JP3968712B2 - 動き予測補償装置及びその方法 - Google Patents

動き予測補償装置及びその方法 Download PDF

Info

Publication number
JP3968712B2
JP3968712B2 JP2003123976A JP2003123976A JP3968712B2 JP 3968712 B2 JP3968712 B2 JP 3968712B2 JP 2003123976 A JP2003123976 A JP 2003123976A JP 2003123976 A JP2003123976 A JP 2003123976A JP 3968712 B2 JP3968712 B2 JP 3968712B2
Authority
JP
Japan
Prior art keywords
search range
motion
prediction
motion vector
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003123976A
Other languages
English (en)
Other versions
JP2004328633A (ja
Inventor
数史 佐藤
寿治 土屋
陽一 矢ケ崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003123976A priority Critical patent/JP3968712B2/ja
Priority to US10/832,085 priority patent/US7746930B2/en
Publication of JP2004328633A publication Critical patent/JP2004328633A/ja
Application granted granted Critical
Publication of JP3968712B2 publication Critical patent/JP3968712B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/523Motion estimation or motion compensation with sub-pixel accuracy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/533Motion estimation using multistep search, e.g. 2D-log search or one-at-a-time search [OTS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/56Motion estimation with initialisation of the vector search, e.g. estimating a good candidate to initiate a search

