させた後の針路、速力を「自船仮想航行状態」として採用することとする。例えば、「行動変化点」が変針点として設定された場合は、変針点を通過した直後の指示針路を「自船仮想航行状態」の針路とし、また、「行動変化点」が針路及び速力の変更の指示として設定された場合には、指示された針路及び速力を「自船仮想航行状態」の針路及び速力とする。
【0043】
他船仮想航行状態予測手段15は、自船が各「行動変化点」に到達した時点での「他船仮想航行状態」を予測するものであり、この算出は、第1の実施の形態と同じ方法により算出することができる。
次に、危険度算出手段16では、上記各「行動変化点」における「自船仮想航行状態」と「他船仮想航行状態」から、「行動変化点」の間の衝突危険度の推移を算出する。衝突危険度は、上記(1)、(2)式を用いることができる。(1)式を用いた場合は、DCPAに関連したmax(Rx,Ry)の第1項と、TCPAの値に関連した第2項とをそれぞれ求めることになる。ここで、今、注目している「行動変化点」と次の「行動変化点」との間は、自船および他船が針路・速力を一定にして、安定航行するものと見なせるので、DCPAの項は一定の値となる。また、TCPAの値の推移は、一次関数で変化するので、結果として(1)式は一次関数で変化することになる。さらに、TCPAが正の値だけを対象とし航過後は考えないものとすると、衝突危険度の最大値はTCPA=0となる最接近点におけるDCPAの値で、図9に示すように、衝突危険度は、注目している「行動変化点」における衝突危険度と、最大衝突危険度とを通る時間の一次関数となる。従って、「行動変化点」間の個々の到達点における衝突危険度を算出しなくとも、衝突危険度の推移を求めることができる。
【0044】
さらに、危険度算出手段16は、その「行動変化点」の間の各点に達するまでの到達時間によって定められる重み付け関数W(T)を掛けることによって、時間による確信度を考慮に入れた危険度を算出する。到達時間による重み付け関数W(T)をW=a・T+bで表せる一次関数とした場合には、衝突危険度の推移は時間による2次式となる。
【0045】
次に、航行予定危険度算出手段17では、前記衝突危険度の推移を総合化して、「自船航行予定」の総合化された危険度を求める。前記(1)式を用いて最大値で総合化する場合、各「行動変化点」間の衝突危険度の推移を求め、その推移から求めた最大値を「自船航行予定」の総合化された危険度とする。
即ち、各行動変化点間の衝突危険度は、次の行動変化点の到達時間と、TCPAで表せる最接近時間との関係毎に次の論理で判断する。
【0046】
(1) 注目した行動変化点において、TCPAが負の場合・・・衝突危険度は0とする。
(2) 最接近点が次の「行動変化点」より遠くにある場合(次の「行動変化点」の到達時間よりもTCPAの方が大きい場合)・・・次の「行動変化点」に到達したときに衝突危険度が最大となるので、注目している「行動変化点」におけるTCPAから次の「行動変化点」までの到達時間を引いた時間を次の行動変化点に到達したときのTCPAとして、上記(1)式を計算する。尚、max(Rx,Ry)の項、即ちDCPAの項は、注目した「行動変化点」における値と同じである。
(3) 上記以外の注目している「行動変化点」と次の「行動変化点」までの間に最接近点が存在する場合・・・最接近点においては、TCPAが0になるので、DCPAの項の値が衝突危険度の最大値となる。
こうして決定された総合化された危険度を表示手段18へ送ることによって、操船者に採用された「自船の航行予定」の安全性を提供するものである。
【0047】
「行動変化点」は自船の行動の変化点のみならず、他船の行動の変化する点とすることもできる。即ち、他船仮想航行状態予測手段15において、例えば、他船が法定航路帯を航行中で、航路帯が屈折している場合に、航路帯の屈折に沿って他船が変針することが予測でき、この他船の変針予測点を「行動変化点」として推定し、危険度算出手段16で、自船の「行動変化点」間及び他船の「行動変化点」間の衝突危険度の推移を算出する。自船が行動を変化しない状態の下で、他船のある「行動変化点」と次の「行動変化点」との間で前記(1)式中のDCPAの項は一定の値であり、TCPAの値は一次関数で変化するので、先と同様に衝突危険度の推移を求めることができる。
この実施の形態によれば、「行動変化点」における衝突危険度の算出だけを行えば、自船航行予定全体の衝突危険度を求めることができるので、少ない計算量で済む。
【0048】
【発明の効果】
以上説明したように、請求項1ないし18記載の発明によれば、時間的な確信度を考慮した衝突危険度を算出するため、操船者の危険感覚に近い基準で将来の危険度に関する情報を提供することができる。
また、請求項2及び請求項11記載の発明によれば、自船の予定航路の衝突危険度に関する情報を提供することができる。
また、請求項3及び請求項12記載の発明によれば、自船の現在位置が自船予定航路上にない場合であっても、仮想的に自船予定航路にあるものとして、自船の予定航路の衝突危険度に関する情報を求めることができる。
また、請求項4、5、13、14記載の発明によれば、自船または他船の行動変化点における衝突危険度を算出し、「行動変化点」間の衝突危険度の推移を求めることで、衝突危険度の算出は「行動変化点」においてのみ行えば良く、少ない計算量で済む、という効果を有する。
【0049】
また、請求項7及び16記載の発明によれば、航行予定の総合化された危険度が提供されるため、危険度が一つの値で表現され、操船者が瞬時に特別な知識や経験がなくとも危険の有無を把握できる。
また、請求項8及び17記載の発明によれば、総合化された危険度として衝突危険度の最大値を採用するため、最も緊迫するときの度合いが表せる。
また、請求項9及び18記載の発明によれば、総合化された危険度として衝突危険度の平均値を採用するため、瞬間的な緊迫の度合いではなく、連続的に緊迫する度合いが表せる。例えば、平均値が高ければ、ある1隻の他船が長い時間近づく状態となるか、または次々と危険な船に出会う状態になることを表していることになる。
【図面の簡単な説明】
【図1】本発明の船舶衝突予防援助装置及び船舶衝突予防援助方法が実行される船舶衝突予防援助装置のブロック図である。
【図2】本発明の「予定航路」、「仮想自船位置」等を説明する説明図である。
【図3】本発明の「予定航路」、「仮想自船位置」等を説明する説明図であり、自船の現在位置から予定航路に垂線を下ろせない場合を示す。
【図4】本発明の「予定航路」、「仮想自船位置」等を説明する説明図であり、新たに予定航路を設定した場合を示す。
【図5】本発明の「自船仮想航行状態」、「他船仮想航行状態」等を説明する説明図である。
【図6】本発明の時間による重み付けを行う重み付け関数W(T)の一例を示すグラフである。
【図7】本発明の表示手段による表示の一例を示す。
【図8】本発明の自船仮想航行状態予測手段、他船仮想航行状態予測手段、危険度算出手段及び航行予定危険度算出手段の処理を表すフローチャート図である。
【図9】「行動変化点」間の衝突危険度の推移の一例を示すグラフである。
【符号の説明】
10 船舶衝突予防援助装置
13 自船航行予定設定手段
14 自船仮想航行状態予測手段
15 他船仮想航行状態予測手段
16 危険度算出手段
17 航行予定危険度算出手段
18 表示手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ship collision prevention assistance device and a ship collision prevention assistance method that provide information on the risk of collision between the ship and another ship, for example, in a single or ship radar display or electronic chart display The present invention relates to a ship collision prevention assistance device and a ship collision prevention assistance method that can be applied.
[0002]
[Prior art]
Conventionally, in this type of ship collision prevention assistance device (ARPA), DCPA (closest distance: own ship and other ship) is obtained from the current position, course and speed of own ship, and the current position, course and speed of other ship. Assuming that the ship is going straight, the distance between the two ships when the two ships are closest and the distance between the two ships when the two ships are closest to each other and TCPA (the time to reach the closest point) The numerical value is displayed and the alarm is compared with the set value. However, this type of numerical value has the following problems. That is,
・ I do not know the degree of danger ahead of the turning point other than straight sailing.
・ I do not know whether it is a difficult situation to approach for a long time by approaching another ship momentarily and easily avoiding it.
・ I don't know if only one other ship should be avoided or if I will meet one after another dangerous ships.
[0003]
On the other hand, there is one described in Japanese Patent Application Laid-Open No. 7-304495 filed by the present applicant, and in this device, other ship navigation information calculating means for obtaining other ship navigation information of other ships around the own ship; Own ship navigation information calculating means for obtaining own ship navigation information, planned route setting means for setting a planned route for the own ship, a predicted position of another ship in the future from the other ship navigation information, and the own ship navigation information. To determine the future position of the ship when navigating from the ship position at the ship speed along the planned route, and predicting the collision risk between the future ship position and the predicted position of another ship in the future Situation prediction means for calculating information is provided. Then, it is disclosed that the prediction information is displayed along the planned route of the ship, so that the operator knows the risk of collision at each future time along the planned route. It is possible to make correction settings for the planned route to avoid danger at a time when there is sufficient space.
[0004]
[Problems to be solved by the invention]
However, in the ship collision prevention assistance device described in the above publication, the closest ship is noticed as long as it is within the effective range, so there is no allowance for the time until it meets the other ship. There is a problem that other ships and other distant ships are evaluated based on the same risk criteria, and may give a judgment result different from the actual sense of danger of the ship operator.
[0005]
Therefore, in order for the operator to know the true danger state, he / she must make a decision by collecting the following information including the displayed information on the premise of knowledge and experience of the ship operator. Have to do.
・ State when approaching
・ Time to the closest point
・ Length of time to feel danger (read from position)
・ Number of dangerous ships
The present invention has been made in view of such problems, and the inventions according to claims 1 to 18 can provide a ship collision prevention assistance apparatus capable of providing information on the future risk level on a basis closer to an actual risk sense, and The purpose is to provide a ship collision prevention assistance method.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the invention described in claim 1 is a ship collision prevention assistance device that provides information on the risk of collision between the ship and another ship,
Own ship virtual navigation state prediction means for sequentially predicting the own ship virtual navigation state which is the future state of the ship when the own ship navigates based on a predetermined navigation schedule;
Other ship virtual navigation state prediction means for sequentially predicting the other ship virtual navigation state that is the future state of the other ship from the other ship reference navigation state that is the current state of the other ship;
When your ship is in the virtual navigation state of the ship and when it is virtually assumed that the other ship is in the virtual navigation state of the other ship, Own ship and other ships of Determine the collision risk, and for the calculated collision risk Time to reach the virtual navigation state A risk level calculation means for sequentially calculating the collision risk level considering the temporal certainty by weighting with,
This provides information on the risk of collision scheduled for navigation.
[0007]
According to a second aspect of the present invention, in the first aspect, the own ship's navigation schedule is the planned navigation path of the own ship.
The invention described in claim 3 is the one described in claim 2, wherein the own ship virtual navigation state prediction means The intersection of the vertical line extending from the current ship position onto the ship's planned route and the ship's planned route is defined as the "virtual ship position", and the ship's planned route is bent, and the ship's planned route is perpendicular to the ship's planned route. If the ship cannot be lowered, the inflection point is defined as “virtual ship position”. The own ship virtual navigation state is calculated sequentially at an arbitrary time interval or an arbitrary distance interval starting from the “virtual ship position”.
[0008]
According to a fourth aspect of the present invention, in the first aspect of the invention, the navigation schedule of the ship is specified by a “behavior change point” in which the course or speed of the ship changes. The degree calculating means calculates the collision risk at the “behavior change point” of the ship and obtains the transition of the collision risk between the “behavior change points”.
According to a fifth aspect of the present invention, in the fourth aspect, the other ship virtual navigation state prediction means estimates a “behavior change point” at which the course or speed of the other ship changes, and calculates the risk level. The means further calculates the collision risk at the “behavior change point” of the other ship and obtains the transition of the collision risk between the “behavior change points”.
[0009]
According to a sixth aspect of the present invention, in the vehicle according to any one of the first to fifth aspects, the other ship virtual navigation state prediction means corresponds to a time when the other ship virtual navigation state prediction state becomes the own ship virtual navigation state. Predict the state sequentially.
Further, the invention according to claim 7 is the one according to any one of claims 1 to 6, further calculating the integrated risk by integrating the risk of collision sequentially calculated by the risk calculation means. The navigation scheduled risk degree calculating means is provided.
[0010]
The invention according to claim 8 is the invention according to claim 7, wherein the maximum risk of collision risk sequentially calculated based on the navigation schedule of the ship is adopted as the integrated risk.
The invention according to claim 9 is the invention according to claim 7, wherein an average value of the risk of collision sequentially calculated based on the navigation schedule of the ship is adopted as the integrated risk.
[0011]
The invention according to claim 10 is a ship collision prevention assistance method for providing collision prevention assistance by providing information on the risk of collision between the ship and another ship to the ship operator.
The ship's virtual navigation state, which is the future state of the ship when the ship navigates based on a predetermined sailing schedule, is sequentially predicted,
The other ship virtual navigation state that is the future state of the other ship is sequentially predicted from the other ship reference navigation state that is the current state of the other ship,
When your ship is in the virtual navigation state of the ship and when it is virtually assumed that the other ship is in the virtual navigation state of the other ship, Own ship and other ships of Determine the collision risk, and for the calculated collision risk Time to reach the virtual navigation state The collision risk is calculated sequentially considering the temporal certainty by weighting with
Provides information on the risk of collisions scheduled for navigation.
[0012]
According to an eleventh aspect of the present invention, in the tenth aspect, the navigation schedule of the ship is the scheduled navigation path of the ship.
The invention according to claim 12 is the invention according to claim 11, wherein the calculation of the own ship virtual navigation state is as follows: The intersection of the vertical line extending from the current ship position onto the ship's planned route and the ship's planned route is defined as the "virtual ship position", and the ship's planned route is bent, and the ship's planned route is perpendicular to the ship's planned route. If the ship cannot be lowered, the inflection point is defined as “virtual ship position”. The ship state is sequentially calculated at an arbitrary time interval or an arbitrary distance interval starting from the “virtual ship position”.
[0013]
The invention according to claim 13 is the one according to claim 10, wherein the ship's navigation schedule specifies a “behavior change point” at which the course or speed of the ship changes, The collision risk at the “behavior change point” is calculated, and the transition of the collision risk between the “behavior change points” is calculated to sequentially calculate the collision risk considering the temporal certainty.
[0014]
The invention according to claim 14 is the one according to claim 13, further estimating a “behavior change point” at which the course or speed of another ship changes, and further colliding with the “behavior change point” of the other ship. The risk of collision is calculated sequentially considering the temporal certainty by calculating the risk and the transition of the risk of collision between the “behavior change points”.
According to a fifteenth aspect of the invention, in the fifteenth aspect of the invention, the other ship virtual navigation state is sequentially predicted corresponding to the time when the own ship virtual navigation state is reached.
[0015]
The invention according to claim 16 is the invention according to any one of claims 10 to 15, wherein the calculated risk of collision is further integrated and the integrated risk is calculated and provided to the operator. .
Further, the invention according to claim 17 is the one according to claim 16, wherein the integrated risk degree employs an average value of the collision risk degree that is sequentially calculated based on the navigation schedule of the ship.
The invention according to claim 18 is the one according to claim 16, wherein the integrated risk degree employs an average value of the collision risk degree sequentially calculated based on the navigation schedule of the ship.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. A ship collision prevention assistance device 10 in which the ship collision prevention assistance device and the ship collision prevention assistance method of the present invention are executed includes own ship reference navigation state estimation means 11 for obtaining the current state of the own ship, and the current state of other ships. Other ship reference navigation state estimation means 12 for obtaining the own ship's own ship navigation schedule setting means 13 for setting the ship's navigation schedule, own ship's virtual navigation state prediction means 14 for predicting the future state of the ship, and others Other ship virtual navigation state prediction means 15 for predicting the future state of the ship, risk level calculation means 16 for determining the future risk level of the ship and the other ship, and the risk level determined by the risk level calculation means 16 A scheduled navigation risk calculation unit 17 that integrates the schedule and a display unit 18 that displays the risk level integrated by the navigation risk calculation unit 17 are provided. Each means will be described below.
[0017]
The own ship reference navigation state estimation means 11 takes in sensor outputs from the gyrocompass, GPS, and speed log, and obtains the current course, position and speed of the own ship which is the “own ship reference navigation state” from these. .
The own ship navigation schedule setting means 13 inputs the planned route route (see FIG. 2), the change point data (see FIG. 2), etc. from the operation unit previously provided by the operator, and designates the own ship scheduled route data. Or, by selecting suitable own planned route data from a plurality of preset planned own vessel route databases, the designated or selected “Scheduled Ship Route” is set to “Ship Schedule of Own Ship”. Is set as
[0018]
The “own ship reference navigation state” information from the own ship reference navigation state estimation unit 11 and the “own ship scheduled route” information from the own ship navigation schedule setting unit 13 are sent to the own ship virtual navigation state prediction unit 14. . The own ship virtual navigation state prediction means 14 sequentially predicts the “own ship virtual navigation state” which is the future state of the own ship when the own ship navigates based on the “scheduled ship route” from the sent information. More specifically, the arrival time to a certain position on the planned ship navigation route designated or selected by the own ship navigation schedule setting means 13, the course and speed at that position, etc. are predicted. It is calculated as “own ship virtual navigation state”. In order to calculate the “own ship virtual navigation state”, the own ship virtual navigation state prediction means 14 first sets the “virtual ship position”. This “virtual ship position” is, for example, when tracking ship operation is in progress, but when the ship's current position does not match the ship's planned route due to a control error, or when the operator operates along the planned route If the current position of the ship does not coincide with the planned ship route, the current virtual ship position that coincides with the planned ship route is said. As a process for setting this “virtual ship position”, the following methods are conceivable.
[0019]
(1) A method of determining a position close to the current ship position on the ship's planned route as a virtual ship position.
As shown in FIG. 2, from the current own ship position of the “own ship reference navigation state” information, a perpendicular line is extended on the own ship planned route, and the intersection of this perpendicular and the own ship planned route is set to the current “virtual” Judged as “Self Ship Position”. If the ship's planned route is bent as shown in FIG. 3 and the ship's position in the “own ship reference navigation state” information is near this bending point, that is, the turning point, the vertical line cannot be lowered. In this case, the transition point is determined as the current “virtual ship position”. In addition, when a perpendicular line can be lowered to a plurality of line segments of the ship's planned route, the line segment having the shortest distance from each line segment is targeted.
(2) “Own ship virtual arrival position” which is the shortest distance to the own ship position of the “Own ship reference navigation status” information among the “Own ship virtual arrival position” set in advance at arbitrary intervals on the planned ship route A method of selecting "position" and determining "virtual ship position".
(3) As shown in Fig. 4, the current own ship position from the "own ship reference navigation state" information is set to "virtual own ship position", and a new line connecting the transition points of the next planned ship route is newly created. This is the “Ship Planned Route”.
In this case, the new “scheduled ship route” is reset by the own ship schedule setting means 13.
[0020]
The “virtual ship position” is set using any of the methods exemplified above. Next, a plurality of future “own ship arrival points” are determined at arbitrary intervals on the planned ship route from the set “virtual ship position” (FIG. 5). Estimate and calculate the arrival time, course, speed, etc. when the ship reaches its ship arrival point.
[0021]
Here, the arrival time is calculated by calculating the distance from the current own ship position or “virtual own ship position” to each “own ship arrival point” and dividing by the own ship speed, It is calculated by adding to. If the ship's planned route is bent and the `` own ship arrival point '' that you are interested in is far from the bent point, divide by the ship's speed based on the distance along the planned ship route. Alternatively, the arrival time may be calculated in consideration of a decrease in speed due to the change of needle when navigating the inflection point.
[0022]
In addition, as the course at each “own ship arrival point”, it is preferable to adopt a course that matches the planned ship route. Further, it is preferable that the current speed of the ship at the “own ship arrival point” is maintained.
In this way, the obtained arrival time, course, and speed at each “own ship arrival point” are calculated as “own ship virtual navigation state” information.
[0023]
On the other hand, the other ship reference navigation state estimation means 12 can be constituted by an ARPA device (collision prevention assistance device Automatic Radar Plotting Aids) connected to the radar device, and processes the signal from the radar device, It predicts the position, course, and speed of other ships that are in the “ship-based navigation state”.
The “other vessel reference navigation state” information from the other vessel reference navigation state estimation unit 12 is sent to the other vessel virtual navigation state prediction unit 15. The other ship virtual navigation state prediction means 15 predicts the “other ship virtual navigation state” at the time when the own ship reaches the “own ship arrival point” from the sent information. This "other ship virtual navigation state" is calculated by extrapolating the movement, assuming that the other ship will continue its movement, that is, the course and speed, during the arrival time to the "own ship arrival point". (FIG. 5).
[0024]
Next, the risk level calculation means 16 determines that the own ship reaches each “own ship arrival point” from the results of “own ship virtual navigation state” and “other ship virtual navigation state” for each “own ship arrival point”. Calculate the risk of collision with each other at the time.
For calculating the collision risk, several calculation methods have been proposed. For example, Nagasawa's collision risk or Imazu's collision risk can be adopted.
The collision risk of Nagasawa can be calculated by the following formula (Japan Society of Navigation Studies, Proceedings No. 88, “Difficulty of avoiding ship handling environment II”, pages 137-144, March 1993).
[0025]
[Expression 1]
Figure 0003970415
[0026]
Imazu's collision risk can be calculated by the following formula.
[0027]
[Expression 2]
Figure 0003970415
[0028]
Any of the evaluation methods can be calculated from the “own ship virtual navigation state” and the “other ship virtual navigation state”.
Furthermore, the risk level calculation means 16 is a weighting function W (T (T) determined by the arrival time until the ship's arrival point is reached with respect to the collision risk between the ship's own ship and the other ship calculated for each “own ship's arrival point”. ) To calculate the collision risk taking into account the certainty over time.
[0029]
The weighting function W (T) based on the arrival time is preferably a function whose coefficient decreases with time. FIG. 6 shows an example thereof. The weighting function W (T) is such that the constant time is a constant, but the coefficient becomes small for a long time thereafter. By multiplying such a weighting function W (T), the predetermined range close to the current state is evaluated as a high-confidence collision risk as it is, and the collision risk at the arrival point where the passage of time becomes large is determined by other ships. In view of the possibility that the collision risk is reduced, the collision risk can be evaluated to be small. Therefore, it is possible to obtain the collision risk considering the certainty of the danger due to time.
[0030]
Next, the scheduled navigation risk calculation means 17 determines the integrated risk when navigating on the “scheduled ship route” by integrating the collision risks. As this integration, the following method can be considered.
(1) The maximum value among all the collision risks is adopted as the integrated risk of the ship's planned route.
(2) The average value of all collision risks is adopted as the integrated risk of the ship's planned route.
(3) The intermediate value of all collision risks is adopted as the integrated risk of the ship's planned route.
(4) Obtain the maximum value of the collision risk for each ship arrival point, and adopt the average of these maximum values as the integrated risk of the ship's planned route.
(5) The maximum value of the collision risk is calculated for each ship arrival point, and the intermediate value between these maximum values is adopted as the integrated risk of the ship's planned route.
(6) The integrated value of all collision risks is adopted as the integrated risk of the ship's planned route.
Any one of these methods can be adopted, and the method of switching the risk level to be integrated according to the purpose can be appropriately switched.
[0031]
Next, the display means 18 provides the safety of the planned ship route adopted by the operator by displaying the integrated risk determined by the planned sailing risk calculation means 17. .
As the display method, the following method can be considered.
(1) The integrated risk is displayed as numerical data on the display screen.
(2) The value corresponding to the integrated risk level is displayed as a bar graph, meter-like graph or pie chart.
(3) Change the color of the ship's planned route symbol according to the standard determined in stages according to the integrated risk. For example, white if safe, yellow if slightly dangerous, red if dangerous.
(4) In addition to the above display method, an alarm display or alarm sound is generated if the integrated risk exceeds a certain standard.
Furthermore, for example, a symbol indicating that the ship is a dangerous ship is added to the image of the other ship so that the other ship having the maximum risk can be recognized, or the identification number of the other ship is displayed on the display screen. By doing so, dangerous ships can be easily identified. FIG. 7 shows an example of the display screen. It shows that the other ship 2 is a dangerous ship.
[0032]
The means described above can be constituted by hardware or software executed by program control inside the computer. For example, the own ship virtual navigation state prediction unit 14, the other vessel virtual navigation state prediction unit 15, the risk level calculation unit 16, and the planned navigation risk level calculation unit 17 can be realized by software that executes the following processing. The flowchart is shown in FIG.
[0033]
First, the maximum time range T taking into account the collision risk in advance. end A weighting function W (T) that changes with the passage of time is set (step S1). Next, in the own ship virtual navigation state prediction means 14, in step S <b> 2, the closest point from the current position of the own ship on the planned route of the own ship sent from the own ship navigation schedule setting means 13 is determined as “virtual own ship point (Xo (T 0 ), yo (T 0 Set as)). Next, in step S3, the virtual own ship position (xo (T 0 ), yo (T 0 )) As the starting point, the maximum time range T on the planned route end Multiple points (xo (T 1 ), yo (T 1 )), (xo (T 2 ), yo (T 2 )), ... (xo (T end ), yo (T end )) Is determined, and this is set as the "Ship arrival point". However, it is good also as every equal interval of distance instead of every arbitrary time interval. Next, in step S4, the “own ship virtual navigation state” at the determined “own ship arrival point”, that is, the direction ψo, the speed vo, and the like are obtained.
[0034]
Next, in step S5, the other ship virtual navigation state predicting means 15 determines the “other ship virtual navigation state” at the arrival time of the “own ship arrival point”, that is, for each other ship (subscripts 1, 2, 3... The other ship's position (xt1 (T n ), yt1 (T n )), (Xt2 (T n ), yt2 (T n )), (Xt3 (T n ), yt3 (T n )) ..., courses ψt1, ψt2, ψt3, ..., speeds vt1, vt2, vt3, etc. are predicted.
Next, the risk level calculation means 16 determines each arrival time T in step S6. n The collision risk R ′ obtained by determining the collision risk Rn for each other ship and multiplied by the weighting function W (T) determined by the arrival time n Ask for.
Next, the scheduled navigation risk calculation means 17 calculates a plurality of collision risks R ′ obtained for each other ship in step S7. n The risk R of the ship's planned route total Is sent to the display means 18.
The above steps S2 to S7 are repeated.
It is needless to say that the present invention is not limited to the above processing procedure, and any function that satisfies the functions of the present apparatus may be used.
[0035]
According to the present embodiment, the weighting function W (T) determined by the arrival time to reach the ship's arrival point is multiplied to calculate the collision risk taking into account the certainty by time. It is possible to make a judgment close to the person's danger. For example, without weighting the time, the collision risk is calculated from the approach distance of own ship at each “own ship arrival point”, and the integrated risk is calculated from the maximum collision risk at each “own ship arrival point”. When the degree is calculated, the collision risk is determined by the time when the closest approach is made, regardless of the time until the encounter of another ship. However, if you have enough time to encounter, it is common for other ships to change their behavior and eliminate the danger, or because your ship can easily deal with it from an early stage, The risk level is low. Generally, the time margin is expressed by TCPA, etc., but if calculation is performed at a position advanced to an arbitrary position such as the tip of the transition point, TCPA at that position is until the actual ship is encountered. Very different from time. Therefore, as in the present embodiment, by calculating the risk of collision considering the certainty of time by weighting the time, such a difference in the risk of collision depending on the time until the encounter can be taken into account. it can.
[0036]
Further, since the integrated risk level of the ship's planned route is provided to the operator, the operator can instantly grasp the presence or absence of the danger. The operator does not necessarily have special knowledge and experience. As a generalization, for example, if the maximum value of the collision risk of multiple other ships is adopted, the degree of the most tense can be expressed, or if the average value or integrated value of the collision risk of multiple other ships is adopted, The degree of continuous tension can be expressed. By integrating appropriately according to the situation, it is possible to provide information close to the actual sense of danger of the ship operator.
[0037]
Next, a second embodiment of the present invention will be described.
This embodiment is different from the first embodiment in that, instead of setting the ship's scheduled route, the course change, the speed operation schedule, and the time are set as “the ship's navigation schedule”. . The overall configuration is the same as the configuration shown in FIG. 1, and the own ship navigation schedule setting means 13 in FIG. 1 sets the own ship navigation schedule as shown in the table below. • Set as a set time.
[0038]
[Table 1]
Figure 0003970415
[0039]
The “own ship reference navigation state” information output from the own ship reference navigation state estimation means 11 and the “own ship navigation schedule” information from the own ship navigation schedule setting means 13 are the own ship virtual navigation state prediction means 14. Sent to. The own ship virtual navigation state prediction means 14 sets the “own ship reference navigation state” information as the first “own ship virtual navigation state”, and solves the own ship's equation of motion every arbitrary time, thereby obtaining “own ship virtual navigation state”. Predict "state". As the equation of motion, a KT primary model, a KT secondary model, an MMG model, or the like can be used, and these are used to obtain the position of the ship, the course and speed at that position at any time.
The subsequent processing can be performed in the same manner as in the first embodiment.
[0040]
Next, a third embodiment of the present invention will be described.
In the present embodiment, the collision risk is obtained for each “behavior change point”, the transition of the collision risk between the “behavior change points” is obtained, and the transition of the collision risk is obtained. Is different. The overall configuration is the same as the configuration shown in FIG. 1, and the point where the course or speed changes on the “schedule of own ship” in the own ship navigation schedule setting means 13 in FIG. Set as. As a method for setting the “behavior change point”, the following method can be considered.
[0041]
(1) If “Ship Scheduled” is a planned ship route composed of a straight line connecting the turning point and the turning point, the turning point is designated as “Behavior Change Point”.
(2) In addition to the turning point in (1), when a change in speed is specified on the ship's planned route, the point at which the changing point and the change in speed are specified are set as “behavior change points”.
(3) As shown in Table 1, when “Ship schedule of own ship” is set as a set of the set direction, set speed, and set time of own ship, the time to instruct the ship operation is set as “behavior change point”.
[0042]
The own ship virtual navigation state prediction means 14 predicts the “own ship virtual navigation state” at the “behavior change point” of the own ship. Here, regarding the course and speed, the course and speed after changing the behavior are adopted as the “own ship virtual navigation state”. For example, when the “behavior change point” is set as the turning point, the instruction course immediately after passing the turning point is set as the course of the “own ship virtual navigation state”, and the “behavior change point” is the course and speed. When set as a change instruction, the instructed course and speed are set as the course and speed of the “own ship virtual navigation state”.
[0043]
The other ship virtual navigation state prediction means 15 predicts the “other ship virtual navigation state” when the own ship reaches each “behavior change point”, and this calculation is the same as in the first embodiment. It can be calculated by the same method.
Next, the risk level calculation means 16 calculates the transition of the collision risk level between the “behavior change point” from the “own ship virtual navigation state” and the “other ship virtual navigation state” at each of the above “behavior change points”. To do. The above formulas (1) and (2) can be used for the collision risk. When using equation (1), max (R associated with DCPA x , R y ) And the second term related to the value of TCPA. Here, between the "behavior change point" and the next "behavior change point" of interest, it can be considered that the ship and other ships are sailing stably with the course and speed constant. The term of is a constant value. Moreover, since the transition of the value of TCPA changes with a linear function, as a result, equation (1) changes with a linear function. Furthermore, assuming that TCPA is only a positive value and is not considered after cruising, the maximum collision risk value is the DCPA value at the closest point where TCPA = 0, and as shown in FIG. The degree is a linear function of the time passing through the collision risk at the “behavior change point” of interest and the maximum collision risk. Accordingly, the transition of the collision risk can be obtained without calculating the collision risk at each reaching point between the “behavior change points”.
[0044]
Furthermore, the risk level calculation means 16 multiplies the weighting function W (T) determined by the arrival time until reaching each point between the “behavior change points”, thereby taking into consideration the certainty level by the time. Calculate the degree. When the weighting function W (T) based on the arrival time is a linear function that can be expressed by W = a · T + b, the transition of the collision risk is a quadratic expression according to time.
[0045]
Next, the scheduled navigation risk calculation means 17 integrates the transition of the collision risk and obtains an integrated risk of “scheduled ship navigation”. When summing up with the maximum value using the formula (1), the transition of the collision risk between each “behavior change point” is obtained, and the maximum value obtained from the transition is summed up as “Ship Navigation Schedule”. Risk level.
That is, the risk of collision between each behavior change point is determined by the following logic for each relationship between the arrival time of the next behavior change point and the closest approach time that can be represented by TCPA.
[0046]
(1) When TCPA is negative at the noticed behavior change point, the collision risk is 0.
(2) When the closest point is farther than the next “behavior change point” (when TCPA is larger than the arrival time of the next “behavior change point”). When reaching the next behavior change point, the collision risk becomes the maximum when it arrives, and the time obtained by subtracting the arrival time from the TCPA at the “behavior change point” to the next “behavior change point” is reached. As the TCPA, the above equation (1) is calculated. Max (R x , R y ) Term, that is, the DCPA term, is the same as the value at the noticed “behavior change point”.
(3) When there is a closest point between the "behavior change point" of interest other than the above and the next "behavior change point" ... TCPA is 0 at the closest point, so The value of the DCPA term is the maximum collision risk.
By sending the integrated risk determined in this way to the display means 18, the safety of the "scheduled navigation of the ship" adopted by the vessel operator is provided.
[0047]
The “behavior change point” can be not only a change point of the behavior of the own ship but also a point of change of the action of another ship. That is, in the other ship virtual navigation state prediction means 15, for example, when another ship is navigating the legal lane and the lane is refracted, the other ship is predicted to change along the refract of the lane. The predicted change point of the other ship can be estimated as an “action change point”, and the risk calculation means 16 can determine the collision risk between the “behavior change point” of the own ship and the “behavior change point” of the other ship. Calculate the transition. Under the condition that the ship does not change the behavior, the term of DCPA in the equation (1) is a constant value between the “behavior change point” of the other ship and the next “behavior change point”. Since the value of TCPA changes with a linear function, the transition of the collision risk can be obtained in the same manner as before.
According to this embodiment, if only the collision risk level at the “behavior change point” is calculated, the collision risk level of the entire ship navigation schedule can be obtained.
[0048]
【The invention's effect】
As described above, according to the inventions according to claims 1 to 18, in order to calculate the collision risk taking into account the temporal certainty, information on the future risk is obtained on the basis of a criterion close to the risk sense of the operator. Can be provided.
Moreover, according to the invention of Claim 2 and Claim 11, the information regarding the collision risk of the planned route of the own ship can be provided.
According to the inventions of claims 3 and 12, even if the current position of the own ship is not on the planned ship route, it is assumed that the ship is virtually on the planned ship route. Information on the collision risk of the planned route can be obtained.
According to the invention described in claims 4, 5, 13, and 14, the collision risk at the behavior change point of the ship or other ship is calculated, and the transition of the collision risk between the “behavior change points” is obtained. Thus, the collision risk may be calculated only at the “behavior change point”, and the amount of calculation is small.
[0049]
Further, according to the inventions of claims 7 and 16, since the integrated risk level of the navigation schedule is provided, the risk level is expressed by a single value, and the ship operator can instantly acquire special knowledge and experience. You can grasp the presence or absence of danger without it.
Further, according to the eighth and seventeenth aspects of the present invention, since the maximum value of the collision risk is adopted as the integrated risk, the degree of the most urgent can be expressed.
Further, according to the ninth and eighteenth aspects of the present invention, since the average value of the collision risk is adopted as the integrated risk, it is possible to express the degree of continuous tightening rather than the instantaneous degree of tension. For example, if the average value is high, this means that one other ship is approaching for a long time, or encounters dangerous ships one after another.
[Brief description of the drawings]
FIG. 1 is a block diagram of a vessel collision prevention assistance device in which a vessel collision prevention assistance device and vessel collision prevention assistance method of the present invention are executed.
FIG. 2 is an explanatory diagram for explaining “planned route”, “virtual ship position”, and the like of the present invention.
FIG. 3 is an explanatory diagram for explaining “scheduled route”, “virtual ship position”, and the like of the present invention, and shows a case where a perpendicular cannot be drawn from the current position of the ship to the scheduled route.
FIG. 4 is an explanatory diagram for explaining “scheduled route”, “virtual ship position” and the like of the present invention, and shows a case where a newly scheduled route is set.
FIG. 5 is an explanatory diagram illustrating “own ship virtual navigation state”, “other ship virtual navigation state”, and the like of the present invention.
FIG. 6 is a graph showing an example of a weighting function W (T) for performing weighting according to time according to the present invention.
FIG. 7 shows an example of display by the display means of the present invention.
FIG. 8 is a flowchart showing the processing of the own ship virtual navigation state prediction means, the other ship virtual navigation state prediction means, the risk degree calculation means, and the scheduled navigation risk degree calculation means of the present invention.
FIG. 9 is a graph showing an example of the transition of the collision risk between “behavior change points”;
[Explanation of symbols]
10 Ship collision prevention assistance device
13 Own ship navigation schedule setting means
14 Own ship virtual navigation state prediction means
15 Other ship virtual navigation state prediction means
16 Risk calculation means
17 Navigation risk calculation means
18 Display means

Claims (18)

自船と他船との衝突の危険度に関する情報を提供する船舶衝突予防援助装置であって、
自船が予め定められた航行予定に基づいて航行したときの自船の将来の状態である自船仮想航行状態を順次予測する自船仮想航行状態予測手段と、
他船の現在の状態である他船基準航行状態から他船の将来の状態である他船仮想航行状態を順次予測する他船仮想航行状態予測手段と、
自船が前記自船仮想航行状態になり、他船がそれに対応する前記他船仮想航行状態になったと仮想したときのその仮想航行状態時点での自船と他船衝突危険度を求め、さらに求めた衝突危険度に対してその仮想航行状態時点に至るまでの到達時間で重み付けをして時間的な確信度を考慮した衝突危険度を順次算出する危険度算出手段と、
を備え、これによって航行予定の衝突危険度に関する情報を提供する船舶衝突予防援助装置。
A ship collision prevention assistance device that provides information on the risk of collision between own ship and another ship,
Own ship virtual navigation state prediction means for sequentially predicting the own ship virtual navigation state which is the future state of the ship when the own ship navigates based on a predetermined navigation schedule;
Other ship virtual navigation state prediction means for sequentially predicting the other ship virtual navigation state that is the future state of the other ship from the other ship reference navigation state that is the current state of the other ship;
When the own ship is in the virtual navigation state of the own ship, and when it is assumed that the other ship is in the virtual navigation state of the other ship corresponding thereto, the collision risk between the own ship and the other ship at the time of the virtual navigation state is obtained. Further, a risk level calculation means for sequentially calculating the collision risk level considering the temporal certainty by weighting the calculated collision risk level with the arrival time until reaching the virtual navigation state time point ,
A ship collision prevention assistance device that provides information on the risk of collision scheduled to sail.
前記自船の航行予定は、自船の予定航路である請求項1記載の船舶衝突予防援助装置。  The ship collision prevention assistance device according to claim 1, wherein the ship's navigation schedule is a planned course of the ship. 前記自船仮想航行状態予測手段は、現在の自船位置から自船の予定航路上に伸ばした垂線と自船の予定航路との交点を「仮想自船位置」とし、自船の予定航路が屈曲しており、自船位置から垂線を下ろせない場合には、該屈曲点を「仮想自船位置」とし、前記「仮想自船位置」を起点として任意の時間間隔または任意の距離間隔毎に順次、自船仮想航行状態を算出する請求項2記載の船舶衝突予防援助装置。The own ship virtual navigation state prediction means sets the intersection of the vertical line extending from the current ship position on the ship's planned route to the ship's planned route as a "virtual ship position", and the ship's planned route is If it is bent and the vertical line cannot be lowered from its own ship position, the bent point is set as the “virtual ship position”, and the “virtual ship position” is set as the starting point at any time interval or every distance interval. 3. The ship collision prevention assistance device according to claim 2, wherein the ship virtual navigation state is sequentially calculated. 前記自船の航行予定は、自船の針路または速力の変化する「行動変化点」が指定されたものであり、前記危険度算出手段は前記自船の「行動変化点」における衝突危険度を算出すると共に、「行動変化点」間の衝突危険度の推移を求める請求項1記載の船舶衝突予防援助装置。  The ship's sailing schedule is specified by the “behavior change point” at which the course or speed of the ship changes, and the risk calculation means calculates the collision risk at the “behavior change point” of the ship. The ship collision prevention assistance device according to claim 1, wherein the ship collision prevention assistance device calculates and calculates a transition of a collision risk between “behavior change points”. 前記他船仮想航行状態予測手段は、他船の針路または速力が変化する「行動変化点」を推定し、前記危険度算出手段は、さらに前記他船の「行動変化点」における衝突危険度を算出すると共に「行動変化点」間の衝突危険度の推移を求める請求項4記載の船舶衝突予防援助装置。  The other ship virtual navigation state prediction means estimates a “behavior change point” at which the course or speed of the other ship changes, and the risk degree calculation means further determines a collision risk degree at the “behavior change point” of the other ship. 5. The ship collision prevention assistance device according to claim 4, wherein the ship collision prevention assistance device calculates and calculates a transition of a collision risk between “behavior change points”. 前記他船仮想航行状態予測手段は、自船仮想航行状態になる時刻に対応して他船仮想航行状態を順次予測する請求項1ないし5のいずれかに記載の船舶衝突予防援助装置。  The ship collision prevention assistance device according to any one of claims 1 to 5, wherein the other ship virtual navigation state prediction means sequentially predicts the other ship virtual navigation state corresponding to the time when the own ship virtual navigation state is reached. さらに、危険度算出手段によって順次算出された衝突危険度を総合化し、総合化された危険度を算出する航行予定危険度算出手段を備える請求項1ないし6のいずれかに記載の船舶衝突予防援助装置。  The ship collision prevention assistance according to any one of claims 1 to 6, further comprising planned navigation risk calculation means for integrating the risk of collision sequentially calculated by the risk calculation means and calculating the integrated risk. apparatus. 前記総合化された危険度として、自船の航行予定に基づいて順次算出された衝突危険度の最大値を採用する請求項7記載の船舶衝突予防援助装置。  The ship collision prevention assistance device according to claim 7, wherein a maximum value of the collision risk calculated sequentially based on a navigation schedule of the ship is adopted as the integrated risk. 前記総合化された危険度として、自船の航行予定に基づいて順次算出された衝突危険度の平均値を採用する請求項7記載の船舶衝突予防援助装置。  The ship collision prevention assistance apparatus according to claim 7, wherein an average value of the collision risk calculated sequentially based on a navigation schedule of the ship is adopted as the integrated risk. 自船と他船との衝突の危険度に関する情報を操船者に提供して衝突予防の援助を行う船舶衝突予防援助方法であって、
自船が予め定められた航行予定に基づいて航行したときの自船の将来の状態である自船仮想航行状態を順次予測し、
他船の現在の状態である他船基準航行状態から他船の将来の状態である他船仮想航行状態を順次予測し、
自船が前記自船仮想航行状態になり、他船がそれに対応する前記他船仮想航行状態になったと仮想したときのその仮想航行状態時点での自船と他船衝突危険度を求め、さらに求めた衝突危険度に対してその仮想航行状態時点に至るまでの到達時間で重み付けをして時間的な確信度を考慮した衝突危険度を順次算出し、
航行予定の衝突危険度に関する情報を提供する船舶衝突予防援助方法。
A ship collision prevention assistance method for providing information on the risk of collision between own ship and another ship to the ship operator to assist collision prevention,
The ship's virtual navigation state, which is the future state of the ship when the ship navigates based on a predetermined sailing schedule, is sequentially predicted,
The other ship virtual navigation state that is the future state of the other ship is sequentially predicted from the other ship reference navigation state that is the current state of the other ship,
When the own ship is in the virtual navigation state of the own ship, and when it is assumed that the other ship is in the virtual navigation state of the other ship corresponding thereto, the collision risk between the own ship and the other ship at the time of the virtual navigation state is obtained. In addition, the calculated collision risk is weighted by the arrival time until the virtual navigation state is reached, and the collision risk considering the temporal certainty is sequentially calculated.
A ship collision prevention assistance method that provides information on the risk of collision scheduled to sail.
前記自船の航行予定は、自船の予定航路とする請求項10記載の船舶衝突予防援助方法。  The ship collision prevention assistance method according to claim 10, wherein the navigation schedule of the ship is a scheduled route of the ship. 自船仮想航行状態の算出は、現在の自船位置から自船の予定航路上に伸ばした垂線と自船の予定航路との交点を「仮想自船位置」とし、自船の予定航路が屈曲しており、自船位置から垂線を下ろせない場合には、該屈曲点を「仮想自船位置」とし、前記「仮想自船位置」を起点として任意の時間間隔または任意の距離間隔毎に順次自船状態を算出して行う請求項11記載の船舶衝突予防援助方法。The calculation of the ship's virtual navigation status is based on the intersection of the ship's planned route with the perpendicular extending from the current ship position to the ship's planned route, and the ship's planned route is bent. If the vertical line cannot be lowered from the own ship position, the inflection point is set as the “virtual ship position”, and the “virtual ship position” is set as the starting point for every time interval or every distance interval. The ship collision prevention assistance method according to claim 11, which is performed by calculating the own ship state. 前記自船の航行予定は、自船の針路または速力の変化する「行動変化点」を指定したものとし、自船の「行動変化点」の衝突危険度を算出すると共に「行動変化点」間の衝突危険度の推移を求めることにより前記時間的な確信度を考慮した衝突危険度を順次算出する請求項10記載の船舶衝突予防援助方法。  The ship's navigation schedule shall specify the “behavior change point” where the course or speed of the ship changes, calculate the collision risk of the “behavior change point” of the ship and The ship collision prevention assistance method according to claim 10, wherein the collision risk degree considering the temporal certainty factor is sequentially calculated by obtaining a transition of the collision risk degree. さらに、他船の針路または速力が変化する「行動変化点」を推定し、さらに前記他船の「行動変化点」の衝突危険度を算出すると共に「行動変化点」間の衝突危険度の推移を求めることにより前記時間的な確信度を考慮した衝突危険度を順次算出する請求項13記載の船舶衝突予防援助方法。  Furthermore, the “behavior change point” where the course or speed of the other ship changes is estimated, the collision risk of the “behavior change point” of the other ship is calculated, and the transition of the collision risk between the “behavior change points” The ship collision prevention assistance method according to claim 13, wherein the collision risk in consideration of the temporal certainty factor is sequentially calculated by obtaining the above. 他船仮想航行状態は、自船仮想航行状態になる時刻に対応して順次予測する請求項10ないし14のいずれかに記載の船舶衝突予防援助方法。  The ship collision prevention assistance method according to any one of claims 10 to 14, wherein the other ship virtual navigation state is sequentially predicted corresponding to the time when the own ship virtual navigation state is reached. さらに順次算出した衝突危険度を総合化し、総合化された危険度を算出して操船者に提供する請求項10ないし15のいずれかに記載の船舶衝突予防援助方法。  The ship collision prevention assistance method according to any one of claims 10 to 15, further comprising integrating the sequentially calculated collision risks, calculating the integrated risk, and providing the calculated risk to the vessel operator. 前記総合化された危険度は、自船の航行予定に基づいて順次算出された衝突危険度の最大値を採用する請求項16記載の船舶衝突予防援助方法。  The ship collision prevention assistance method according to claim 16, wherein the integrated risk degree employs a maximum value of a collision risk degree that is sequentially calculated based on a navigation schedule of the ship. 前記総合化された危険度は、自船の航行予定に基づいて順次算出された衝突危険度の平均値を採用する請求項16記載の船舶衝突予防援助方法。  The ship collision prevention assistance method according to claim 16, wherein the integrated risk degree employs an average value of collision risk degrees sequentially calculated based on a navigation schedule of the ship.
JP07612098A 1998-03-24 1998-03-24 Ship collision prevention assistance apparatus and vessel collision prevention assistance method Expired - Fee Related JP3970415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07612098A JP3970415B2 (en) 1998-03-24 1998-03-24 Ship collision prevention assistance apparatus and vessel collision prevention assistance method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07612098A JP3970415B2 (en) 1998-03-24 1998-03-24 Ship collision prevention assistance apparatus and vessel collision prevention assistance method

Publications (2)

Publication Number Publication Date
JPH11272999A JPH11272999A (en) 1999-10-08
JP3970415B2 true JP3970415B2 (en) 2007-09-05

Family

ID=13596068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07612098A Expired - Fee Related JP3970415B2 (en) 1998-03-24 1998-03-24 Ship collision prevention assistance apparatus and vessel collision prevention assistance method

Country Status (1)

Country Link
JP (1) JP3970415B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT414056B (en) * 2001-03-13 2006-08-15 Siemens Ag Oesterreich METHOD FOR MONITORING A LIFT ROUTE AND ITS ENVIRONMENT
JP4925525B2 (en) * 2001-08-03 2012-04-25 古野電気株式会社 Other ship display device
AU2002953227A0 (en) * 2002-12-10 2003-01-02 Defence Science & Technology Agency Adaptive collision avoidance advisory system
FI20095914A0 (en) * 2009-09-04 2009-09-04 Valtion Teknillinen INTELLIGENT RISK INDICATION SYSTEM FOR WATER DRAINAGE AND RELATED METHOD
KR101380462B1 (en) * 2012-12-20 2014-04-02 한국해양과학기술원 Automatic identification support system and method for ship based on the estimation of traffic ship's navigational information
JP6806242B2 (en) * 2017-04-20 2021-01-06 富士通株式会社 Collision risk calculation program, collision risk calculation method and collision risk calculation device
JP6844694B2 (en) * 2017-04-20 2021-03-17 富士通株式会社 Hazardous part calculation program, dangerous part calculation method and dangerous part calculation device
KR102054644B1 (en) * 2017-07-25 2019-12-11 아주대학교산학협력단 Apparatus and method for predicting collision of moving object
KR101976403B1 (en) * 2018-03-08 2019-08-28 주식회사 삼우이머션 Safety navigation apparatus for vessel
WO2020003856A1 (en) * 2018-06-27 2020-01-02 古野電気株式会社 Collision alert device and collision alert method
JP7250462B2 (en) * 2018-09-18 2023-04-03 東京計器株式会社 Ship navigation support equipment
EP3926605A4 (en) * 2019-02-15 2022-02-23 Fujitsu Limited Dangerous place and time calculation method, dangerous place and time calculation device, and dangerous place and time calculation program
JP7318667B2 (en) * 2019-02-15 2023-08-01 富士通株式会社 Collision risk calculation method, collision risk calculation device, and collision risk calculation program
TWI714040B (en) * 2019-03-27 2020-12-21 財團法人船舶暨海洋產業研發中心 A vessel navigation system and navigation method thereof
CN111176271B (en) * 2019-11-21 2023-05-02 智慧航海(青岛)科技有限公司 Intelligent ship collision avoidance auxiliary decision-making system based on shore radar and implementation method thereof
CN112052984B (en) * 2020-08-07 2024-06-14 智慧航海(青岛)科技有限公司 Intelligent ship collision avoidance method and system
JPWO2022234712A1 (en) * 2021-05-06 2022-11-10
WO2022239402A1 (en) * 2021-05-11 2022-11-17 古野電気株式会社 Ship monitoring system, ship monitoring method, information processing device, and program
CN115731744B (en) * 2022-08-09 2023-09-08 山东港口科技集团青岛有限公司 Ship collision avoidance decision method based on data fusion track prediction
CN115410420B (en) * 2022-10-31 2023-01-20 河北东来工程技术服务有限公司 Ship safe navigation management method and system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232993A (en) * 1985-04-08 1986-10-17 Tokyo Keiki Co Ltd Automatic navigating device
JPH06138941A (en) * 1992-10-27 1994-05-20 Yamatake Honeywell Co Ltd Obstacle evading device
JP3157986B2 (en) * 1994-07-21 2001-04-23 ダイハツ工業株式会社 Rear-end collision judgment method in rear-end collision prevention system
JP3197753B2 (en) * 1994-07-22 2001-08-13 ダイハツ工業株式会社 Automatic alarm timing adjustment device for rear-end collision prevention system
JPH08235500A (en) * 1995-02-23 1996-09-13 Oki Electric Ind Co Ltd Collision prevention support device
JPH0922499A (en) * 1995-07-07 1997-01-21 Tokimec Inc Supporting device for collision avoiding navigation
JPH0922500A (en) * 1995-07-07 1997-01-21 Tokimec Inc Supporting device for collision avoiding navigation

Also Published As

Publication number Publication date
JPH11272999A (en) 1999-10-08

Similar Documents

Publication Publication Date Title
JP3970415B2 (en) Ship collision prevention assistance apparatus and vessel collision prevention assistance method
JP7270812B2 (en) Collision warning device and collision warning method
JP6998576B2 (en) Navigation support method and navigation support system adapted to the risks on the route
US20180025644A1 (en) Method and apparatus for monitoring marine traffic
CN113409617B (en) Fishery ship yaw early warning system and method
JPH0922499A (en) Supporting device for collision avoiding navigation
TWI674394B (en) Ship navigation system and method thereof
JP7318667B2 (en) Collision risk calculation method, collision risk calculation device, and collision risk calculation program
KR20120119423A (en) Apparatus and method for choosing a object for controlling first of all, and apparatus for controlling the object
JP7276261B2 (en) Flood detection device, flood display system, flood detection method and program
JP2020044934A (en) Navigation support device for vessel
JP7159338B2 (en) AIS information processing device
CN110304064A (en) A kind of control method and vehicle control system, vehicle of vehicle lane change
JP2007296929A (en) Performance assessment system of marine vessel, navigation information file preparation method, and program
CN117232520A (en) Ship intelligent navigation system and navigation method suitable for offshore navigation
KR100568614B1 (en) Optimum ship navigation system and method thereof
JP3395105B2 (en) Ship risk assessment system
CN104180801B (en) Forecasting Methodology and system based on ADS B system track points
JPH0922500A (en) Supporting device for collision avoiding navigation
JPH07304495A (en) Collision avoidance assisting device
JPH07129872A (en) Ship collision preventive sailing assistance device
JP7357330B2 (en) Avoidance target determination method for estimating the presence of non-AIS-equipped obstacles, avoidance target determination information sharing method, avoidance target determination program, and avoidance target determination usage method
Miyake et al. Procedure for marine traffic simulation with AIS data
CN111337027B (en) Ship follow-up operation auxiliary driving method and system
JP2010164419A (en) Travel guiding device, method for guiding travel, and computer program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees