WO2022239402A1 - Ship monitoring system, ship monitoring method, information processing device, and program - Google Patents
Ship monitoring system, ship monitoring method, information processing device, and program Download PDFInfo
- Publication number
- WO2022239402A1 WO2022239402A1 PCT/JP2022/009079 JP2022009079W WO2022239402A1 WO 2022239402 A1 WO2022239402 A1 WO 2022239402A1 JP 2022009079 W JP2022009079 W JP 2022009079W WO 2022239402 A1 WO2022239402 A1 WO 2022239402A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ship
- route
- speed
- point
- current
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 31
- 230000010365 information processing Effects 0.000 title claims description 34
- 238000000034 method Methods 0.000 title claims description 21
- 238000010586 diagram Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 101100272667 Xenopus laevis ripply2.2 gene Proteins 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B49/00—Arrangements of nautical instruments or navigational aids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B79/00—Monitoring properties or operating parameters of vessels in operation
- B63B79/10—Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers
- B63B79/15—Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers for monitoring environmental variables, e.g. wave height or weather data
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B79/00—Monitoring properties or operating parameters of vessels in operation
- B63B79/20—Monitoring properties or operating parameters of vessels in operation using models or simulation, e.g. statistical models or stochastic models
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H25/00—Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
- B63H25/02—Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring
- B63H25/04—Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring automatic, e.g. reacting to compass
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G3/00—Traffic control systems for marine craft
- G08G3/02—Anti-collision systems
Definitions
- the present invention relates to a ship monitoring system, a ship monitoring method, an information processing device, and a program.
- Non-Patent Document 1 discloses a method of displaying an OZT (Obstacle Zone by Target).
- the predicted position of the own ship is calculated based on the assumption that the own ship will change course instantaneously at its current position and proceed straight ahead.
- the own ship gradually changes its course while turning, so there is a risk that an error will occur in the predicted position of the own ship, causing a discrepancy between the area where the OZT is displayed and the area where there is an actual collision risk. be.
- the present invention has been made in view of the above problems, and its main object is to provide a ship monitoring system, a ship monitoring method, an information processing device, and a program capable of improving the prediction accuracy of collision risk. to provide.
- a ship monitoring system includes a turning information input unit for inputting the current azimuth and turning rate of a first ship, and the current position and ship speed of the first ship.
- a position and speed information input unit for inputting a position and speed of the second ship at the current time
- a second ship predicted route information input unit for inputting the predicted route after the current time, the position of the second ship, Setting a decision point on the predicted route based on the ship speed and the predicted route, and outputting the position of the decision point and the second ship's navigation time required for the second ship to navigate from the current point to the decision section.
- the first vessel maintains the current vessel speed with the bearing of the first vessel and the position of the first vessel as starting points, turns at the turning rate, and heads toward the determination point.
- a route setting unit that sets a route to navigate toward the decision point after changing the course and outputs the route and the navigation time of the first ship to reach the decision point; the predicted route of the second ship and the second ship; a risk value calculation unit that calculates a collision risk value at the decision point based on the navigation time and the route of the first ship and the navigation time of the first ship.
- a ship monitoring method inputs the current azimuth and turning rate of one ship, inputs the current position and speed of the first ship, inputs the current position and speed of the second ship, Input ship speed and predicted route after the current time point, set a decision point on the predicted route based on the position of the second ship, ship speed and predicted route, and set the position of the decision point and the second ship outputs the second ship's navigation time required to navigate from the current time to the determination unit, and the first ship maintains the ship's speed at the current time based on the bearing of the first ship and the position of the first ship.
- a collision risk value at the decision point is calculated based on the predicted course of the second ship and the navigation time of the second ship, and the course of the first ship and the navigation time of the first ship.
- an information processing apparatus includes a turning information input unit to which the current azimuth and turning rate of a first ship are input, and a position input unit to which the current position and speed of the first ship are input.
- a ship speed information input unit to which the current position and ship speed of the second ship and the predicted route after the current time are input; and the second ship position, ship speed and predicted route
- a decision point setting unit that sets a decision point on the predicted route based on the above, and outputs the position of the decision point and the navigation time of the second ship required for the second ship to travel from the current point to the decision unit.
- the first vessel maintains the current vessel speed with the bearing of the first vessel and the position of the first vessel as starting points, turns at the turning rate, and changes the course toward the judgment point.
- a route setting unit that sets a route for navigating toward a decision point and outputs the route and the navigation time of the first ship to reach the decision point; the predicted route of the second ship and the navigation time of the second ship; and a risk value calculation unit that calculates a collision risk value at the decision point based on the route of the first ship and the first ship navigation time.
- a program includes a turning information input unit for inputting a current azimuth and turning rate of a first ship, and position and speed information for inputting a current position and speed of the first ship.
- an input unit a second ship predicted route information input unit to which the current position and ship speed of the second ship and the predicted route after the current time are input, the prediction based on the position, speed and predicted route of the second ship a decision point setting unit for setting a decision point on a route and outputting the position of the decision point and the navigation time of the second ship required for the second ship to navigate from the current point to the decision unit; and the first ship.
- a route setting unit for setting a route to be used, and outputting the route and the navigation time of the first ship to reach the judgment point; the predicted route of the second ship and the navigation time of the second ship;
- the computer is caused to function as a risk value calculation unit that calculates a collision risk value at the decision point based on the route and the first ship's navigation time.
- FIG. 1 is a block diagram showing a configuration example of a ship monitoring system 100 according to an embodiment.
- a ship monitoring method according to the embodiment is implemented in a ship monitoring system 100 .
- the ship monitoring system 100 is a system that is mounted on a ship and monitors surrounding ships.
- the ship on which the ship monitoring system 100 is installed is an example of the first ship, and will be referred to as "own ship” in the following description.
- ships existing around the own ship are examples of the second ship, and are referred to as “other ships” in the following description.
- speed is a vector quantity representing speed and direction (so-called ship speed vector), and "speed” is a scalar quantity.
- the ship monitoring system 100 includes an information processing device 1, a display unit 2, a radar 3, an AIS 4, a GNSS receiver 5, a gyrocompass 6, an ECDIS 7, and an alarm unit 8. These devices are connected to a network N such as a LAN, and are capable of network communication with each other.
- a network N such as a LAN
- the information processing device 1 is a computer including a CPU, RAM, ROM, non-volatile memory, an input/output interface, and the like.
- the CPU of the information processing device 1 executes information processing according to a program loaded from the ROM or nonvolatile memory to the RAM.
- the program may be supplied via an information storage medium such as an optical disk or memory card, or may be supplied via a communication network such as the Internet or LAN.
- the display unit 2 is, for example, a display device with a touch sensor.
- the touch sensor detects a position within the screen indicated by a finger or the like.
- the indicated position may be input by a trackball or the like instead of the touch sensor.
- the radar 3 emits radio waves around its own ship, receives the reflected waves, and generates echo data based on the received signals.
- the radar 3 also identifies the target from the echo data and generates target tracking data (TT data) representing the position and speed of the target.
- TT data target tracking data
- the AIS (Automatic Identification System) 4 receives AIS data from other ships around the ship or from land control. Not limited to AIS, VDES (VHF Data Exchange System) may be used. AIS data includes the positions and velocities of other ships.
- VDES VHF Data Exchange System
- the GNSS receiver 5 detects the position of the own ship based on radio waves received from the GNSS (Global Navigation Satellite System).
- the gyrocompass 6 detects the bearing of the own ship.
- a GPS compass or a magnetic compass may be used instead of the gyrocompass.
- the ECDIS (Electronic Chart Display and Information System) 7 acquires the ship's position from the GNSS receiver 5 and displays the ship's position on the electronic chart.
- the ECDIS 7 also displays the scheduled route of the own ship on the electronic chart.
- a GNSS plotter may be used.
- the alarm unit 8 issues an alarm when there is a risk of the own ship colliding with another ship.
- the alarm unit 8 may be, for example, an alarm by display, or may be an alarm by sound or light.
- the display warning may be given on the display unit 2 . That is, the display unit 2 may also serve as the alarm unit 8 .
- the information processing device 1 is an independent device, but it is not limited to this, and may be integrated with other devices such as ECDIS 7 . That is, the functional units of the information processing device 1 may be implemented by other devices such as the ECDIS 7 .
- the display unit 2 is also an independent device, but the display unit is not limited to this, and a display unit of another device such as the ECDIS 7 may be used as the display unit 2 for displaying the image generated by the information processing device 1. .
- the set of the GNSS receiver 5 and the ECDIS 7 is an example of the first data generation unit, and generates own ship data representing the position and speed of the own ship. Specifically, the GNSS receiver 5 detects the position of the own ship, and the ECDIS 7 detects the speed of the own ship from the time change of the position of the own ship.
- the speed of the own ship may be detected based on the bearing of the own ship detected by the gyrocompass 6 and the speed of the own ship detected by a speedometer (not shown).
- the radar 3 or AIS 4 is an example of a second data generation unit, and generates other ship data representing the position and speed of another ship.
- the TT data generated by the radar 3 corresponds to other ship data.
- AIS data generated by the AIS 4 also corresponds to other ship data.
- FIG. 2 is a diagram showing an example of the other ship management database constructed in the memory of the information processing device 1.
- FIG. Other ship data generated by the radar 3 or AIS 4 is registered in the other ship management database.
- the other ship management database includes fields such as "other ship identifier”, "position”, “speed”, and “azimuth”.
- the position and direction of the other ship detected by the radar 3 are converted into the same coordinate system as GNSS.
- Figs. 3A and 3B are diagrams showing examples of conventional OZT calculations.
- An OZT (Obstacle Zone by Target) is a zone in which the navigation of one's own ship may be obstructed by another ship, and is displayed on the predicted course of the other ship.
- the collision risk is calculated under the assumption that the own ship will change course instantly and proceed straight toward the decision point on the predicted course of the other ship.
- the own ship actually turns toward the decision point, so there may be a gap between the area where the OZT is displayed and the area where there is an actual collision risk.
- the OZT may be displayed at decision points where no collision actually occurs.
- the accuracy of collision risk prediction is improved by performing risk calculations that take into account the turning of the own ship.
- FIG. 4 is a diagram showing a configuration example of the information processing device 1 according to the embodiment, which implements the ship monitoring method according to the embodiment.
- the information processing device 1 includes a turning information input unit 11, a position ship speed information input unit 12, an other ship predicted route information input unit 13, a decision point setting unit 14, a route setting unit 15, a risk value calculation unit 16, and a display control unit. 17. These functional units are implemented by the CPU of the information processing apparatus 1 executing information processing according to programs.
- the information processing device 1 Based on the own ship data and the other ship data, the information processing device 1 assumes that the own ship turns from the current position and current direction toward each decision point on the predicted course of the other ship. A risk value representing the risk of collision between the own ship and another ship is calculated at the decision point (see Fig. 7).
- the turning information input unit 11 receives the current azimuth and turning rate of the own ship based on the own ship data.
- the rate of turn is also referred to as "ROT" (Rate of Turn).
- the ROT threshold is input to the turning information input unit 11 .
- the ROT threshold is the upper limit of ROT allowed for own ship, and is an example of a predetermined ROT.
- the ROT threshold is set, for example, by user input.
- the turning information input unit 11 uses an ROT that is equal to or less than the ROT threshold.
- the turning information input unit 11 prepares an ROT threshold table in which the total length of the ship and the ROT threshold are associated with each other, as shown in FIG. may Instead of ship length, other parameters describing ship size may be used, such as ship volume, weight, or ship type.
- the position and speed information input unit 12 receives the current position and speed of the own ship based on the own ship data.
- the other ship's predicted route information input unit 13 receives the current position and ship speed of the other ship, and the predicted route after the current time based on the other ship's data.
- the predicted course of the other ship is calculated under the assumption that the other ship will navigate from the current position while maintaining the ship's speed and heading.
- a determination point setting unit 14 sets a determination point on the predicted route based on the position of the other ship, the speed of the ship, and the predicted route, and determines the position of the determination point and the position of the other ship from the current time to the determination unit. It outputs the other ship's navigation time required to do so. Specifically, the judgment point setting unit 14 sets a plurality of judgment points on the predicted route.
- the route setting unit 15 maintains the ship's current ship speed with its own ship's bearing and own ship's position as a starting point, turns at a turning rate, and changes its course toward the decision point.
- a route to be navigated is set, and the route and the own ship's navigation time to reach the judgment point are output.
- the route setting unit 15 outputs a plurality of routes along which the ship travels toward each of the plurality of judgment points, and a plurality of own ship navigation times for reaching each of the plurality of judgment points.
- the risk value calculation unit 16 calculates the collision risk value at the decision point based on the other ship's predicted route and other ship's navigation time, and the own ship's route and own ship's navigation time. Specifically, the risk value calculator 16 calculates a collision risk value at each of a plurality of determination points.
- the display control unit 17 displays OZT at determination points where the risk value calculated by the risk value calculation unit 16 is equal to or greater than the threshold (see FIG. 7). Specifically, the display control unit 17 indicates the positions of the own ship and the other ship in the image displayed on the display unit 2, and arranges the OZT on the predicted course of the other ship.
- FIG. 6 is a diagram showing a procedure example of the ship monitoring method according to the embodiment.
- the information processing device 1 executes the processing shown in the figure according to a program.
- FIG. 7 is a diagram showing a calculation example and a display example of OZT.
- the information processing device 1 acquires own ship data and other ship data (S11), and acquires the ROT threshold (S12).
- the information processing device 1 sets a decision point on the predicted course of the other ship based on the data of the other ship (S13: processing by the decision point setting unit 14).
- a plurality of judgment points are set at equal intervals on the predicted course of the other ship.
- a plurality of determination points represent predicted positions of other ships at each point in time after each predetermined time period.
- the calculation of the predicted course of the other ship and the setting of the decision point are performed under the assumption that the other ship will maintain its speed from its current position.
- the other ship navigates from the position of the other ship at the reference time with the magnitude and direction of the ship speed vector constant. Therefore, the predicted course of the other ship becomes a straight line extending the ship speed vector and passing through the position of the other ship at the reference time, and the plurality of decision points are set on the straight line.
- the speed of the other ship need not be constant as long as the predicted position of the other ship after the elapse of the predetermined time can be calculated.
- the speed of other ships may gradually increase or decrease over time.
- a plurality of judgment points may be set on the scheduled route of the other ship based on the route data.
- the information processing device 1 calculates the risk value when the own ship turns toward one of the determination points (S14: route setting unit 15 and risk value calculation unit 16 processing as).
- the risk value is expressed, for example, by the probability that the own ship and another ship are present at the decision point at the same time.
- the risk value may be represented by the separation distance between the predicted position of the own ship and the predicted positions of the other ships at the same point in time.
- the information processing device 1 calculates the risk value under the assumption that the own ship turns at a constant ROT that does not exceed the ROT threshold while maintaining the speed from the current position to the determination point. do.
- the ROT increases as the distance between the own ship's bow line and the judgment point increases.
- the own ship reaches the decision point by changing the direction of the ship speed vector at a constant degree while keeping the size of the ship speed vector constant from the own ship position at the reference time.
- the course of the own ship is represented by an arc extending from the current position of the own ship in the bow direction to the decision point. Therefore, the course of the own ship is longer than the straight line connecting the current position of the own ship and the decision point.
- the information processing device 1 calculates the risk value based on the assumption that the own ship turns straight from the current position at the ROT threshold and then reaches the decision point. good too.
- the route of own ship is represented by a set of arc RP and straight line LP. Note that the turn may be performed at an ROT equal to or lower than the ROT threshold.
- the speed of the own ship is constant, but it is not limited to this, and it may be assumed that the speed of the own ship changes according to time. For example, the own ship's speed may gradually increase or decrease over time.
- the information processing device 1 determines the determination point as the OZT display point (S16). On the other hand, when the calculated risk value is less than the threshold (S15: NO), the information processing device 1 does not set the OZT display point as the determination point.
- the information processing device 1 repeats the processes of S14 to S16 until the risk values are calculated for all the determination points (S17: NO), and when the risk values are calculated for all the determination points (S17: YES), OZT display. Output the position of the point and terminate the process.
- the information processing device 1 executes the processes of S13 to S17 for each of the plurality of other ships.
- the information processing device 1 displays the OZT at the determined OZT display point (processing by the display control unit 17).
- a predetermined safety clearance is used for the radius of the OZT.
- the OZT may have a shape extending in the same direction as the predicted course of the other ship, for example, a rounded rectangular shape with semicircles at both ends. good.
- the collision risk value is calculated assuming that the own ship turns from the current position and current direction toward each of the plurality of decision points on the predicted course of the other ship. It is possible to improve the prediction accuracy. That is, it is possible to suppress the deviation between the area where the OZT is displayed and the area where there is an actual collision risk.
- FIG. 9 is a diagram showing a procedure example of a ship monitoring method according to a modification.
- FIG. 10 is a diagram for explaining a calculation example of OZT. A detailed description may be omitted by assigning the same numbers to configurations or procedures that overlap with the above embodiments.
- the information processing device 1 sets a decision point on the predicted course of the other ship (S13), the range of the decision points set on the predicted course of the other ship that the own ship can reach in a turn equal to or less than the ROT threshold. (S23). Then, the information processing apparatus 1 calculates a risk value for each of the extracted determination points and determines OZT display points (S14-S16 and S27).
- the information processing apparatus 1 selects, among the determination points set for the predicted courses of other ships, determination points outside the reachable range of the own ship in a turn equal to or less than the ROT threshold (determination points marked with x in FIG. 10). ), the risk value is not calculated.
- risk values are calculated for decision points inside a pair of left and right arcs representing the ROT threshold, and risk values are calculated for decision points outside the pair of left and right arcs representing the ROT threshold. No value is calculated.
- the decision points for which the risk value is calculated are narrowed down to the decision points within the reachable range of the own ship by turning below the ROT threshold, so that the calculation speed is improved and the calculation load is reduced. becomes possible.
- the risk value is calculated on the assumption that the own ship turns at a predetermined ROT while maintaining its speed.
- the position of the own ship may be predicted using a parameter representing the turning performance of the own ship based on the According to this, it becomes possible to calculate the risk value taking into account even the fact that the speed of the own ship decreases during turning.
- the ship monitoring system includes a first data generation unit that generates first ship data representing the position and speed of the first ship, and a second data generation unit that generates second ship data representing the position and speed of the second ship. , based on the first ship data and the second ship data, it is assumed that the first ship turns from the current position and direction toward each of a plurality of decision points on the predicted course of the second ship. a risk value calculation unit that calculates a risk value representing a risk of collision between the first vessel and the second vessel at each of the plurality of determination points when the risk value among the plurality of determination points is and a display unit that displays an OZT (Obstacle Zone by Target) at a determination point equal to or greater than a threshold.
- OZT Obstacle Zone by Target
- the risk value calculation unit may calculate the risk value on the assumption that the first vessel turns at a predetermined ROT (Rate of Turn) or less.
- the risk value calculator may calculate the risk value on the assumption that the first vessel turns from the current position to the determination point at a constant ROT.
- the risk value calculation unit may calculate the risk value on the assumption that the first vessel reaches the decision point by going straight after turning at the predetermined ROT from the current position.
- the risk value calculation unit may use the ROT corresponding to the size of the first ship as the predetermined ROT.
- the risk value calculator may predict the position of the first vessel using a parameter representing turning performance of the first vessel.
- the risk value calculation unit calculates the risk value for each determination point within a range that the first ship can reach by turning at or below the predetermined ROT in the predicted course of the second ship. good too.
- the risk value calculation unit calculates the risk value for each determination point out of the range that the first ship can reach by turning at or below the predetermined ROT, in the predicted course of the second ship. good.
Landscapes
- Engineering & Computer Science (AREA)
- Ocean & Marine Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Probability & Statistics with Applications (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Traffic Control Systems (AREA)
Abstract
[Problem] To provide a ship monitoring system in which an improvement in the accuracy of predicting a collision risk can be attained. [Solution] This ship monitoring system comprises: a turning information input unit into which is input the bearing and turn rate of a first ship at the current point in time; a position/ship speed information input unit into which is input the position and ship speed of the first ship at the current point in time; a second ship predicted route information input unit into which is input the position and ship speed of a second ship at the current point in time as well as the predicted route thereof after the current point in time; an assessment point setting unit which sets an assessment point along the predicted route on the basis of the position, ship speed, and predicted route of the second ship and which outputs the position of the assessment point and a second ship sailing time, which is the time required for the second ship to sail to the assessment point from the current point in time; a route setting unit which maintains the ship speed of the first ship at the current point in time starting from the bearing of the first ship and the position of the first ship, sets a route to sail toward the assessment point by turning at the turn rate to modify the course of the first ship toward the assessment point, and outputs the route and a first ship sailing time for reaching the assessment point; and a risk value calculation unit which calculates a collision risk value at the assessment point on the basis of the predicted route and second ship sailing time of the second ship, as well as the route and first ship sailing time of the first ship.
Description
本発明は、船舶監視システム、船舶監視方法、情報処理装置、及びプログラムに関する。
The present invention relates to a ship monitoring system, a ship monitoring method, an information processing device, and a program.
従来、船舶同士が衝突するリスクを評価する種々の手法が存在する。例えば、非特許文献1には、OZT(Obstacle Zone by Target)を表示する手法が開示されている。
Conventionally, there are various methods for evaluating the risk of collisions between ships. For example, Non-Patent Document 1 discloses a method of displaying an OZT (Obstacle Zone by Target).
ところで、従来のOZTを表示する手法では、自船が現在の位置で瞬時に変針して直進するとの仮定のもとに自船の予測位置が算出される。しかしながら、実際には、自船は旋回しながら徐々に針路を変えるので、自船の予測位置に誤差が生じ、OZTが表示される領域と実際に衝突リスクがある領域とにずれが生じるおそれがある。
By the way, in the conventional method of displaying OZT, the predicted position of the own ship is calculated based on the assumption that the own ship will change course instantaneously at its current position and proceed straight ahead. However, in reality, the own ship gradually changes its course while turning, so there is a risk that an error will occur in the predicted position of the own ship, causing a discrepancy between the area where the OZT is displayed and the area where there is an actual collision risk. be.
本発明は、上記課題に鑑みてなされたものであり、その主な目的は、衝突リスクの予測精度の向上を図ることが可能な、船舶監視システム、船舶監視方法、情報処理装置、及びプログラムを提供することにある。
The present invention has been made in view of the above problems, and its main object is to provide a ship monitoring system, a ship monitoring method, an information processing device, and a program capable of improving the prediction accuracy of collision risk. to provide.
上記課題を解決するため、本発明の一の態様の船舶監視システムは、第1船舶の現時点における方位と旋回率が入力される旋回情報入力部と、前記第1船舶の現時点における位置と船速が入力される位置船速情報入力部と、第2船舶の現時点における位置、船速及び該現時点以降の予測航路が入力される第2船舶予測航路情報入力部と、前記第2船舶の位置、船速及び予測航路に基づいて該予測航路上に判定点を設定し、該判定点の位置と、前記第2船舶が現時点から該判定部にまで航行するに要する第2船舶航行時間とを出力する判定点設定部と、前記第1船舶が前記第1船舶の方位と前記第1船舶の位置を起点に前記現時点における船速を維持し、前記旋回率で旋回して前記判定点に向けて針路を変更した該判定点に向けて航行する航路を設定し、該航路と判定点に到達する第1船舶航行時間を出力する航路設定部と、前記第2船舶の前記予測航路及び第2船舶航行時間、並びに前記第1船舶の前記航路と第1船舶航行時間に基づいて、前記判定点における衝突リスク値を算出するリスク値算出部と、を備える。
In order to solve the above problems, a ship monitoring system according to one aspect of the present invention includes a turning information input unit for inputting the current azimuth and turning rate of a first ship, and the current position and ship speed of the first ship. a position and speed information input unit for inputting a position and speed of the second ship at the current time, a second ship predicted route information input unit for inputting the predicted route after the current time, the position of the second ship, Setting a decision point on the predicted route based on the ship speed and the predicted route, and outputting the position of the decision point and the second ship's navigation time required for the second ship to navigate from the current point to the decision section. and a determination point setting unit, in which the first vessel maintains the current vessel speed with the bearing of the first vessel and the position of the first vessel as starting points, turns at the turning rate, and heads toward the determination point. a route setting unit that sets a route to navigate toward the decision point after changing the course and outputs the route and the navigation time of the first ship to reach the decision point; the predicted route of the second ship and the second ship; a risk value calculation unit that calculates a collision risk value at the decision point based on the navigation time and the route of the first ship and the navigation time of the first ship.
また、本発明の他の態様の船舶監視方法は、1船舶の現時点における方位と旋回率を入力し、前記第1船舶の現時点における位置と船速を入力し、第2船舶の現時点における位置、船速及び該現時点以降の予測航路を入力し、前記第2船舶の位置、船速及び予測航路に基づいて該予測航路上に判定点を設定し、該判定点の位置と、前記第2船舶が現時点から該判定部にまで航行するに要する第2船舶航行時間とを出力し、前記第1船舶が前記第1船舶の方位と前記第1船舶の位置を起点に前記現時点における船速を維持し、前記旋回率で旋回して前記判定点に向けて針路を変更した該判定点に向けて航行する航路を設定し、該航路と判定点に到達する第1船舶航行時間を出力し、前記第2船舶の前記予測航路及び第2船舶航行時間、並びに前記第1船舶の前記航路と第1船舶航行時間に基づいて、前記判定点における衝突リスク値を算出する。
A ship monitoring method according to another aspect of the present invention inputs the current azimuth and turning rate of one ship, inputs the current position and speed of the first ship, inputs the current position and speed of the second ship, Input ship speed and predicted route after the current time point, set a decision point on the predicted route based on the position of the second ship, ship speed and predicted route, and set the position of the decision point and the second ship outputs the second ship's navigation time required to navigate from the current time to the determination unit, and the first ship maintains the ship's speed at the current time based on the bearing of the first ship and the position of the first ship. setting a route for sailing toward the decision point by turning at the turning rate and changing the course toward the decision point, outputting the route and the first vessel's navigation time to reach the decision point; A collision risk value at the decision point is calculated based on the predicted course of the second ship and the navigation time of the second ship, and the course of the first ship and the navigation time of the first ship.
また、本発明の他の態様の情報処理装置は、第1船舶の現時点における方位と旋回率が入力される旋回情報入力部と、前記第1船舶の現時点における位置と船速が入力される位置船速情報入力部と、第2船舶の現時点における位置、船速及び該現時点以降の予測航路が入力される第2船舶予測航路情報入力部と、前記第2船舶の位置、船速及び予測航路に基づいて該予測航路上に判定点を設定し、該判定点の位置と、前記第2船舶が現時点から該判定部にまで航行するに要する第2船舶航行時間とを出力する判定点設定部と、前記第1船舶が前記第1船舶の方位と前記第1船舶の位置を起点に前記現時点における船速を維持し、前記旋回率で旋回して前記判定点に向けて針路を変更した該判定点に向けて航行する航路を設定し、該航路と判定点に到達する第1船舶航行時間を出力する航路設定部と、前記第2船舶の前記予測航路及び第2船舶航行時間、並びに前記第1船舶の前記航路と第1船舶航行時間に基づいて、前記判定点における衝突リスク値を算出するリスク値算出部と、を備える。
Further, an information processing apparatus according to another aspect of the present invention includes a turning information input unit to which the current azimuth and turning rate of a first ship are input, and a position input unit to which the current position and speed of the first ship are input. a ship speed information input unit; a second ship predicted route information input unit to which the current position and ship speed of the second ship and the predicted route after the current time are input; and the second ship position, ship speed and predicted route A decision point setting unit that sets a decision point on the predicted route based on the above, and outputs the position of the decision point and the navigation time of the second ship required for the second ship to travel from the current point to the decision unit. Then, the first vessel maintains the current vessel speed with the bearing of the first vessel and the position of the first vessel as starting points, turns at the turning rate, and changes the course toward the judgment point. a route setting unit that sets a route for navigating toward a decision point and outputs the route and the navigation time of the first ship to reach the decision point; the predicted route of the second ship and the navigation time of the second ship; and a risk value calculation unit that calculates a collision risk value at the decision point based on the route of the first ship and the first ship navigation time.
また、本発明の他の態様のプログラムは、第1船舶の現時点における方位と旋回率が入力される旋回情報入力部、前記第1船舶の現時点における位置と船速が入力される位置船速情報入力部、第2船舶の現時点における位置、船速及び該現時点以降の予測航路が入力される第2船舶予測航路情報入力部、前記第2船舶の位置、船速及び予測航路に基づいて該予測航路上に判定点を設定し、該判定点の位置と、前記第2船舶が現時点から該判定部にまで航行するに要する第2船舶航行時間とを出力する判定点設定部、前記第1船舶が前記第1船舶の方位と前記第1船舶の位置を起点に前記現時点における船速を維持し、前記旋回率で旋回して前記判定点に向けて針路を変更した該判定点に向けて航行する航路を設定し、該航路と判定点に到達する第1船舶航行時間を出力する航路設定部、及び、前記第2船舶の前記予測航路及び第2船舶航行時間、並びに前記第1船舶の前記航路と第1船舶航行時間に基づいて、前記判定点における衝突リスク値を算出するリスク値算出部、としてコンピュータを機能させる。
Further, a program according to another aspect of the present invention includes a turning information input unit for inputting a current azimuth and turning rate of a first ship, and position and speed information for inputting a current position and speed of the first ship. an input unit, a second ship predicted route information input unit to which the current position and ship speed of the second ship and the predicted route after the current time are input, the prediction based on the position, speed and predicted route of the second ship a decision point setting unit for setting a decision point on a route and outputting the position of the decision point and the navigation time of the second ship required for the second ship to navigate from the current point to the decision unit; and the first ship. maintains the ship speed at the present time with the bearing of the first ship and the position of the first ship as starting points, turns at the turning rate, and sails toward the decision point by changing the course toward the decision point. a route setting unit for setting a route to be used, and outputting the route and the navigation time of the first ship to reach the judgment point; the predicted route of the second ship and the navigation time of the second ship; The computer is caused to function as a risk value calculation unit that calculates a collision risk value at the decision point based on the route and the first ship's navigation time.
本発明によれば、衝突リスクの予測精度の向上を図ることが可能となる。
According to the present invention, it is possible to improve the accuracy of collision risk prediction.
以下、本発明の実施形態について、図面を参照しながら説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、実施形態に係る船舶監視システム100の構成例を示すブロック図である。実施形態に係る船舶監視方法は、船舶監視システム100において実現される。船舶監視システム100は、船舶に搭載され、周囲に存在する船舶を監視するためのシステムである。
FIG. 1 is a block diagram showing a configuration example of a ship monitoring system 100 according to an embodiment. A ship monitoring method according to the embodiment is implemented in a ship monitoring system 100 . The ship monitoring system 100 is a system that is mounted on a ship and monitors surrounding ships.
船舶監視システム100が搭載された船舶は、第1船舶の例であり、以下の説明では「自船」という。また、自船の周囲に存在する船舶は、第2船舶の例であり、以下の説明では「他船」という。
The ship on which the ship monitoring system 100 is installed is an example of the first ship, and will be referred to as "own ship" in the following description. In addition, ships existing around the own ship are examples of the second ship, and are referred to as "other ships" in the following description.
また、以下の説明において、「速度」は速さと方位を表すベクトル量(いわゆる、船速ベクトル)であるとし、「速さ」はスカラー量であるとする。
Also, in the following explanation, "speed" is a vector quantity representing speed and direction (so-called ship speed vector), and "speed" is a scalar quantity.
船舶監視システム100は、情報処理装置1、表示部2、レーダー3、AIS4、GNSS受信機5、ジャイロコンパス6、ECDIS7、及び警報部8を備えている。これらの機器は、例えばLAN等のネットワークNに接続されており、相互にネットワーク通信が可能である。
The ship monitoring system 100 includes an information processing device 1, a display unit 2, a radar 3, an AIS 4, a GNSS receiver 5, a gyrocompass 6, an ECDIS 7, and an alarm unit 8. These devices are connected to a network N such as a LAN, and are capable of network communication with each other.
情報処理装置1は、CPU、RAM、ROM、不揮発性メモリ、及び入出力インターフェース等を含むコンピュータである。情報処理装置1のCPUは、ROM又は不揮発性メモリからRAMにロードされたプログラムに従って情報処理を実行する。
The information processing device 1 is a computer including a CPU, RAM, ROM, non-volatile memory, an input/output interface, and the like. The CPU of the information processing device 1 executes information processing according to a program loaded from the ROM or nonvolatile memory to the RAM.
プログラムは、例えば光ディスク又はメモリカード等の情報記憶媒体を介して供給されてもよいし、例えばインターネット又はLAN等の通信ネットワークを介して供給されてもよい。
The program may be supplied via an information storage medium such as an optical disk or memory card, or may be supplied via a communication network such as the Internet or LAN.
表示部2は、例えばタッチセンサ付き表示装置である。タッチセンサは、指等による画面内の指示位置を検出する。タッチセンサに限らず、トラックボール等により指示位置が入力されてもよい。
The display unit 2 is, for example, a display device with a touch sensor. The touch sensor detects a position within the screen indicated by a finger or the like. The indicated position may be input by a trackball or the like instead of the touch sensor.
レーダー3は、自船の周囲に電波を発するとともにその反射波を受信し、受信信号に基づいてエコーデータを生成する。また、レーダー3は、エコーデータから物標を識別し、物標の位置及び速度を表す物標追跡データ(TTデータ)を生成する。
The radar 3 emits radio waves around its own ship, receives the reflected waves, and generates echo data based on the received signals. The radar 3 also identifies the target from the echo data and generates target tracking data (TT data) representing the position and speed of the target.
AIS(Automatic Identification System)4は、自船の周囲に存在する他船又は陸上の管制からAISデータを受信する。AISに限らず、VDES(VHF Data Exchange System)が用いられてもよい。AISデータは、他船の位置及び速度等を含んでいる。
The AIS (Automatic Identification System) 4 receives AIS data from other ships around the ship or from land control. Not limited to AIS, VDES (VHF Data Exchange System) may be used. AIS data includes the positions and velocities of other ships.
GNSS受信機5は、GNSS(Global Navigation Satellite System)から受信した電波に基づいて自船の位置を検出する。ジャイロコンパス6は、自船の方位を検出する。ジャイロコンパスに限らず、GPSコンパス又は磁気コンパスが用いられてもよい。
The GNSS receiver 5 detects the position of the own ship based on radio waves received from the GNSS (Global Navigation Satellite System). The gyrocompass 6 detects the bearing of the own ship. A GPS compass or a magnetic compass may be used instead of the gyrocompass.
ECDIS(Electronic Chart Display and Information System)7は、GNSS受信機5から自船の位置を取得し、電子海図上に自船の位置を表示する。また、ECDIS7は、電子海図上に自船の予定航路も表示する。ECDISに限らず、GNSSプロッタが用いられてもよい。
The ECDIS (Electronic Chart Display and Information System) 7 acquires the ship's position from the GNSS receiver 5 and displays the ship's position on the electronic chart. The ECDIS 7 also displays the scheduled route of the own ship on the electronic chart. Not limited to ECDIS, a GNSS plotter may be used.
警報部8は、自船が他船と衝突するリスクがある場合に警報を発報する。警報部8は、例えば表示による警報であってもよいし、音又は光による警報であってもよい。表示による警報は、表示部2において行われてもよい。すなわち、表示部2が警報部8を兼ねてもよい。
The alarm unit 8 issues an alarm when there is a risk of the own ship colliding with another ship. The alarm unit 8 may be, for example, an alarm by display, or may be an alarm by sound or light. The display warning may be given on the display unit 2 . That is, the display unit 2 may also serve as the alarm unit 8 .
本実施形態において、情報処理装置1は独立した装置であるが、これに限らず、ECDIS7等の他の装置と一体であってもよい。すなわち、情報処理装置1の機能部がECDIS7等の他の装置で実現されてもよい。
In this embodiment, the information processing device 1 is an independent device, but it is not limited to this, and may be integrated with other devices such as ECDIS 7 . That is, the functional units of the information processing device 1 may be implemented by other devices such as the ECDIS 7 .
また、表示部2も独立した装置であるが、これに限らず、ECDIS7等の他の装置の表示部が、情報処理装置1により生成された画像を表示する表示部2として用いられてもよい。
The display unit 2 is also an independent device, but the display unit is not limited to this, and a display unit of another device such as the ECDIS 7 may be used as the display unit 2 for displaying the image generated by the information processing device 1. .
本実施形態において、GNSS受信機5とECDIS7の組は、第1データ生成部の例であり、自船の位置及び速度を表す自船データを生成する。具体的には、GNSS受信機5が自船の位置を検出するとともに、ECDIS7が自船の位置の時間変化から自船の速度を検出する。
In this embodiment, the set of the GNSS receiver 5 and the ECDIS 7 is an example of the first data generation unit, and generates own ship data representing the position and speed of the own ship. Specifically, the GNSS receiver 5 detects the position of the own ship, and the ECDIS 7 detects the speed of the own ship from the time change of the position of the own ship.
これに限らず、自船の速度は、ジャイロコンパス6により検出される自船の方位と、不図示の船速計により検出される自船の速さとに基づいて検出されてもよい。
Not limited to this, the speed of the own ship may be detected based on the bearing of the own ship detected by the gyrocompass 6 and the speed of the own ship detected by a speedometer (not shown).
また、レーダー3又はAIS4は、第2データ生成部の例であり、他船の位置及び速度を表す他船データを生成する。具体的には、レーダー3により生成されるTTデータが他船データに相当する。また、AIS4により生成されるAISデータも他船データに相当する。
Also, the radar 3 or AIS 4 is an example of a second data generation unit, and generates other ship data representing the position and speed of another ship. Specifically, the TT data generated by the radar 3 corresponds to other ship data. AIS data generated by the AIS 4 also corresponds to other ship data.
図2は、情報処理装置1のメモリに構築される他船管理データベースの例を示す図である。他船管理データベースには、レーダー3又はAIS4により生成された他船データが登録される。
FIG. 2 is a diagram showing an example of the other ship management database constructed in the memory of the information processing device 1. FIG. Other ship data generated by the radar 3 or AIS 4 is registered in the other ship management database.
他船管理データベースは、「他船識別子」、「位置」、「速さ」、及び「方位」等のフィールドを含んでいる。なお、レーダー3により検出される他船の位置及び方位は、GNSSと同じ座標系に変換される。
The other ship management database includes fields such as "other ship identifier", "position", "speed", and "azimuth". In addition, the position and direction of the other ship detected by the radar 3 are converted into the same coordinate system as GNSS.
図3A及び図3Bは、従来のOZTの計算例を示す図である。OZT(Obstacle Zone by Target)とは、自船の航行が他船によって妨害される可能性があるゾーンであり、他船の予測針路上に表示される。
Figs. 3A and 3B are diagrams showing examples of conventional OZT calculations. An OZT (Obstacle Zone by Target) is a zone in which the navigation of one's own ship may be obstructed by another ship, and is displayed on the predicted course of the other ship.
従来のOZT計算では、図3Aに示すように、他船の予測針路上の判定点に向けて自船が瞬時に変針して直進するとの仮定のもとで衝突リスクを計算している。しかしながら、図3Bに示すように、実際には自船は旋回しながら判定点に向かうため、OZTが表示される領域と実際に衝突リスクがある領域とにずれが生じることがある。
In the conventional OZT calculation, as shown in Fig. 3A, the collision risk is calculated under the assumption that the own ship will change course instantly and proceed straight toward the decision point on the predicted course of the other ship. However, as shown in FIG. 3B, the own ship actually turns toward the decision point, so there may be a gap between the area where the OZT is displayed and the area where there is an actual collision risk.
例えば、OZTが表示される判定点のうちの自船の船首線から最も離れた判定点では、自船が瞬時に変針して直進するとの仮定のもとでは衝突リスクありと判定されるものの、実際に自船が旋回して判定点に到達する頃には他船は判定点を通過していて、衝突は生じない。このように、実際には衝突が生じない判定点にOZTが表示されることがある。
For example, at the judgment point farthest from the own ship's bow line among the judgment points where the OZT is displayed, it is judged that there is a collision risk under the assumption that the own ship changes course instantly and goes straight, By the time the own ship turns and reaches the decision point, the other ship has already passed the decision point and no collision occurs. Thus, the OZT may be displayed at decision points where no collision actually occurs.
そこで、本実施形態では、以下に説明するように、自船の旋回を考慮したリスク計算を行うことで、衝突リスクの予測精度の向上を図っている。
Therefore, in this embodiment, as described below, the accuracy of collision risk prediction is improved by performing risk calculations that take into account the turning of the own ship.
図4は、実施形態に係る船舶監視方法を実現する、実施形態に係る情報処理装置1の構成例を示す図である。情報処理装置1は、旋回情報入力部11、位置船速情報入力部12、他船舶予測航路情報入力部13、判定点設定部14、航路設定部15、リスク値算出部16、及び表示制御部17を備えている。これらの機能部は、情報処理装置1のCPUがプログラムに従って情報処理を実行することによって実現される。
FIG. 4 is a diagram showing a configuration example of the information processing device 1 according to the embodiment, which implements the ship monitoring method according to the embodiment. The information processing device 1 includes a turning information input unit 11, a position ship speed information input unit 12, an other ship predicted route information input unit 13, a decision point setting unit 14, a route setting unit 15, a risk value calculation unit 16, and a display control unit. 17. These functional units are implemented by the CPU of the information processing apparatus 1 executing information processing according to programs.
情報処理装置1は、自船データ及び他船データに基づいて、自船が現在位置及び現在方向から旋回しながら他船の予測針路上のそれぞれの判定点に向かうと仮定したときの、それぞれの判定点で自船と他船が衝突するリスクを表すリスク値を算出する(図7参照)。
Based on the own ship data and the other ship data, the information processing device 1 assumes that the own ship turns from the current position and current direction toward each decision point on the predicted course of the other ship. A risk value representing the risk of collision between the own ship and another ship is calculated at the decision point (see Fig. 7).
旋回情報入力部11は、自船データに基づいて、自船の現時点における方位と旋回率が入力される。以下、旋回率を「ROT」(Rate of Turn)ともいう。
The turning information input unit 11 receives the current azimuth and turning rate of the own ship based on the own ship data. Hereinafter, the rate of turn is also referred to as "ROT" (Rate of Turn).
具体的には、旋回情報入力部11には、ROT閾値が入力される。ROT閾値は、自船に許容されるROTの上限であり、所定のROTの例である。ROT閾値は、例えばユーザからの入力により設定される。旋回情報入力部11は、ROT閾値以下のROTを用いる。
Specifically, the ROT threshold is input to the turning information input unit 11 . The ROT threshold is the upper limit of ROT allowed for own ship, and is an example of a predetermined ROT. The ROT threshold is set, for example, by user input. The turning information input unit 11 uses an ROT that is equal to or less than the ROT threshold.
これに限らず、図5に示すような、船の全長とROT閾値とが互いに関連付けられたROT閾値テーブルを用意して、旋回情報入力部11が自船の全長に対応するROT閾値を取得してもよい。船の全長に代えて、船の容積、重量、又は船種等の、船の大きさを表す他のパラメータが用いられてもよい。
However, the turning information input unit 11 prepares an ROT threshold table in which the total length of the ship and the ROT threshold are associated with each other, as shown in FIG. may Instead of ship length, other parameters describing ship size may be used, such as ship volume, weight, or ship type.
位置船速情報入力部12は、自船データに基づいて、自船の現時点における位置と船速が入力される。
The position and speed information input unit 12 receives the current position and speed of the own ship based on the own ship data.
他船舶予測航路情報入力部13は、他船データに基づいて、他船の現時点における位置、船速及び該現時点以降の予測航路が入力される。他船の予測航路は、他船が現時点における位置から船速及び方位を維持して航行するとの仮定のもとで算出される。
The other ship's predicted route information input unit 13 receives the current position and ship speed of the other ship, and the predicted route after the current time based on the other ship's data. The predicted course of the other ship is calculated under the assumption that the other ship will navigate from the current position while maintaining the ship's speed and heading.
判定点設定部14は、他船の位置、船速及び予測航路に基づいて、該予測航路上に判定点を設定し、該判定点の位置と、他船が現時点から該判定部にまで航行するに要する他船航行時間とを出力する。具体的には、判定点設定部14は、予測航路上に複数の判定点を設定する。
A determination point setting unit 14 sets a determination point on the predicted route based on the position of the other ship, the speed of the ship, and the predicted route, and determines the position of the determination point and the position of the other ship from the current time to the determination unit. It outputs the other ship's navigation time required to do so. Specifically, the judgment point setting unit 14 sets a plurality of judgment points on the predicted route.
航路設定部15は、自船が自船の方位と自船の位置を起点に現時点における船速を維持し、旋回率で旋回して判定点に向けて針路を変更した該判定点に向けて航行する航路を設定し、該航路と判定点に到達する自船航行時間を出力する。具体的には、航路設定部15は、複数の判定点のそれぞれに向けて航行する複数の航路と、複数の判定点のそれぞれに到達する複数の自船航行時間とを出力する。
The route setting unit 15 maintains the ship's current ship speed with its own ship's bearing and own ship's position as a starting point, turns at a turning rate, and changes its course toward the decision point. A route to be navigated is set, and the route and the own ship's navigation time to reach the judgment point are output. Specifically, the route setting unit 15 outputs a plurality of routes along which the ship travels toward each of the plurality of judgment points, and a plurality of own ship navigation times for reaching each of the plurality of judgment points.
リスク値算出部16は、他船の予測航路及び他船航行時間、並びに自船の航路と自船航行時間に基づいて、判定点における衝突リスク値を算出する。具体的には、リスク値算出部16は、複数の判定点のそれぞれにおける衝突リスク値を算出する。
The risk value calculation unit 16 calculates the collision risk value at the decision point based on the other ship's predicted route and other ship's navigation time, and the own ship's route and own ship's navigation time. Specifically, the risk value calculator 16 calculates a collision risk value at each of a plurality of determination points.
表示制御部17は、リスク値算出部16により算出されたリスク値が閾値以上の判定点にOZTを表示する(図7参照)。具体的には、表示制御部17は、表示部2に表示される画像中に自船と他船の位置を示すとともに、他船の予測針路上にOZTを配置する。
The display control unit 17 displays OZT at determination points where the risk value calculated by the risk value calculation unit 16 is equal to or greater than the threshold (see FIG. 7). Specifically, the display control unit 17 indicates the positions of the own ship and the other ship in the image displayed on the display unit 2, and arranges the OZT on the predicted course of the other ship.
図6は、実施形態に係る船舶監視方法の手順例を示す図である。情報処理装置1は、同図に示す処理をプログラムに従って実行する。図7は、OZTの計算例及び表示例を示す図である。
FIG. 6 is a diagram showing a procedure example of the ship monitoring method according to the embodiment. The information processing device 1 executes the processing shown in the figure according to a program. FIG. 7 is a diagram showing a calculation example and a display example of OZT.
まず、情報処理装置1は、自船データ及び他船データを取得し(S11)、ROT閾値を取得する(S12)。
First, the information processing device 1 acquires own ship data and other ship data (S11), and acquires the ROT threshold (S12).
次に、情報処理装置1は、他船データに基づいて、他船の予測針路上に判定点を設定する(S13:判定点設定部14としての処理)。他船の予測針路上には、複数の判定点が等間隔に設定される。複数の判定点は、所定時間経過毎の各時点の他船の予測位置を表す。
Next, the information processing device 1 sets a decision point on the predicted course of the other ship based on the data of the other ship (S13: processing by the decision point setting unit 14). A plurality of judgment points are set at equal intervals on the predicted course of the other ship. A plurality of determination points represent predicted positions of other ships at each point in time after each predetermined time period.
具体的には、他船の予測針路の算出及び判定点の設定は、他船が現在位置から速度を維持して航行するとの仮定のもとで行われる。言い換えると、他船は、基準時点の他船位置から船速ベクトルの大きさ及び向きが一定のまま航行すると仮定される。このため、他船の予測針路は、基準時点の他船位置を通る、船速ベクトルを延長した直線となり、複数の判定点は当該直線上に設定される。
Specifically, the calculation of the predicted course of the other ship and the setting of the decision point are performed under the assumption that the other ship will maintain its speed from its current position. In other words, it is assumed that the other ship navigates from the position of the other ship at the reference time with the magnitude and direction of the ship speed vector constant. Therefore, the predicted course of the other ship becomes a straight line extending the ship speed vector and passing through the position of the other ship at the reference time, and the plurality of decision points are set on the straight line.
これに限らず、他船の速さ及び方向の少なくとも一方が時間に応じて変化すると仮定してもよい。すなわち、所定時間経過後の他船の予測位置を算出できるのであれば、他船の速度は一定でなくてもよい。例えば、他船の速さは時間の経過とともに徐々に増加又は減少してもよい。また、他船の予定航路の航路データを取得できる場合には、航路データに基づく他船の予定航路上に複数の判定点を設定してもよい。
Not limited to this, it may be assumed that at least one of the other ship's speed and direction changes according to time. That is, the speed of the other ship need not be constant as long as the predicted position of the other ship after the elapse of the predetermined time can be calculated. For example, the speed of other ships may gradually increase or decrease over time. In addition, when the route data of the scheduled route of the other ship can be acquired, a plurality of judgment points may be set on the scheduled route of the other ship based on the route data.
次に、情報処理装置1は、自船データに基づいて、自船が旋回しながら判定点の1つに向かった場合のリスク値を算出する(S14:航路設定部15及びリスク値算出部16としての処理)。リスク値は、例えば自船と他船が同時に判定点に存在する確率で表される。又は、リスク値は、同時点における自船の予測位置と他船の予測位置との離隔距離で表されてもよい。
Next, based on the own ship data, the information processing device 1 calculates the risk value when the own ship turns toward one of the determination points (S14: route setting unit 15 and risk value calculation unit 16 processing as). The risk value is expressed, for example, by the probability that the own ship and another ship are present at the decision point at the same time. Alternatively, the risk value may be represented by the separation distance between the predicted position of the own ship and the predicted positions of the other ships at the same point in time.
図7に示すように、情報処理装置1は、自船が現在位置から判定点まで速さを維持したまま、ROT閾値を超えない一定のROTで旋回するとの仮定のもとでリスク値を算出する。ROTは、自船の船首線と判定点との距離が大きくなるほど大きくなる。
As shown in FIG. 7, the information processing device 1 calculates the risk value under the assumption that the own ship turns at a constant ROT that does not exceed the ROT threshold while maintaining the speed from the current position to the determination point. do. The ROT increases as the distance between the own ship's bow line and the judgment point increases.
言い換えると、自船は、基準時点の自船位置から、船速ベクトルの大きさを一定にしたまま、船速ベクトルの向きを一定の度合いで変化させて判定点に到達する。
In other words, the own ship reaches the decision point by changing the direction of the ship speed vector at a constant degree while keeping the size of the ship speed vector constant from the own ship position at the reference time.
この例では、自船の航路は、自船の現在位置から船首方向に延び出して判定点に至る円弧で表される。このため、自船の航路は、自船の現在位置と判定点とを結ぶ直線よりも長くなる。
In this example, the course of the own ship is represented by an arc extending from the current position of the own ship in the bow direction to the decision point. Therefore, the course of the own ship is longer than the straight line connecting the current position of the own ship and the decision point.
これに限らず、図8に示すように、情報処理装置1は、自船が現在位置からROT閾値で旋回した後に直進して判定点に到達するとの仮定のもとでリスク値を算出してもよい。この例では、自船の航路は、円弧RPと直線LPの組で表される。なお、旋回は、ROT閾値以下のROTで行われてもよい。
Not limited to this, as shown in FIG. 8, the information processing device 1 calculates the risk value based on the assumption that the own ship turns straight from the current position at the ROT threshold and then reaches the decision point. good too. In this example, the route of own ship is represented by a set of arc RP and straight line LP. Note that the turn may be performed at an ROT equal to or lower than the ROT threshold.
なお、本実施形態では、自船の速さが一定であると仮定したが、これに限らず、自船の速さは時間に応じて変化すると仮定してもよい。例えば、自船の速さは時間の経過とともに徐々に増加又は減少してもよい。
In this embodiment, it is assumed that the speed of the own ship is constant, but it is not limited to this, and it may be assumed that the speed of the own ship changes according to time. For example, the own ship's speed may gradually increase or decrease over time.
次に、情報処理装置1は、算出したリスク値が閾値以上である場合に(S15:YES)、判定点をOZT表示点として決定する(S16)。一方、情報処理装置1は、算出したリスク値が閾値未満である場合には(S15:NO)、判定点をOZT表示点としない。
Next, when the calculated risk value is equal to or greater than the threshold (S15: YES), the information processing device 1 determines the determination point as the OZT display point (S16). On the other hand, when the calculated risk value is less than the threshold (S15: NO), the information processing device 1 does not set the OZT display point as the determination point.
情報処理装置1は、全ての判定点についてリスク値を算出するまで、上記S14~S16の処理を繰り返し(S17:NO)、全ての判定点についてリスク値を算出すると(S17:YES)、OZT表示点の位置を出力し、処理を終了する。
The information processing device 1 repeats the processes of S14 to S16 until the risk values are calculated for all the determination points (S17: NO), and when the risk values are calculated for all the determination points (S17: YES), OZT display. Output the position of the point and terminate the process.
なお、複数の他船が存在する場合には、情報処理装置1は、上記S13~S17の処理を複数の他船のそれぞれについて実行する。
It should be noted that if there are a plurality of other ships, the information processing device 1 executes the processes of S13 to S17 for each of the plurality of other ships.
情報処理装置1は、決定されたOZT表示点にOZTを表示する(表示制御部17としての処理)。OZTの半径には、所定の安全離隔距離が用いられる。図7に示すように、2以上のOZT表示点が連続する範囲では、OZTは、他船の予測針路と同方向に延びた形状、例えば両端が半円の角丸長方形状を有してもよい。
The information processing device 1 displays the OZT at the determined OZT display point (processing by the display control unit 17). A predetermined safety clearance is used for the radius of the OZT. As shown in FIG. 7, in the range where two or more OZT display points are continuous, the OZT may have a shape extending in the same direction as the predicted course of the other ship, for example, a rounded rectangular shape with semicircles at both ends. good.
以上に説明した実施形態によれば、自船が現在位置及び現在方向から旋回しながら他船の予測針路上の複数の判定点のそれぞれに向かうと仮定して衝突のリスク値を算出するので、予測精度の向上を図ることが可能となる。すなわち、OZTが表示される領域と実際に衝突リスクがある領域とのずれを抑制することが可能となる。
According to the embodiment described above, the collision risk value is calculated assuming that the own ship turns from the current position and current direction toward each of the plurality of decision points on the predicted course of the other ship. It is possible to improve the prediction accuracy. That is, it is possible to suppress the deviation between the area where the OZT is displayed and the area where there is an actual collision risk.
図9は、変形例に係る船舶監視方法の手順例を示す図である。図10は、OZTの計算例を説明するための図である。上記実施形態と重複する構成又は手順については、同番号を付すことで詳細な説明を省略することがある。
FIG. 9 is a diagram showing a procedure example of a ship monitoring method according to a modification. FIG. 10 is a diagram for explaining a calculation example of OZT. A detailed description may be omitted by assigning the same numbers to configurations or procedures that overlap with the above embodiments.
情報処理装置1は、他船の予測針路上に判定点を設定すると(S13)、他船の予測針路に設定された判定点のうちの、自船がROT閾値以下の旋回で到達可能な範囲内の判定点を抽出する(S23)。そして、情報処理装置1は、抽出した判定点のそれぞれについてリスク値を計算し、OZT表示点を決定する(S14~S16及びS27)。
When the information processing device 1 sets a decision point on the predicted course of the other ship (S13), the range of the decision points set on the predicted course of the other ship that the own ship can reach in a turn equal to or less than the ROT threshold. (S23). Then, the information processing apparatus 1 calculates a risk value for each of the extracted determination points and determines OZT display points (S14-S16 and S27).
一方、情報処理装置1は、他船の予測針路に設定された判定点のうちの、自船がROT閾値以下の旋回で到達可能な範囲外の判定点(図10中の×印の判定点)については、リスク値を算出しない。
On the other hand, the information processing apparatus 1 selects, among the determination points set for the predicted courses of other ships, determination points outside the reachable range of the own ship in a turn equal to or less than the ROT threshold (determination points marked with x in FIG. 10). ), the risk value is not calculated.
すなわち、図10に示すように、ROT閾値を表す左右一組の円弧の内側にある判定点についてはリスク値が算出され、ROT閾値を表す左右一組の円弧の外側にある判定点についてはリスク値が算出されない。
That is, as shown in FIG. 10, risk values are calculated for decision points inside a pair of left and right arcs representing the ROT threshold, and risk values are calculated for decision points outside the pair of left and right arcs representing the ROT threshold. No value is calculated.
これによれば、リスク値を算出する対象となる判定点が、自船がROT閾値以下の旋回で到達可能な範囲内の判定点に絞り込まれるので、計算速度の向上及び計算負荷の軽減を図ることが可能となる。
According to this, the decision points for which the risk value is calculated are narrowed down to the decision points within the reachable range of the own ship by turning below the ROT threshold, so that the calculation speed is improved and the calculation load is reduced. becomes possible.
以上、本発明の実施形態について説明したが、本発明は以上に説明した実施形態に限定されるものではなく、種々の変更が当業者にとって可能であることはもちろんである。
Although the embodiments of the present invention have been described above, the present invention is not limited to the embodiments described above, and it goes without saying that various modifications are possible for those skilled in the art.
上記実施形態では、自船が速さを維持したまま、所定のROTで旋回すると仮定してリスク値を計算したが、これに限らず、例えば自船の船体特性を考慮したK-Tモデルに基づく自船の旋回性能を表すパラメータを用いて、自船の位置を予測してもよい。これによれば、旋回時に自船の速さが低下することまで考慮してリスク値を算出することが可能となる。
In the above embodiment, the risk value is calculated on the assumption that the own ship turns at a predetermined ROT while maintaining its speed. The position of the own ship may be predicted using a parameter representing the turning performance of the own ship based on the According to this, it becomes possible to calculate the risk value taking into account even the fact that the speed of the own ship decreases during turning.
[付記]
船舶監視システムは、第1船舶の位置及び速度を表す第1船舶データを生成する第1データ生成部と、第2船舶の位置及び速度を表す第2船舶データを生成する第2データ生成部と、前記第1船舶データ及び前記第2船舶データに基づいて、前記第1船舶が現在の位置及び方向から旋回しながら前記第2船舶の予測針路上の複数の判定点のそれぞれに向かうと仮定したときの、前記複数の判定点のそれぞれにおいて前記第1船舶と前記第2船舶とが衝突するリスクを表すリスク値を算出するリスク値算出部と、前記複数の判定点のうちの前記リスク値が閾値以上の判定点にOZT(Obstacle Zone by Target)を表示する表示部と、を備えてもよい。 [Note]
The ship monitoring system includes a first data generation unit that generates first ship data representing the position and speed of the first ship, and a second data generation unit that generates second ship data representing the position and speed of the second ship. , based on the first ship data and the second ship data, it is assumed that the first ship turns from the current position and direction toward each of a plurality of decision points on the predicted course of the second ship. a risk value calculation unit that calculates a risk value representing a risk of collision between the first vessel and the second vessel at each of the plurality of determination points when the risk value among the plurality of determination points is and a display unit that displays an OZT (Obstacle Zone by Target) at a determination point equal to or greater than a threshold.
船舶監視システムは、第1船舶の位置及び速度を表す第1船舶データを生成する第1データ生成部と、第2船舶の位置及び速度を表す第2船舶データを生成する第2データ生成部と、前記第1船舶データ及び前記第2船舶データに基づいて、前記第1船舶が現在の位置及び方向から旋回しながら前記第2船舶の予測針路上の複数の判定点のそれぞれに向かうと仮定したときの、前記複数の判定点のそれぞれにおいて前記第1船舶と前記第2船舶とが衝突するリスクを表すリスク値を算出するリスク値算出部と、前記複数の判定点のうちの前記リスク値が閾値以上の判定点にOZT(Obstacle Zone by Target)を表示する表示部と、を備えてもよい。 [Note]
The ship monitoring system includes a first data generation unit that generates first ship data representing the position and speed of the first ship, and a second data generation unit that generates second ship data representing the position and speed of the second ship. , based on the first ship data and the second ship data, it is assumed that the first ship turns from the current position and direction toward each of a plurality of decision points on the predicted course of the second ship. a risk value calculation unit that calculates a risk value representing a risk of collision between the first vessel and the second vessel at each of the plurality of determination points when the risk value among the plurality of determination points is and a display unit that displays an OZT (Obstacle Zone by Target) at a determination point equal to or greater than a threshold.
また、前記リスク値算出部は、前記第1船舶が所定のROT(Rate of Turn)以下で旋回するとの仮定のもとで前記リスク値を算出してもよい。前記リスク値算出部は、前記第1船舶が現在の位置から前記判定点まで一定のROTで旋回するとの仮定のもとで前記リスク値を算出してもよい。前記リスク値算出部は、前記第1船舶が現在の位置から前記所定のROTで旋回した後に直進して前記判定点に到達するとの仮定のもとで前記リスク値を算出してもよい。
Further, the risk value calculation unit may calculate the risk value on the assumption that the first vessel turns at a predetermined ROT (Rate of Turn) or less. The risk value calculator may calculate the risk value on the assumption that the first vessel turns from the current position to the determination point at a constant ROT. The risk value calculation unit may calculate the risk value on the assumption that the first vessel reaches the decision point by going straight after turning at the predetermined ROT from the current position.
また、前記リスク値算出部は、前記第1船舶の大きさに対応するROTを、前記所定のROTとして用いてもよい。前記リスク値算出部は、前記第1船舶の旋回性能を表すパラメータを用いて前記第1船舶の位置を予測してもよい。
Further, the risk value calculation unit may use the ROT corresponding to the size of the first ship as the predetermined ROT. The risk value calculator may predict the position of the first vessel using a parameter representing turning performance of the first vessel.
また、前記リスク値算出部は、前記第2船舶の予測針路のうちの、前記第1船舶が前記所定のROT以下の旋回で到達可能な範囲内の各判定点について前記リスク値を算出してもよい。前記リスク値算出部は、前記第2船舶の予測針路のうちの、前記第1船舶が前記所定のROT以下の旋回で到達可能な範囲外の各判定点について前記リスク値を算出しなくてもよい。
Further, the risk value calculation unit calculates the risk value for each determination point within a range that the first ship can reach by turning at or below the predetermined ROT in the predicted course of the second ship. good too. The risk value calculation unit calculates the risk value for each determination point out of the range that the first ship can reach by turning at or below the predetermined ROT, in the predicted course of the second ship. good.
1 情報処理装置、2 表示部、3 レーダー、4 AIS、5 GNSS受信機、6 ジャイロコンパス、7 ECDIS、8 警報部、11 リスク値算出部、12 表示制御部、13 パラメータ保持部、100 船舶監視システム
1 Information processing device, 2 Display unit, 3 Radar, 4 AIS, 5 GNSS receiver, 6 Gyro compass, 7 ECDIS, 8 Alarm unit, 11 Risk value calculation unit, 12 Display control unit, 13 Parameter storage unit, 100 Ship monitoring system
Claims (11)
- 第1船舶の現時点における方位と旋回率が入力される旋回情報入力部と、
前記第1船舶の現時点における位置と船速が入力される位置船速情報入力部と、
第2船舶の現時点における位置、船速及び該現時点以降の予測航路が入力される第2船舶予測航路情報入力部と、
前記第2船舶の位置、船速及び予測航路に基づいて該予測航路上に判定点を設定し、該判定点の位置と、前記第2船舶が現時点から該判定部にまで航行するに要する第2船舶航行時間とを出力する判定点設定部と、
前記第1船舶が前記第1船舶の方位と前記第1船舶の位置を起点に前記現時点における船速を維持し、前記旋回率で旋回して前記判定点に向けて針路を変更した該判定点に向けて航行する航路を設定し、該航路と判定点に到達する第1船舶航行時間を出力する航路設定部と、
前記第2船舶の前記予測航路及び第2船舶航行時間、並びに前記第1船舶の前記航路と第1船舶航行時間に基づいて、前記判定点における衝突リスク値を算出するリスク値算出部と、
を備える、船舶監視システム。 a turning information input unit for inputting the current azimuth and turning rate of the first ship;
a position and speed information input unit for inputting the current position and speed of the first ship;
a second vessel forecasted route information input unit for inputting the current position and speed of the second vessel and the forecasted course after the current time;
A decision point is set on the predicted route based on the position, ship speed and predicted route of the second ship, and the position of the decision point and the number of times required for the second ship to navigate from the current point to the decision section. 2 a judgment point setting unit that outputs the ship navigation time;
Said first ship maintains said current ship speed starting from said first ship's bearing and said first ship's position, turns at said turning rate, and changes course toward said decision point. a route setting unit that sets a route to navigate toward and outputs the route and the navigation time of the first ship to reach the judgment point;
a risk value calculation unit that calculates a collision risk value at the decision point based on the predicted route and the second ship navigation time of the second ship, and the route and the first ship navigation time of the first ship;
a vessel monitoring system. - 前記判定点設定部は、前記予測航路上に複数の前記判定点を設定し、
前記航路設定部は、複数の前記判定点のそれぞれに向けて航行する複数の前記航路と、複数の前記判定点のそれぞれに到達する複数の前記第1船舶航行時間とを出力し、
前記リスク値算出部は、複数の前記判定点のそれぞれにおける衝突リスク値を算出する、
請求項1に記載の船舶監視システム。 The decision point setting unit sets a plurality of the decision points on the predicted route,
The route setting unit outputs a plurality of routes for navigating toward each of the plurality of judgment points and a plurality of navigation times of the first vessel that reach each of the plurality of judgment points,
wherein the risk value calculation unit calculates a collision risk value at each of the plurality of decision points;
A ship monitoring system according to claim 1 . - 前記旋回情報入力部は、所定の旋回率以下の旋回率が入力される、
請求項1または2に記載の船舶監視システム。 The turning information input unit receives a turning rate less than or equal to a predetermined turning rate.
The vessel surveillance system according to claim 1 or 2. - 前記航路設定部は、前記第1船舶が現時点における位置から前記判定点まで一定の旋回率で旋回するとの仮定のもとで前記航路を設定する、
請求項3に記載の船舶監視システム。 The route setting unit sets the route under the assumption that the first ship turns from the current position to the determination point at a constant turning rate.
A vessel monitoring system according to claim 3. - 前記リスク値算出部は、前記第1船舶が現時点における位置から所定の旋回率で旋回した後に直進して前記判定点に到達するとの仮定のもとで前記航路を設定する、
請求項3に記載の船舶監視システム。 The risk value calculation unit sets the route on the assumption that the first ship turns at a predetermined turning rate from the current position and then proceeds straight to reach the decision point.
A vessel monitoring system according to claim 3. - 前記旋回情報入力部は、前記第1船舶の大きさに対応する旋回率を用いて、前記航路を設定する、
請求項1ないし5の何れかに記載の船舶監視システム。 The turning information input unit sets the route using a turning rate corresponding to the size of the first vessel.
A ship monitoring system according to any one of claims 1 to 5. - 前記リスク値算出部は、前記第2船舶の予測航路のうちの、前記第1船舶が前記所定の旋回率以下の旋回で到達可能な範囲内の各判定点について前記リスク値を算出する、
請求項3に記載の船舶監視システム。 The risk value calculation unit calculates the risk value for each determination point within a range that the first ship can reach by turning at a turning rate equal to or less than the predetermined turning rate, in the predicted route of the second ship.
A vessel monitoring system according to claim 3. - 前記リスク値算出部は、前記第2船舶の予測航路のうちの、前記第1船舶が前記所定の旋回率以下の旋回で到達可能な範囲外の各判定点について前記リスク値を算出しない、
請求項7に記載の船舶監視システム。 The risk value calculation unit does not calculate the risk value for each determination point on the predicted route of the second ship that is outside a range that the first ship can reach by turning at a turning rate equal to or less than the predetermined turning rate.
A vessel monitoring system according to claim 7. - 第1船舶の現時点における方位と旋回率を入力し、
前記第1船舶の現時点における位置と船速を入力し、
第2船舶の現時点における位置、船速及び該現時点以降の予測航路を入力し、
前記第2船舶の位置、船速及び予測航路に基づいて該予測航路上に判定点を設定し、該判定点の位置と、前記第2船舶が現時点から該判定部にまで航行するに要する第2船舶航行時間とを出力し、
前記第1船舶が前記第1船舶の方位と前記第1船舶の位置を起点に前記現時点における船速を維持し、前記旋回率で旋回して前記判定点に向けて針路を変更した該判定点に向けて航行する航路を設定し、該航路と判定点に到達する第1船舶航行時間を出力し、
前記第2船舶の前記予測航路及び第2船舶航行時間、並びに前記第1船舶の前記航路と第1船舶航行時間に基づいて、前記判定点における衝突リスク値を算出する、
船舶監視方法。 Enter the current heading and turning rate of the first vessel,
Inputting the current position and speed of the first vessel,
Enter the current position of the second ship, the speed of the ship, and the predicted route after the current time,
A decision point is set on the predicted route based on the position, ship speed and predicted route of the second ship, and the position of the decision point and the number of times required for the second ship to navigate from the current point to the decision section. 2 output ship navigation time and
Said first ship maintains said current ship speed starting from said first ship's bearing and said first ship's position, turns at said turning rate, and changes course toward said decision point. Set a route to navigate toward, output the route and the first ship navigation time to reach the decision point,
calculating a collision risk value at the decision point based on the predicted route and second ship navigation time of the second ship, and the route and first ship navigation time of the first ship;
Vessel surveillance method. - 第1船舶の現時点における方位と旋回率が入力される旋回情報入力部と、
前記第1船舶の現時点における位置と船速が入力される位置船速情報入力部と、
第2船舶の現時点における位置、船速及び該現時点以降の予測航路が入力される第2船舶予測航路情報入力部と、
前記第2船舶の位置、船速及び予測航路に基づいて該予測航路上に判定点を設定し、該判定点の位置と、前記第2船舶が現時点から該判定部にまで航行するに要する第2船舶航行時間とを出力する判定点設定部と、
前記第1船舶が前記第1船舶の方位と前記第1船舶の位置を起点に前記現時点における船速を維持し、前記旋回率で旋回して前記判定点に向けて針路を変更した該判定点に向けて航行する航路を設定し、該航路と判定点に到達する第1船舶航行時間を出力する航路設定部と、
前記第2船舶の前記予測航路及び第2船舶航行時間、並びに前記第1船舶の前記航路と第1船舶航行時間に基づいて、前記判定点における衝突リスク値を算出するリスク値算出部と、
を備える、情報処理装置。 a turning information input unit for inputting the current azimuth and turning rate of the first ship;
a position and speed information input unit for inputting the current position and speed of the first ship;
a second vessel forecasted route information input unit for inputting the current position and speed of the second vessel and the forecasted course after the current time;
A decision point is set on the predicted route based on the position, ship speed and predicted route of the second ship, and the position of the decision point and the number of times required for the second ship to navigate from the current point to the decision section. 2 a judgment point setting unit that outputs the ship navigation time;
Said first ship maintains said current ship speed starting from said first ship's bearing and said first ship's position, turns at said turning rate, and changes course toward said decision point. a route setting unit that sets a route to navigate toward and outputs the route and the navigation time of the first ship to reach the judgment point;
a risk value calculation unit that calculates a collision risk value at the decision point based on the predicted route and the second ship navigation time of the second ship, and the route and the first ship navigation time of the first ship;
An information processing device. - 第1船舶の現時点における方位と旋回率が入力される旋回情報入力部、
前記第1船舶の現時点における位置と船速が入力される位置船速情報入力部、
第2船舶の現時点における位置、船速及び該現時点以降の予測航路が入力される第2船舶予測航路情報入力部、
前記第2船舶の位置、船速及び予測航路に基づいて該予測航路上に判定点を設定し、該判定点の位置と、前記第2船舶が現時点から該判定部にまで航行するに要する第2船舶航行時間とを出力する判定点設定部、
前記第1船舶が前記第1船舶の方位と前記第1船舶の位置を起点に前記現時点における船速を維持し、前記旋回率で旋回して前記判定点に向けて針路を変更した該判定点に向けて航行する航路を設定し、該航路と判定点に到達する第1船舶航行時間を出力する航路設定部、及び、
前記第2船舶の前記予測航路及び第2船舶航行時間、並びに前記第1船舶の前記航路と第1船舶航行時間に基づいて、前記判定点における衝突リスク値を算出するリスク値算出部、
としてコンピュータを機能させるためのプログラム。 a turning information input unit for inputting the current azimuth and turning rate of the first ship;
a position and speed information input unit for inputting the current position and speed of the first ship;
A second ship predicted route information input unit for inputting the current position of the second ship, the ship speed, and the predicted route after the current time,
A decision point is set on the predicted route based on the position, ship speed and predicted route of the second ship, and the position of the decision point and the number of times required for the second ship to navigate from the current point to the decision section. 2 a decision point setting unit that outputs the ship navigation time;
Said first ship maintains said current ship speed starting from said first ship's bearing and said first ship's position, turns at said turning rate, and changes course toward said decision point. A route setting unit that sets a route to navigate toward and outputs the route and the navigation time of the first ship to reach the judgment point;
A risk value calculation unit that calculates a collision risk value at the decision point based on the predicted route and the second ship navigation time of the second ship and the route of the first ship and the first ship navigation time;
A program that allows a computer to function as a
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023520828A JPWO2022239402A1 (en) | 2021-05-11 | 2022-03-03 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021080425 | 2021-05-11 | ||
JP2021-080425 | 2021-05-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022239402A1 true WO2022239402A1 (en) | 2022-11-17 |
Family
ID=84029168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/009079 WO2022239402A1 (en) | 2021-05-11 | 2022-03-03 | Ship monitoring system, ship monitoring method, information processing device, and program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2022239402A1 (en) |
WO (1) | WO2022239402A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62117100U (en) * | 1986-01-20 | 1987-07-25 | ||
JPH11272999A (en) * | 1998-03-24 | 1999-10-08 | Tokimec Inc | Device and method for supporting prevention of ship collision |
JP2011016384A (en) * | 2009-07-07 | 2011-01-27 | Marol Ltd | Automatic steering device and automatic steering program for marine vessel |
-
2022
- 2022-03-03 JP JP2023520828A patent/JPWO2022239402A1/ja active Pending
- 2022-03-03 WO PCT/JP2022/009079 patent/WO2022239402A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62117100U (en) * | 1986-01-20 | 1987-07-25 | ||
JPH11272999A (en) * | 1998-03-24 | 1999-10-08 | Tokimec Inc | Device and method for supporting prevention of ship collision |
JP2011016384A (en) * | 2009-07-07 | 2011-01-27 | Marol Ltd | Automatic steering device and automatic steering program for marine vessel |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022239402A1 (en) | 2022-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106406320B (en) | The robot of robot path planning method and programme path | |
WO2020156314A1 (en) | Intelligent inducing device for marine safe navigation | |
JP6882243B2 (en) | Avoidance support device | |
JP2019196103A (en) | Automatic steering device, automatic steering method, and automatic steering program | |
WO2022113610A1 (en) | Ship monitoring system, ship monitoring method, information processing device, and program | |
KR20230091086A (en) | Ship monitoring system, ship monitoring method, information processing device, and program | |
WO2022239402A1 (en) | Ship monitoring system, ship monitoring method, information processing device, and program | |
JP2020027344A (en) | Collision avoidance support device | |
WO2022091646A1 (en) | Ship monitoring system, ship monitoring method, information processing device, and program | |
WO2022091677A1 (en) | Seacraft monitoring system, seacraft monitoring method, information processing device, and program | |
WO2022230332A1 (en) | Ship monitoring system, ship monitoring method, information processing device, and program | |
GB2589381A (en) | Navigation guidance method and system | |
WO2022234712A1 (en) | Ship monitoring system, ship monitoring method, information processing device, and program | |
WO2021161690A1 (en) | Ship navigation assistance system, ship navigation assistance method, ship navigation assistance device, and program | |
CN115583254A (en) | Path planning method, device and equipment and automatic driving vehicle | |
JP2022170010A (en) | Marine vessel monitoring system, marine vessel monitoring method, marine vessel monitoring device, and program | |
JP2022170015A (en) | Ship steering support system, ship steering support method, information processing device, and program | |
EP1416252A2 (en) | Display of the recommended route in a navigation device | |
WO2022264550A1 (en) | Ship monitoring system, ship monitoring method, information processing device, and program | |
WO2022249632A1 (en) | Ship monitoring device, ship monitoring method, and program | |
JP6752253B2 (en) | Avoidance support device | |
WO2022239401A1 (en) | Ship monitoring system, ship monitoring method, information processing device, and program | |
WO2022249631A1 (en) | Ship monitoring device, ship monitoring method, and program | |
JPH10288663A (en) | Collision prevention method and device | |
JP2022170012A (en) | Marine vessel monitoring system, marine vessel monitoring method, marine vessel monitoring device, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22807109 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023520828 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22807109 Country of ref document: EP Kind code of ref document: A1 |