Description

【0001】
【発明の属する技術分野】
本発明は、動き予測補償装置及び動き予測補償方法に関し、例えば所定の符号化方式により符号化する符号化装置に適用して好適なものである。
【0002】
【従来の技術】
【0003】
【従来の技術】
従来、画像符号化装置は、外部から供給される動画像データに対して所定の画像符号化方式に準拠した符号化処理を施すことにより、当該動画像データのデータ量を削減した符号化データを生成するようになされている。
【0004】
かかる画像符号化方式としては、ISO/IECの符号化専門家グループ(MPEG(Moving Picture Experts Group)により汎用画像の符号化を目的として標準化されたMPEGと呼ばれる画像符号化方式と、ITU団体によりテレビ会議用画像の符号化を目的として標準化されたH.26x(H.261,H.263,…)と呼ばれる画像符号化方式とが知られている。
【0005】
また近年における携帯電話機等の携帯端末装置の普及等により、一段と高い符号化効率を実現するための画像符号化方式の必要性が示唆されており、これに対応すべく現在では、MPEGとITU団体とによって、JVT(Joint Model ofEnhanced-Compression Video Coding)と呼ばれる画像符号化方式(以下、これをJVT符号化方式と呼ぶ)の標準化が進められている。
【0006】
このJVT符号化方式においては、連続するフレーム(動画像)のうち対象フレームの動き量を、当該対象フレームに対して未来又は過去の参照フレームを用いて予測する処理(以下、これを動き予測補償処理と呼ぶ)を行う場合、図11に示すように、当該予測対象の画素ブロック(以下これを動き補償ブロックと呼ぶ)のブロックサイズとして、図16に示すように、縦横16×16、縦横8 ×16画素、縦横16×8 画素、あるいは縦横8 ×8 画素の4種類のブロックサイズ毎にそれぞれ動きベクトルを探索することができ、これらブロックサイズの動き補償ブロックごとにそれぞれ独立して動きベクトルを持つことができる。
【0007】
これに加えて館横8×8のブロックサイズでなる動き補償ブロックについては、さらに、縦横8 ×8 画素、縦横4 ×8 画素、縦横8 ×4 画素、又は縦横4 ×4 画素の4種類のブロックサイズ毎にそれぞれ動きベクトルを探索することができ、これらブロックサイズの動き補償ブロックについてもそれぞれ独立して動きベクトルを持つことができる。
【0008】
この場合、JVT符号化方式においては、フレーム内のマクロブロック分割した後、これらマクロブロックについて、各種ブロックサイズでなる動き補償ブロックに順次変更しながら動きベクトルを探索することにより、最大16つの動きベクトルを持つことが可能である(例えば非特許文献1参照)。
【0009】
またJVT符号化方式においては、例えば図12に示すように、対象フレームOF内における動き補償ブロックを複数の参照フレームSF2及びSF5を用いて動き予測補償処理を実行したり、対象フレームOF内において互いに異なる位置の動き補償ブロックに対して別々の参照フレームSF2及びSF4用いて動き予測補償処理を実行することができ、これら参照され得る複数の参照フレームSF1〜SF5をマルチリファレンスフレームと呼んでいる(例えば非特許文献1参照)。
【0010】
【非特許文献1】
DRAFT ISO/IEC 1/4 496−10:2002(E)
【0011】
【発明が解決しようとする課題】
ところで、かかるJVT符号化方式に準拠した符号化装置においては、全てのマクロブロックについて、各ブロックサイズの動き補償ブロック毎に順次変更しながら複数の参照フレームを用いて動きベクトルを探索していることにより、既に標準化されている符号化方式に比して動き予測補償処理における処理負荷が増大してしまう。
【0012】
また、既に標準化されている符号化方式に準拠した符号化装置であっても、一般には動き予測補償処理が符号化処理の中で最も処理負荷を要している。
【0013】
従って、この動き予測補償処理の処理負荷を、予測精度を低下させることなく低減することができれば、符号化処理全体としての処理効率を向上することができるものと考えられる。
【0014】
本発明は以上の点を考慮してなされたもので、符号化処理全体としての処理効率を向上し得る動き予測補償装置及びその方法を提案しようとするものである。
【0015】
【課題を解決するための手段】
かかる課題を解決するため本発明は、連続するフレームのうち対象フレームを分割してなる複数の画素ブロックそれぞれの動き量を、当該対象フレームに対して未来又は過去のフレームでなる参照フレームを用いて予測補償する場合、各画素ブロックのうち予測対象の画素ブロックとなる対象画素ブロックのアドレスを検出し、そのアドレスに応じて、参照フレームにおける対象画素ブロックに対する動きベクトルの探索範囲として、第1の探索範囲又は当該第1の探索範囲よりも狭い第2の探索範囲を決定し、対象画素ブロックに隣接する周囲の画素ブロックに基づいて生成した動きベクトルの予測値を中心として、当該探索範囲内から動きベクトルを探索する。
また動きベクトルの予測値を探索範囲の中心としたとき、対象画素ブロックの位置に対応する参照フレーム上の画素ブロックの位置が探索範囲に含まれていない場合には予測値を、当該位置が探索範囲に含まれるまでにずらす補正をし、第2の探索範囲を決定した場合には、その予測値の補正を停止させるようにした。
【0016】
この予測補償では、第1の動き探索範囲よりも狭い第2の探索範囲で動きベクトルを探索する分だけ処理負荷を低減することができると共に、当該予測ブロック周辺の動きの傾向を反映した予測値を中心として探索している分だけ予測精度の低下を防止することができる。
【0017】
これに加えて、予測補償では、対象画素ブロックの位置に対応する参照フレーム上の画素ブロックの位置が探索範囲に含まれていない場合には、その位置が探索範囲に含まれまで予測値をずらす分だけ、予測精度の低下をより防止することができ、また、第1の探索範囲を決定した場合にだけ予測値をずらすので、第2の探索範囲を探索する際の処理負荷を抑えることができる。
【0018】
このように予測精度の低下を防止しながら処理負荷を低減するようにしたことで、符号化処理全体としての処理効率を向上し得る動き予測補償装置及びその方法を実現できる。
【0019】
【発明の実施の形態】
(1)JVT符号化方式の概要
JVT符号化方式においては、フレーム内をマクロブロックに分割した後、図11において上述したように当該マクロブロック以下のブロックサイズでなる各種動き補償ブロック毎に順次変更しながら動き予測補償処理を実行するように規定されている。
【0020】
この動き補償予測処理としては、動き補償ブロックに対する動きベクトルを検出する処理(以下、これを動き予測処理と呼ぶ)と、当該検出された動きベクトルに応じて動き補償ブロックの画素をシフトさせる処理(以下、これを動き補償処理と呼ぶ)とに大別することができる。
【0021】
そしてJVT符号化方式においては、かかる動き補償処理を、1/4画素精度及び1/8画素精度でそれぞれ実行することができるようになされている。
【0022】
ここで、図1を用いて、輝度成分信号に対する1/4画素精度の動き補償処理について説明する。この図1では、斜線のブロックを整数画素として表し、斜線のないブロックを1/2画素として表している。
【0023】
JVT符号化方式においては、1/2画素の画素値を生成するためにFIRフィルタを採用し、次式、
【0024】
【数1】
Figure 0003968712
【0025】
【0026】
でなる6tapのフィルタ係数が定義されている。
【0027】
図1において、1/2画素の画素値b、hに関しては、(1)式のフィルタ係数を用いて、次式
【0028】
【数2】
Figure 0003968712
【0029】
のように、積和演算を行った後、
【0030】
【数3】
Figure 0003968712
【0031】
のようにして算出する。このClip1は(0、255)間でのクリップを示す。
【0032】
また画素値jに関しては、b、hと同様の手法で画素値aa、bb、cc、dd、ff、gg、hhを生成した後に、次式
【0033】
【数4】
Figure 0003968712
【0034】
のように積和演算を行い、さらに次式、
【0035】
【数5】
Figure 0003968712
【0036】
のようなクリップ処理によって算出される。
【0037】
また画素値a、c、d、n、f、i、k、qに関しては、次式、
【0038】
【数6】
Figure 0003968712
【0039】
のように、整数画素の画素値と、1/2画素の画素値の線形内挿により算出する。
【0040】
また画素値e、g、p、rに関しては、次式、
【0041】
【数7】
Figure 0003968712
【0042】
のように1/2画素の画素値を用いた線形内挿により算出する。
【0043】
一方、色差信号に対する動き補償処理については、図2に示すように、1/4画素精度の動き補償処理及び1/8画素精度の動き補償処理の場合ともに、次式、
【0044】
【数8】
Figure 0003968712
【0045】
のような線形内挿により算出される。
【0046】
次に、JVT符号化方式に規定される動き予測処理について説明する。
この動き予測処理により生成される動きベクトル情報は、予測対象の動き補償ブロックに隣接する周辺の動き補償ブロックに対して既に検出された動きベクトルに基づいて得られる予測値と、予測対象の動き補償ブロックに対する動きベクトルとの差分情報として表される。
【0047】
ここで、図3を用いて、動き補償ブロックEに対する動きベクトルの予測値の生成方法を説明する。なお図3に記述したアルファベットについては、図1に記述したアルファベットとの関連性はない。
【0048】
図3において、動き補償ブロックCが当該ピクチャ内若しくは当該スライス内に存在しない場合又は当該マクロブロック内の、復号順序の関係で、その情報が”available”ではない場合、動き補償ブロックDに関する動きベクトルの値、及び、参照フレームインデックスに基づいて予測値を生成する。
【0049】
動き補償ブロックB、C及びDが全て当該ピクチャ内若しくは当該スライス内に存在しない場合には、動き補償ブロックDに関する動きベクトルの値、及び、参照フレームインデックスに基づいて予測値を生成する。
【0050】
上述のケースに該当しない場合、隣接マクロブロックがイントラ符号化される場合又は当該ピクチャ内若しくは当該スライス内に存在しない場合には、動き補償ブロックEに対する動きベクトルの値は0であり、当該動き補償ブロックEは、動き補償ブロックA、B、C及びDと異なる参照フレームを参照するものとみなされる。
【0051】
また動き補償ブロックA、B及びCのうち、いずれか1つの動き補償ブロックのみが、動き補償ブロックEと同じ参照フレームを参照する場合には、当該動き補償ブロックEと同じ参照フレームを参照する動き補償ブロックA、B又はCの動きベクトルを予測値として生成する。
【0052】
さらに上述のケースいずれにも該当しない場合には、動き補償ブロックA、B及びに対する動きベクトルのメディアン(median)を予測値として生成するようになされている。
【0053】
次に、図4を用いて、JVT符号化方式に規定される動きベクトルの探索手法について、まずは整数画素精度の動き探索について説明する。この図4では、「0」〜「24」を整数画素として表すと共に、動き探索の際の探索順序を表している。
【0054】
図4において、画素0は、動きベクトル探索の中心を示す。JVT符号化方式においては、図3について上述した手法により生成される予測値を探索の中心とし、この中心かららせん状に±Search_Range分の探索を行うようになされている。
【0055】
この場合、JVT符号化方式においては、小数画素精度でも動き探索することができるようになされており、この小数画素精度の動き探索について図5を用いて説明する。この図5では、「A」〜「I」を整数画素として表し、「1」〜「8」を1/2画素として表し、「a」〜「h」を1/4画素として表している。なお図5記述したアルファベット及び数字は、他の図中に記述したアルファベット及び数字との関連性はない。
【0056】
図5において、整数画素精度の動き探索により、画素Eが最適な動きベクトルであると検出されたとした場合、当該画素Eの周囲の1/2画素1〜8を番号順に探索し、この探索の結果例えば画素7が最適な動きベクトル情報として検出された場合、当該画素Eの周囲の1/4画素a〜hを番号順に探索するようになされている。
【0057】
このようにしてJVT符号化方式における動き予測補償処理では、全てのマクロブロックについて、各ブロックサイズの動き補償ブロック毎に順次変更しながら複数の参照フレームを用いて動きベクトルを探索する分、当該動き予測補償処理における処理負荷が増大してしまうため、本発明では、極力画質を劣化することなく動き予測補償処理の処理負荷を低減するようになされている。
【0058】
以下図面について、本発明の一実施の形態を詳述する。
【0059】
(2)画像符号化装置の構成
図6において、1は全体としてJVT符号化方式に準拠した画像符号化装置を示し、複数のフレームによって形成された動画像のデータ(以下、これを動画像データと呼ぶ)D1を外部から入力し、当該動画像データD1のデータ量を効率よく削減するようになされている。
【0060】
具体的にこの画像符号化装置1は、外部から供給された動画像データD1を画像並替バッファ2に一旦記憶し、当該動画像データD1の各フレームをGOP(Group Of Pictures) 構造に応じて符号化順に並び替た後、順次フレームデータD2として画像並替バッファ2から読み出す。
【0061】
ここで、画像符号化装置1は、画像並替バッファ2から読み出したフレームデータD2の画像タイプがI(Intra) フレームである場合、当該フレームデータD2をイントラ予測部4に送出する。
【0062】
イントラ予測部4は、フレームデータD2に基づくフレーム内を基準単位である画素ブロック(以下、これをマクロブロックと呼ぶ)に分割した後、過去のマクロブロックを用いて予測対象のマクロブロックの画素値を予測する処理を順次実行し、この処理の結果順次得られる当該画素値を予測データD3として加算器3に送出する。
【0063】
これに対して画像符号化装置1は、画像並替バッファ2から読み出したフレームデータD2の画像タイプがIフレーム以外である場合、当該フレームデータD2を動き予測補償処理部5に送出する。
【0064】
動き予測補償処理部5は、フレームデータD2に基づくフレーム内をマクロブロックに分割した後、当該フレームよりも未来又は過去の複数の参照フレーム(図12)を用いて、図3において上述した各種ブロックサイズでなる動き補償ブロック毎に複数の参照フレームを用いて動き予測補償処理を実行する。
【0065】
この場合、動き予測補償処理部5は、予測対象の動き補償ブロックと、当該動き補償ブロックの画素値に最も近似する所定の参照フレーム内の動き補償ブロックとの間における動き量を動きベクトルとして検出し、当該検出した動きベクトルと、図11において上述したようにして当該動き補償ブロックに隣接する動き補償ブロックに基づいて生成した予測値(例えばmedian値)との差分値を求める動き予測処理を実行し、当該差分値を動きベクトル情報MVDとして可逆符号化部9に順次送出する。
【0066】
また動き予測補償処理部5は、動きベクトルに応じて動き補償ブロックの画素をシフトさせる動き補償処理を実行し、当該シフトさせた画素の画素値を予測データD4として加算器3に順次送出するなされている。
【0067】
加算器3は、このようにして画像タイプに応じた予測方式により予測された結果、イントラ予測部4又は動き予測補償処理部5より順次与えられる予測データD3又はD4を、対応するフレームデータD2から減算することにより予測残差を算出し、この予測残差を差分データD5として直交変換部6に送出する。
【0068】
直交変換部6は、差分データD5に対して離散コサイン変換等の直交変換処理を施すことにより直交変換係数データD6を生成し、これを量子化部7に送出する。
【0069】
量子化部7は、直交変換係数データD6に対して、レート制御部8による所定のフィードバック制御処理に従って与えられる量子化パラメータD8に応じて量子化処理を施すことにより量子化データD7を生成し、これを可逆符号化処理部9及び逆量子化部11にそれぞれ送出する。
【0070】
可逆符号化処理部9は、量子化データD7及び対応する動きベクトル情報MVDに対して、可変長符号化や算術符号化等の可逆符号化処理を施すことにより符号化データD9を生成し、これを蓄積バッファ10に蓄積する。この符号化データD9は、所定のタイミングの際に蓄積バッファ10から読み上げられ、レート制御部8又は外部に送出される。
【0071】
このようにして画像符号化装置1は、空間的あるいは時間的に隣接する画素の相関が高いことを利用した各種処理を実行することにより、動画像データD1に比してデータ量を大幅に削減した符号化データD9を生成することができるようになされている。
【0072】
一方、逆量子化部11は、量子化部7から与えられる量子化データD7に対して逆量子化処理を施すことにより、直行変換係数データD6に相当する直交変換係数データD11を復元し、これを逆直交変換部12に送出する。
【0073】
逆直交変換部12は、直交変換係数データD11に対して逆直交変換処理を施すことにより、差分データD5に相当する差分データD12を復元し、これを加算器13に送出する。
【0074】
加算器13は、差分データD12に対応する予測データD3又はD4を順次加算することにより、フレームデータD2に相当するフレームデータD13を順次局部再生し、これをデブロックフィルタ14に送出する。
【0075】
デブロックフィルタ14は、フレームデータD13に基づくフレームについて、動き予測補償処理部5等によって分割された互いに隣接するブロック間に歪みが生じている場合には、当該歪み部分をフィルタリングすることにより滑らかにした後、必要に応じて図12で上述したマルチリファレンスフレームの一部となる参照フレームのデータ(以下、これを参照フレームデータと呼ぶ)D14としてフレームメモリ15に記憶する。この参照フレームデータD14は、動き予測補償部5によって読み上げられ、フレームデータD2における各動き補償ブロックの画素値を順次予測する際に用いられる。
【0076】
このようにこの画像符号化装置1では、処理対象のフレームに属する動き補償ブロックの画素値を時間的に異なる複数の参照フレームを用いて予測することにより、例えば処理対象のフレーム直前の参照フレームがカメラフラッシュ等により予測困難なフレームとなる場合であっても、それ以外のフレームを参照フレームとして用いて予測することができ、この結果、当該予測の際の無駄な演算量を回避できる分だけ符号化効率を向上することができるようになされている。
【0077】
これに加えてこの画像符号化装置1では、予め歪みを除去して滑らかにした参照フレームを用いて予測することにより、当該歪みによる予測精度の低下を回避することができ、この結果、当該予測の際の無駄な演算量を回避できる分だけ符号化効率を向上することができるようになされている。
【0078】
(3)動き予測補償処理部5の動き予測処理
次に、動き予測補償処理部5における動き予測処理の処理内容について説明する。
【0079】
この動き予測処理の処理内容を機能的に分類すると、図7に示すように、予測対象の動き補償ブロック(以下、これを予測ブロックと呼ぶ)の動きベクトル情報MVDを生成する動き予測部20と、当該予測ブロックを含むマクロブロックのアドレスを検出するマクロブロックアドレス検出部21と、当該予測ブロックの動きベクトルを探索する際の範囲(以下、これを動き探索範囲と呼ぶ)を決定する探索範囲決定部22とに分けることができる。以下、動き予測補償部20、マクロブロックアドレス検出部21及び探索範囲決定部22の各処理について説明する。
【0080】
(3−1)動き予測部20の処理
動き予測部20は、画像並替バッファ2(図6)から与えられたフレームデータD2と、このときフレームメモリ15に記憶されている1又は2以上の参照フレームデータD14とを内部メモリに記憶した後、当該フレームデータD2に基づくフレームと、参照フレームデータD14に基づく参照フレームとをマクロブロックに分割する。
【0081】
この状態において動き予測部20は、フレーム内における各マクロブロックについて、順次、図11に示した各ブロックサイズでなる動き補償ブロックそれぞれに対する動きベクトル情報MVDを複数の参照フレーム(図12)を用いて生成するようになされている。
【0082】
実際上、動き予測部20は、例えばマクロブロックと同一のブロックサイズのある予測ブロックに対する動きベクトル情報MVDを生成する場合、まず、予測ブロックに対応するブロックサイズでなる周囲の動き補償ブロックに対して既に検出された動きベクトルに基づいて、図3において上述したようにして、当該予測ブロックに対する動きベクトルの予測値を生成する。従ってこの予測値は、予測ブロック周辺の動画像ブロックにおける動きの傾向を反映した値となる。
【0083】
そして動き予測部20は、この予測値を所定の動き探索範囲の中心位置(以下、これをサーチセンタと呼ぶ)としたとき、予測ブロックの位置に対応する参照フレーム上の画素ブロックの位置(即ち動きベクトルが(0,0)となる値である。以下、これを動きゼロ位置と呼ぶ)が動き探索範囲内に含まれている場合には当該予測値をそのままサーチセンタとして決定する。
【0084】
これに対して動き予測部20は、予測値を動き探索範囲のサーチセンタとしたとき、動きゼロ位置が動き探索範囲内に含まれていない場合には、当該動きゼロ位置が動き探索範囲内に含まれるまで予測値をずらす処理(以下、これを予測値補正処理と呼ぶ)を実行し、当該補正した予測値(以下、これを補正予測値と呼ぶ)をサーチセンタとして決定する。
【0085】
次いで動き予測部20は、このようにして決定したサーチセンタから動き探索範囲内において、予測ブロックの画素値と差分の絶対値総和が最小となる動き補償ブロックとの間における動きベクトル等、当該予測ブロックの画素値に最も近似する動き補償ブロックとの間における動きベクトルを最適な動きベクトルとして検出した後、当該検出した動きベクトルと、当該予測ブロックの予測値との差分値を動きベクトル情報MVDとして生成し、これを可逆符号化処理部9(図6)に送出するようになされている。
【0086】
このようにして動き予測部20は、動きゼロ位置が探索範囲内に常に含まれた状態で動きベクトルを探索することにより、予測ブロック周囲における実際の動きが複数の方向へ分散している場合であっても、当該予測ブロックに対する動きベクトルを精度良く検出することができるようになされている。
【0087】
(3−2)マクロブロックアドレス検出部21の処理
マクロブロックアドレス検出部21は、動き予測部20の内部メモリに記憶されるフレームデータD2を常時監視するようになされており、図8に示すように、当該フレームデータD2に基づくフレームの左上角を基準として、当該動き予測部20において現在処理対象の予測ブロックを含むマクロブロックの水平方向(x方向)及び垂直方向(y方向)のアドレス(MB_x,MB_y)を検出し、当該検出結果をデータ(以下、これをアドレス検出データと呼ぶ)D21として探索範囲決定部22に送出する。
【0088】
(3−3)探索範囲決定部22の処理
探索範囲決定部22は、アドレス検出データD21に表されるアドレス(MB_x,MB_y)に基づいて、次式、
【0089】
【数9】
Figure 0003968712
Figure 0003968712
【0090】
のように、当該アドレス(MB_x,MB_y)に応じた関数fによって、予め設定された第1の動き探索範囲又は当該第1の動き探索範囲よりも範囲の狭い第2の動き探索範囲を決定する。
【0091】
具体的に探索範囲決定部22は、(9)式に定義される関数fとして、2で割った際の剰余を%2とすると、次式、
【0092】
【数10】
Figure 0003968712
【0093】
若しくは、次式、
【0094】
【数11】
Figure 0003968712
【0095】
を用いる。
【0096】
そして探索範囲決定部22は、この(10)式及び(11)式による計算の結果、x方向のMBアドレス(MB_x)と、y方向のMBアドレス(MB_x)とを2で割った際の剰余%2が、いずれも割り切れた場合(即ち「0」)若しくは割り切れなかった場合(即ち「1」)には第1の探索範囲SR1を決定し、これに対してかかる場合以外には第2の探索範囲SR2を決定し、当該決定を探索範囲決定データD22として動き予測部20に送出するようになされている。
【0097】
従って探索範囲決定部22は、図9に示すように、フレーム内の各マクロブロックを、水平方向(x方向)及び垂直方向(y方向)にそれぞれ1画素おきに第1の探索範囲SR1よりも狭い第2の探索範囲SR2で動き予測部20に探索させ得るようになされている。
【0098】
この結果、動き予測補償部20では、1画素おきに第1の探索範囲SR1よりも狭い第2の探索範囲SR2で動き予測処理を実行することができる分、マクロブロックについて各ブロックサイズの予測ブロック毎に動きベクトルを順次探索する際の処理負荷を低減することができるようになされている。
【0099】
その際、動き予測補償部20では、予測ブロック周辺の動きの傾向を反映した予測値をサーチセンタとして動き探索範囲SR1又はSR2内について探索するため、予測ブロックの画素の動きが大きい場合であっても動きベクトルを検出することができる分、第1の動き探索範囲SR1よりも狭い第2の動き探索範囲SR2で動きベクトルを探索しても予測精度の低下させることなく探索することができるようになされている。
【0100】
この実施の形態の場合、探索範囲決定部22は、上述の(10)式及び(11)式により第2の探索範囲SR2を決定したときには、当該動き予測部20による予測値補正処理を停止させるための制御データD23を生成し、これを探索範囲決定データD22と共に動き予測部20に送出するようになされている。
【0101】
この結果、動き予測補償部20では、予測値を第2の動き探索範囲SR2のサーチセンタとしたとき、当該動き探索範囲SR2内に予測ブロックの画素値が含まれていない場合であっても、予測値補正処理を実行しない分、動きベクトルを探索する際の処理負荷を低減することができるようになされている。
【0102】
この場合、動き予測補償部20では、図9に示すように、動き探索範囲SR2で探索した各動き補償ブロックを含むマクロブロックの周囲のマクロブロックについては、当該動き探索範囲SR2よりも広い動き探索範囲SR1で動きベクトルを探索しているため、当該動き探索範囲SR2で予測値補正処理を実行しなくてもその周囲の第1探索範囲SR1でカバーできるようになされている。
【0103】
このようにして動き予測補償処理部5は、マクロブロックの画素値を予測する際に、当該予測対象のマクロブロックのアドレスに応じて、動き探索範囲SR1、SR2及び予測値補正処理の停止の有無を適応的に切り替えることにより、予測精度を低下させることなく動き予測処理の処理負荷を低減することができるようになされている。
【0104】
(4)作用及び効果
以上の構成において、この動き予測補償処理部5は、予測ブロックに含まれるマクロブロックのアドレス(MB_x,MB_y)を検出し、当該検出したアドレス(MB_x,MB_y)に応じて動き探索範囲SR1又はSr2を決定する。
【0105】
この状態において動き予測補償処理部5は、予測ブロックに対応するブロックサイズでなる周囲の動き補償ブロックに対して既に検出された動きベクトルに基づいて予測値を生成し、この予測値を中心として動き探索範囲SR1又はSr2内から動きベクトルを探索するようにした。
【0106】
従ってこの動き予測補償処理部5では、第1の動き探索範囲SR1よりも狭い第2の探索範囲SR2で動き予測処理を実行することができる分、マクロブロックについて各ブロックサイズの動き補償ブロック毎に動きベクトルを順次探索する際の処理負荷を大幅に低減することができる。
【0107】
これに加えて動き予測補償処理部5では、予測ブロック周辺の動きの傾向を反映した予測値をサーチセンタとして動きベクトルを探索する分、予測ブロックの画素の動きが大きい場合であっても動きベクトルを検出することができるため、第1の動き探索範囲SR1よりも狭い第2の動き探索範囲SR2で動きベクトルを探索しても予測精度の低下を防止することができる。
【0108】
また、動き予測補償処理部5は、水平方向及び垂直方向のアドレス(MB_x,MB_y)値が共に偶数又は奇数でなかった場合にのみ第2の探索範囲SR2を決定するようにしたことにより、簡易な計算量で探索範囲Sr1又はSR2を決定することができる。
【0109】
この場合、第1の探索範囲SR1と、当該第1の探索範囲SR1よりも狭い第2の探索範囲SR2とを交互に決定できるため、第2の探索範囲SR2が狭くてもその範囲よりも広い周囲の第1探索範囲SR1でカバーできる分だけ、当該第1の探索範囲SR1と、第2の探索範囲SR2との格差を比較的大きくすることができ、この結果、予測精度の低下を抑えながら第2の探索範囲SR2を探索する際の処理負荷を一段と低減できる。
【0110】
さらに、この動き予測補償処理部5は、第2の探索範囲SR2を決定した場合には、動き予測部20による予測値補正処理を停止させるようにした。
【0111】
従ってこの動き予測補償処理部5では、予測値補正処理を実行しない分、第2の探索範囲SR2を探索する際の処理負荷を一段と低減することができる。
【0112】
以上の構成によれば、予測ブロックに含まれるマクロブロックのアドレス(MB_x,MB_y)に応じて動き探索範囲SR1又はSr2を決定し、当該予測ブロックに対応する周囲の動き補償ブロックに基づいて生成した予測値を中心として動き探索範囲SR1又はSr2内から動きベクトルを探索するようにしたことにより、第1の動き探索範囲SR1よりも狭い第2の探索範囲SR2で動き予測処理を実行することができる分だけ処理負荷を低減することができると共に、当該予測ブロック周辺の動きの傾向を反映した予測値をサーチセンタとして動き探索している分だけ予測精度の低下を防止することができ、かくして、符号化処理全体としての処理効率を向上することができる。
【0113】
(5)他の実施の形態
上述の実施の形態においては、対象画素ブロックのアドレスを検出するアドレス検出手段として、動き予測部20の内部メモリに記憶されるフレームデータD2に基づくフレームの左上角を基準として、当該動き予測部20において現在処理対象の予測ブロックを含むマクロブロックのアドレス(MB_x,MB_y)を検出するようにした場合について述べたが、本発明はこれに限らず、当該左上角以外を基準として予測ブロックを含むマクロブロックのアドレス(MB_x,MB_y)を検出するようにしても良く、またマクロブロック以外の画素ブロックを検出するようにしても良い。
【0114】
また上述の実施の形態においては、対象画素ブロックのアドレスに応じて第1の探索範囲又は第2の探索範囲を決定する探索範囲決定手段として、フレーム内の水平方向及び垂直方向それぞれ1画素おきに交互に第1の探索範囲SR1又は第2の探索範囲SR2を決定する探索範囲決定部22を本発明に適用するようにした場合について述べたが、本発明はこれに限らず、図10に示すように、フレームの周囲のマクロブロックに対して第1の探索範囲SR1を決定し、それ以外のマクロブロックに対して第2の探索範囲SR2を決定するようにしても良い。この場合、上述の実施の形態の場合に比して第1の探索範囲SR1又は第2の探索範囲SR2の切り替えが少ない分だけ処理負荷を低減することができる。
【0115】
さらに上述の実施の形態においては、対象画素ブロックのアドレスに応じて第1の探索範囲又は第2の探索範囲を決定する探索範囲決定手段として、フレーム内の水平方向及び垂直方向それぞれ1画素おきに交互に第1の探索範囲SR1又は第2の探索範囲SR2を決定する探索範囲決定部22を本発明に適用するようにした場合について述べたが、本発明はこれに限らず、スライスの先頭に該当するマクロブロックに対して第1の探索範囲SR1を決定し、それ以外のマクロブロックに対して第2の探索範囲SR2を決定するようにしても良い。この場合、上述の実施の形態の場合に比して第1の探索範囲SR1又は第2の探索範囲SR2の切り替えが少ない分だけ処理負荷を低減することができる。
【0116】
さらに上述の実施の形態においては、対象画素ブロックのアドレスに応じて第1の探索範囲又は第2の探索範囲を決定する探索範囲決定手段として、フレーム内の水平方向及び垂直方向それぞれ1画素おきに交互に第1の探索範囲SR1又は第2の探索範囲SR2を決定する探索範囲決定部22を本発明に適用するようにした場合について述べたが、本発明はこれに限らず、これに加えて、当該アドレスがいずれも「0」(即ち、対象フレーム内の各マクロブロックのうち最初に動き予測補償処理が行われるマクロブロック)の場合にのみ第1の探索範囲SR1よりも広範囲な探索範囲を決定するようにしても良い。このようにすれば、一段と予測精度を向上することができる。
【0117】
さらに上述の実施の形態においては、対象画素ブロックに隣接する周囲の画素ブロックに基づいて生成した動きベクトルの予測値を中心として、探索範囲決定手段により決定された探索範囲内から動きベクトルを探索する動きベクトル探索手段として、当該予測値を探索範囲の中心としたとき、予測ブロックの位置に対応する参照フレーム上の画素ブロックの位置(動きゼロ位置)が第1の探索範囲SR1内に含まれていない場合には当該予測値を補正処理を実行する動き予測部20を本発明に適用するようにした場合について述べたが、本発明はこれに限らず、当該補正処理を実行しないようにしても良い。
【0118】
また本発明は、当該予測値の位置をずらす割合を第1の探索範囲SR1と、第2の探索範囲SR2との格差の割合に応じて変更するようにしても良く、具体的には第1の探索範囲SR1と、第2の探索範囲SR2との格差の割合が大きいほど、予測ブロックの位置に対応する参照フレーム上の画素ブロックの位置(動きゼロ位置)に近づけるようにすれば、的確に予測精度の低下を抑えながら第2の探索範囲SR2を探索する際の処理負荷を低減できる。
【0119】
さらに上述の実施の形態においては、連続するフレームのうち対象フレームを分割してなる複数の画素ブロックそれぞれの動き量を、当該対象フレームに対して未来又は過去の上記フレームでなる参照フレームを用いて予測補償する動き予測補償装置として、JVT符号化方式に準拠した動き予測補償処理を実行する動き予測補償処理部5を本発明に適用するようにした場合について述べたが、本発明はこれに限らず、例えばMPEG2等、この他種々の符号化方式に準拠した動き予測補償処理を実行する動き予測補償装置に本発明を適用することができる。
【0120】
【発明の効果】
上述のように本発明によれば、連続するフレームのうち対象フレームを分割してなる複数の画素ブロックそれぞれの動き量を、当該対象フレームに対して未来又は過去の上記フレームでなる参照フレームを用いて予測補償する場合に、複数の画素ブロックのうち予測対象の画素ブロックとなる対象画素ブロックのアドレスを検出し、当該検出されたアドレスに応じて、参照フレームにおける対象画素ブロックに対する動きベクトルの探索範囲として、第1の探索範囲又は当該第1の探索範囲よりも狭い第2の探索範囲を決定し、対象画素ブロックに隣接する周囲の画素ブロックに基づいて生成した動きベクトルの予測値を中心として、当該決定した探索範囲内から動きベクトルを探索するようにしたことにより、第1の動き探索範囲よりも狭い第2の探索範囲で動きベクトルを探索する分だけ処理負荷を低減することができると共に、当該予測ブロック周辺の動きの傾向を反映した予測値を中心として探索している分だけ予測精度の低下を防止することができ、かくして、符号化処理全体としての処理効率を向上することができる。
【図面の簡単な説明】
【図1】輝度信号成分に対する1/4画素精度の動き補償の説明に供する略線図である。
【図2】色差信号成分に対する1/4画素精度の動き補償の説明に供する略線図である。
【図3】動きベクトルの予測値の生成の説明に供する略線図である。
【図4】動きベクトルの探索順序の説明に供する略線図である。
【図5】小数画素精度の動き探索の説明に供する略線図である。
【図6】画像符号化装置の構成を示すブロック図である。
【図7】動き予測補償処理部の構成を示すブロック図である。
【図8】マクロブロックアドレスの検出の説明に供する略線図である。
【図9】動き探索範囲の決定の説明に供する略線図である。
【図10】他の実施の形態による動き探索範囲の決定の説明に供する略線図である。
【図11】動き補償ブロックの説明に供する略線図である。
【図12】マルチリファレンスフレームの説明に供する略線図である。
【符号の説明】
1……画像符号化装置、5……動き予測補償処理部、15……フレームメモリ、20……動き予測部、21……マクロブロックアドレス算出部、22……探索範囲決定部。

Claims (4)

  1. 連続するフレームのうち対象フレームを分割してなる複数の画素ブロックそれぞれの動き量を、当該対象フレームに対して未来又は過去の上記フレームでなる参照フレームを用いて予測補償する動き予測補償装置において、
    各上記画素ブロックのうち予測対象の上記画素ブロックとなる対象画素ブロックのアドレスを検出するアドレス検出手段と、
    上記アドレス検出手段により検出された上記アドレスに応じて、上記参照フレームにおける上記対象画素ブロックに対する動きベクトルの探索範囲として、第1の上記探索範囲又は当該第1の上記探索範囲よりも狭い第2の上記探索範囲を決定する探索範囲決定手段と、
    上記対象画素ブロックに隣接する周囲の上記画素ブロックに基づいて生成した上記動きベクトルの予測値を中心として、上記探索範囲決定手段により決定された上記探索範囲内から上記動きベクトルを探索する動きベクトル探索手段と
    を具え、
    上記動きベクトル探索手段は、
    上記動きベクトルの上記予測値を上記探索範囲の中心としたとき、上記対象画素ブロックの位置に対応する上記参照フレーム上の上記画素ブロックの位置が上記探索範囲に含まれていない場合には上記予測値を、当該位置が探索範囲に含まれるまでずらす補正をし、
    上記探索範囲決定手段は、
    上記第2の上記探索範囲を決定した場合には、上記動きベクトル検出手段に対する上記予測値の補正を停止させる
    ことを特徴とする動き予測補償装置。
  2. 上記探索範囲決定手段は、
    水平方向及び垂直方向の上記アドレスが共に偶数又は奇数でなかった場合にのみ第2の上記探索範囲を決定する
    ことを特徴とする請求項1に記載の動き予測補償装置。
  3. 連続するフレームのうち対象フレームを分割してなる複数の画素ブロックそれぞれの動き量を、当該対象フレームに対して未来又は過去の上記フレームでなる参照フレームを用いて予測補償する動き予測補償方法において、
    各上記画素ブロックのうち予測対象の上記画素ブロックとなる対象画素ブロックのアドレスを検出する第1のステップと、
    上記第1のステップで検出された上記アドレスに応じて、上記参照フレームにおける上記対象画素ブロックに対する動きベクトルの探索範囲として、第1の上記探索範囲又は当該第1の上記探索範囲よりも狭い第2の上記探索範囲を決定する第2のステップと、
    上記対象画素ブロックに隣接する周囲の上記画素ブロックに基づいて生成した上記動きベクトルの予測値を中心として、上記第2のステップで決定された上記探索範囲内から上記動きベクトルを探索する第3のステップと
    を具え、
    上記第3のステップでは、
    上記動きベクトルの上記予測値を上記探索範囲の中心としたとき、上記対象画素ブロックの位置に対応する上記参照フレーム上の上記画素ブロックの位置が上記探索範囲に含まれていない場合には上記予測値を、当該位置が探索範囲に含まれるまでずらす補正をし、
    上記第2のステップでは、
    上記第2の上記探索範囲を決定した場合には、上記第3のステップにおける上記予測値の補正を停止させる
    ことを特徴とする動き予測補償方法。
  4. 上記第2のステップでは、
    水平方向及び垂直方向の上記アドレスが共に偶数又は奇数でなかった場合にのみ第2の上記探索範囲を決定する
    ことを特徴とする請求項に記載の動き予測補償方法。
JP2003123976A 2003-04-28 2003-04-28 動き予測補償装置及びその方法 Expired - Fee Related JP3968712B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003123976A JP3968712B2 (ja) 2003-04-28 2003-04-28 動き予測補償装置及びその方法
US10/832,085 US7746930B2 (en) 2003-04-28 2004-04-26 Motion prediction compensating device and its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123976A JP3968712B2 (ja) 2003-04-28 2003-04-28 動き予測補償装置及びその方法

Publications (2)

Publication Number Publication Date
JP2004328633A JP2004328633A (ja) 2004-11-18
JP3968712B2 true JP3968712B2 (ja) 2007-08-29

Family

ID=33501713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123976A Expired - Fee Related JP3968712B2 (ja) 2003-04-28 2003-04-28 動き予測補償装置及びその方法

Country Status (2)

Country Link
US (1) US7746930B2 (ja)
JP (1) JP3968712B2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6765964B1 (en) 2000-12-06 2004-07-20 Realnetworks, Inc. System and method for intracoding video data
JP4488805B2 (ja) * 2004-06-25 2010-06-23 パナソニック株式会社 動きベクトル検出装置および方法
JP4495580B2 (ja) * 2004-12-13 2010-07-07 パナソニック株式会社 面内予測装置および面内予測方法
US7580456B2 (en) * 2005-03-01 2009-08-25 Microsoft Corporation Prediction-based directional fractional pixel motion estimation for video coding
JP4708819B2 (ja) 2005-03-14 2011-06-22 キヤノン株式会社 画像処理装置、方法、コンピュータプログラム及び記憶媒体
JP4064973B2 (ja) * 2005-03-23 2008-03-19 株式会社東芝 ビデオエンコーダ及びこれを用いた携帯無線端末装置
JP4534935B2 (ja) * 2005-10-04 2010-09-01 株式会社日立製作所 トランスコーダ、記録装置及びトランスコード方法
WO2008056923A1 (en) * 2006-11-07 2008-05-15 Samsung Electronics Co, . Ltd. Method and apparatus for encoding and decoding based on intra prediction
KR101369224B1 (ko) * 2007-03-28 2014-03-05 삼성전자주식회사 움직임 보상 필터링을 이용한 영상 부호화, 복호화 방법 및장치
JP2008301101A (ja) * 2007-05-30 2008-12-11 Toshiba Corp 動きベクトル検出装置、動きベクトル検出方法および補間フレーム作成装置
JP5169978B2 (ja) * 2009-04-24 2013-03-27 ソニー株式会社 画像処理装置および方法
US8917769B2 (en) 2009-07-03 2014-12-23 Intel Corporation Methods and systems to estimate motion based on reconstructed reference frames at a video decoder
US9654792B2 (en) 2009-07-03 2017-05-16 Intel Corporation Methods and systems for motion vector derivation at a video decoder
US8462852B2 (en) 2009-10-20 2013-06-11 Intel Corporation Methods and apparatus for adaptively choosing a search range for motion estimation
WO2011146451A1 (en) 2010-05-20 2011-11-24 Thomson Licensing Methods and apparatus for adaptive motion vector candidate ordering for video encoding and decoding
JP5721851B2 (ja) 2010-12-21 2015-05-20 インテル・コーポレーション Dmvd処理のシステムおよび方法の改善
ES2877369T3 (es) * 2011-12-16 2021-11-16 Jvc Kenwood Corp Dispositivo de codificación de imagen dinámica, procedimiento de codificación de imagen dinámica, programa de codificación de imagen dinámica, dispositivo de decodificación de imagen dinámica, procedimiento de decodificación de imagen dinámica y programa de decodificación de imagen dinámica
JPWO2013108330A1 (ja) * 2012-01-18 2015-05-11 パナソニックIpマネジメント株式会社 画像復号装置、画像符号化装置、画像復号方法および画像符号化方法
US9769494B2 (en) * 2014-08-01 2017-09-19 Ati Technologies Ulc Adaptive search window positioning for video encoding
WO2017084071A1 (en) * 2015-11-19 2017-05-26 Hua Zhong University Of Science Technology Optimization of interframe prediction algorithms based on heterogeneous computing
RU2666275C1 (ru) * 2017-11-13 2018-09-06 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство и способ кодирования движущегося изображения, долговременный считываемый компьютером носитель записи, на который записана программа кодирования изображения

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0166716B1 (ko) * 1992-06-18 1999-03-20 강진구 블럭 dpcm을 이용한 부호화/복호화방법 및 장치
KR950014343B1 (ko) * 1993-05-20 1995-11-24 한국방송공사 고화질 티브(hdtv)의 화상데이타 움직임 추정방법 및 그 장치
JP3237815B2 (ja) 1996-03-01 2001-12-10 日本電信電話株式会社 動きベクトル探索方法および装置
JP3299671B2 (ja) 1996-03-18 2002-07-08 シャープ株式会社 画像の動き検出装置
US6212237B1 (en) * 1997-06-17 2001-04-03 Nippon Telegraph And Telephone Corporation Motion vector search methods, motion vector search apparatus, and storage media storing a motion vector search program
US6339656B1 (en) * 1997-12-25 2002-01-15 Matsushita Electric Industrial Co., Ltd. Moving picture encoding decoding processing apparatus
JP3646845B2 (ja) * 1998-03-03 2005-05-11 Kddi株式会社 ビデオ符号化装置
JP4035903B2 (ja) 1998-10-22 2008-01-23 ソニー株式会社 動きベクトル検出方法及び装置
KR100446235B1 (ko) * 2001-05-07 2004-08-30 엘지전자 주식회사 다중 후보를 이용한 움직임 벡터 병합 탐색 방법

Also Published As

Publication number Publication date
JP2004328633A (ja) 2004-11-18
US20040264572A1 (en) 2004-12-30
US7746930B2 (en) 2010-06-29

Similar Documents

Publication Publication Date Title
JP3968712B2 (ja) 動き予測補償装置及びその方法
US9451255B2 (en) Image encoding apparatus, image encoding method, image decoding apparatus, and image decoding method
KR100964515B1 (ko) 비디오 인코딩을 위한 비-정수 픽셀 공유
US11375199B2 (en) Interpolation filter for an inter prediction apparatus and method for video coding
US20090245351A1 (en) Moving picture decoding apparatus and moving picture decoding method
US10652570B2 (en) Moving image encoding device, moving image encoding method, and recording medium for recording moving image encoding program
JP2005503695A (ja) ビデオトランスコード方法及び装置
US10349071B2 (en) Motion vector searching apparatus, motion vector searching method, and storage medium storing motion vector searching program
US20080031335A1 (en) Motion Detection Device
JP2001036908A (ja) 動画像圧縮装置
JP2005295215A (ja) 動画像符号化装置
CN112313950B (zh) 视频图像分量的预测方法、装置及计算机存储介质
US20070153909A1 (en) Apparatus for image encoding and method thereof
JP5292355B2 (ja) 信号修正装置、符号化装置、復号装置及びプログラム
JP5171675B2 (ja) 画像処理装置、およびそれを搭載した撮像装置
JP2008311824A (ja) 画像符号化装置および画像符号化プログラム
JP4222274B2 (ja) 符号化モード選択装置及び符号化モード選択プログラム
KR100240620B1 (ko) 양방향의 반화소 움직임 추정을 위한 대칭 탐색 윈도우를 형성하는 방법 및 장치
KR20200134302A (ko) 이미지 처리 장치 및 방법
JP4196929B2 (ja) ノイズ検出装置及びノイズ検出プログラム
WO2022196133A1 (ja) 符号化装置及び方法
JP4533157B2 (ja) 画像復号方法
KR100617177B1 (ko) 움직임 추정 방법
KR100672376B1 (ko) 움직임 보상 방법
JP5720399B2 (ja) 動画像符号化装置、動画像符号化方法、及び動画像符号化プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees