JP3968513B2 - Grain moisture measuring device - Google Patents

Grain moisture measuring device Download PDF

Info

Publication number
JP3968513B2
JP3968513B2 JP2002190404A JP2002190404A JP3968513B2 JP 3968513 B2 JP3968513 B2 JP 3968513B2 JP 2002190404 A JP2002190404 A JP 2002190404A JP 2002190404 A JP2002190404 A JP 2002190404A JP 3968513 B2 JP3968513 B2 JP 3968513B2
Authority
JP
Japan
Prior art keywords
grain
temperature
moisture
grains
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002190404A
Other languages
Japanese (ja)
Other versions
JP2004037101A (en
Inventor
定和 藤岡
正幸 近本
清明 水津
伸治 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Original Assignee
Iseki and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2002190404A priority Critical patent/JP3968513B2/en
Publication of JP2004037101A publication Critical patent/JP2004037101A/en
Application granted granted Critical
Publication of JP3968513B2 publication Critical patent/JP3968513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、単粒毎に測定する穀物の水分測定装置に関する。
【0002】
【従来の技術】
従来、測定環境湿度の影響を演算式に組み込む湿度補正方法が提案されている(例えば、特開平6−27062号公報)。しかしながら単粒水分測定装置にあっては、最初の測定粒と最後の測定粒とでは測定する環境湿度に曝される時間が異なり、時々刻々環境湿度の影響を受け,上記の湿度補正方法では正確な補正にならず精度不良を来たしている。特に単粒水分計においては、測定精度を確保するため例えば100粒〜300粒の測定値を平均化するので測定に数分の時間を要するため、上記の傾向は顕著である。
【0003】
【発明が解決しようとする課題】
測定に供された単粒水分値によっては測定待機中に吸湿あるいは逆の失湿でその変動量は場合によって変動するが、この変動の影響を少なくし、精度の高い測定を行わせようとするものである。
【0004】
【課題を解決するための手段】
上記課題を解決するために、本発明は次のような技術的手段を講じた。
即ち、請求項1に記載の発明は、一対の電極ロールからなり、相互に逆回転しながら穀物を圧砕しその電極ロール間で生じた電気的特定値から当該穀物の水分値に換算する穀物水分測定装置であって、複数の単粒穀物の換算水分値を測定し、横軸には当該測定粒順を対応させると共に縦軸に個々の換算水分値を対応させ、これら換算水分値の回帰式を演算する手段を設け、この回帰式の縦軸との交点(切片)を求めて平均水分値として採用する制御手段を備える穀物水分測定装置の構成とする。
【0005】
これによって、穀物を順次取り入れて水分測定しその水分値に基づいて横軸に測定粒順を対応させ、縦軸には検出水分値を対応させると、所定粒数の測定時点で回帰式を演算でき、この回帰式の縦軸との交点を求めて平均水分値とするもので、測定初期の段階での水分状況を知ることができる。
0006
0007
0008
0009
0010
【発明の効果】
よって、請求項1に係る発明は、回帰式の縦軸との交点を求めて平均水分値とするもので、測定初期の段階での水分状況を知ることができるから、測定初期の状態での水分値となって、湿度の影響の少ない状態での水分値となって水分測定精度を向上できる。
0011
【0012】
【発明の実施の形態】
この発明の一実施の形態を図面に基づき説明する。1は穀物乾燥装置の機枠で、内部には貯留室2、乾燥室3、集穀室4の順に積み重ねられ、外部に設ける昇降機5の駆動によって穀物を循環させながら、乾燥室3部でバーナ6燃焼と吸引ファン7とにより発生する熱風を浴びせて乾燥する公知の形態である。
【0013】
8は繰り出しドラムで正逆に回転しながら所定量の穀物を流下させる。9は上記昇降機5に通じる下部移送装置、10は昇降機5上部側に接続する上部移送装置で、貯留室2上部の拡散盤11に穀物供給できる。バーナ6や穀物循環機構等は、乾燥制御に必要な制御プログラムや各種データ等を記憶するメモリを備えるコンピュータによって行なわれる。即ち、操作盤12には液晶形態の表示部13を設け、該表示部13の下縁に沿って4個の押しボタン形態のスイッチ14〜17、及びやや離れて非常停止スイッチ18を配設している。該スイッチ14〜17はその機能が表示部13に表示されるもので、図例では、順に張込・乾燥・排出・通風の各運転用スイッチに構成されるが、表示部13の画面変更に従って異なる機能を具備せしめ得る構成である。
【0014】
内蔵の制御部は操作盤12面のスイッチ情報や乾燥機機枠1各部に配設したセンサ類からの検出情報等を受けて必要な比較演算のもと、バーナ燃焼量の制御,穀物循環系の起動・停止制御,表示部13の表示内容制御等を行う。上記操作盤12のスイッチ類は、張込・乾燥・排出・通風の各設定のほか、穀物種類、設定水分(仕上げ水分)、張込量、タイマ増・減等を設定できる。
【0015】
図5は制御ブロック図を示し、上記操作盤12を有する制御ボックスに内蔵するコンピュータの演算制御部19には上記スイッチ類からの設定情報のほか、水分計20検出情報、昇降機5の投げ出し部に設ける穀物流れ検出器21の穀物検出情報、熱風温度検出情報等が入力される。一方出力情報としては、バーナ6の燃焼系22信号、例えば燃料供給信号,その流量制御信号、あるいは上下移送螺旋,昇降機5,繰出バルブ8等の穀物循環系モータ23制御信号、吸引ファン7モータ制御信号,各表示部24への表示出力等がある。
【0016】
昇降機5はバケット式で、無端ベルト30に多数のバケット31,31…を取り付け、外周を側壁5aにより覆った構造で、バケット31により集穀室4より出る穀粒を掬い上げて上昇し貯留室2へと運ぶ。昇降機5の側壁5aの正面内側に、一粒式水分計20の穀粒取り込み部32の前縁をバケット用無端ベルト30のバケット31の近くまで差し込んで設置し、側壁5aの内側で、穀粒取り込み部32の底部排出口下方に、穀粒送り螺旋33の始端部をのぞませる。
【0017】
この穀粒取り込み部32の前縁と穀粒送り螺旋33の始端部は、バケット用無端ベルト30の上昇側と下降側のベルト内側に位置するので、ベルト30やバケット31の移動に支障はない。一粒水分計20の筐体は、フレーム34と、そのフレーム34を覆うカバー35とからなる。このうち、フレーム34は、昇降機5の側面に沿い、昇降機5との間を仕切る底板36と、底板36上に一体的に起立させた仕切板37とからなり、フレーム34に組付けたモータ38,制御部39と機構部40とを当該仕切板37により仕切る。
【0018】
仕切板37にモータ38の駆動軸41を貫通して水平に固定し、この駆動軸41の先端に、はすば歯車42を固定する。上記はすば歯車42とは回転軸心を一致させて順次下位に第2はすば歯車43a,第3はすば歯車43b、第4はすば歯車44a,第5はすば歯車44bを噛合させるものである。そして、第4はすば歯車44aの軸45には第1電極ロール46aを、第5はすば歯車44bの軸47には第2電極ロール46bを夫々固定するものである。
【0019】
上記仕切板37と平行に、いずれも透明の樹脂材からなる中間仕切48と電極ロール取付板49とを、仕切板37から突出すべく一体に成形する取付脚部50,50…に着脱自在にボルト(図示せず)止めにより共締めしている。なお、仕切板37と中間仕切48との間隔は上記取付脚部50の存在によって確保し、中間仕切48と電極ロール取付板49との間隔はこの取付板49と一体成形する幅狭の起立部51によって確保する。従って、前記軸45及び軸47は一端を仕切板37に軸受し、他端を電極ロール取付板49に軸受支持させる構成である。
【0020】
さらに、底板36の所定位置に、穀粒送り螺旋33の回転軸52を挿通し、この回転軸52にはすば歯車53を固定し、駆動軸41のはすば歯車42と直角に噛合する。図8は一粒式水分計を昇降機5内側から見た背面図で、穀粒取り込み部32は、底板36より昇降機5内部に突出し、その上部開口55の開口縁を斜め下方に傾斜させ、開口面積を大きく形成すると共に、この開口55に複数の弾線を並べてその根元を固定することにより、櫛状の異物除去体56を形成している。
【0021】
穀粒取り込み部32の下部は、断面V字状に間隔を狭め、その一側を穀粒送り螺旋33の真上まで延伸し、他側の下端に底部排出口57を形成し、これに穀粒送り螺旋33の先端部を接続する。そして穀粒送り螺旋33と平行で上縁を穀粒取り込み部32の外側に回転自在に軸支した穀粒送り板58を垂設し、バネ59により穀粒送り螺旋33の外周に接するように付勢する。
【0022】
前記穀粒送り螺旋33の終端部の下方に穀粒落下路60を設ける。この穀粒落下路60の上部入口と穀粒送り板58との間に形成される間隙に穀粒飛込防止板(図示せず)を設置してこの間隙を閉鎖している。この穀粒落下路60は、一対の電極ロール46a,46bが斜めに位置してこれらの接近する部分に向けて誘導壁を形成し、穀粒を電極ロール46a,46bの間隙に誘導する。
【0023】
上記電極ロールの一方46aはその外周を円形となし、他方46bはその外周を多角形(例えば6角形)に成形し、外周面をローレット仕上げしている。
なお穀粒落下路60は、電極ロール46a,46bの左右に接近する中間仕切48と電極ロール取付板49とによって形成されるものであるが、その間隔は、両電極ロール46a,46bによる圧砕部付近では圧砕穀粒の侵入を防止しうるよう狭く形成している。すなわち、当該圧砕部付近の間隔が狭くなるよう中間仕切48と電極ロール取付板49の内壁面をやや膨出状に形成するものである。
【0024】
また前記穀粒送り螺旋33は、円柱体の外周に2本の線状突起の間に穀粒の1粒に見合う浅い凹部63を形成し、穀粒送り螺旋33の先端の一定範囲を除き、上記2本の線状突起の外側を断面台形に切削して螺旋状の深い溝64を形成する。
【0025】
65は、傾斜状に配設する電極ロール46a,46bの下方に沿って設ける圧砕済穀粒の排出案内部で、この圧砕済穀粒を昇降機内空間へ還元案内する構成である。この排出案内部65は、前記電極ロール取付板48と一体成形される起立部51と同様に成形される構成である。
【0026】
前記制御部39には、回路基板66上に各種制御回路を構成するものであるが、この基板66には数ボルトまでの弱電回路を一まとめにして構成する。一方、モータトランス67に代表される強電部はこの基板66から離れた位置に、例えばモータ38と制御部39との間の底板36に支持させる構成としている。
【0027】
68は、前記操作盤12を備える制御部と水分計の制御部39やモータトランス67を接続するためのハーネスであって、底板36に開口69を形成すると共に、昇降機5にはこの開口69に一致して断面矩形のトンネル状貫通筒70を当該昇降機5の前後に亘って設けてある。
【0028】
前記カバー35は、逆皿型の形状となし、前記仕切板37,中間仕切48,電極ロール取付板49の上端面に接するように取付られるもので、このカバー35の取付状態で、左右に、モータ38,制御基板66及びモータトランス67を配置する制御部39、歯車を上下に配置する伝動機構部40a、並びに一対の電極ロール46a,46bを備える検出機構部40bに区分けされる。
【0029】
前記制御部39の機能について説明する。この制御部39から所定時間間隔で水分測定信号が出力される。例えば15分間隔である。水分測定信号が出力されると、モータ38が起動し各部を回転連動し、穀粒の取り込みが始まり、水分測定信号について各粒毎の電気抵抗信号が入力される。制御部39では、測定電極ロール46a,46bからの電気抵抗信号を入力しながら電圧信号に変換し、次の換算式に当てはめて水分値を算出する。即ち、
M=a×Er+b+c×(Tr−To)
ここで、Mは水分値、a,b及びcは水分換算係数、Erは検出電圧信号、Trは電極温度、Toは基準温度である。
【0030】
上記の単粒毎の測定は例えば200粒について連続して行われる。制御部39ではその結果を図11(イ)(ロ)のように横軸(x)には当該測定粒順(単粒測定回)を対応させると共に縦軸(y)に個々の換算水分値を対応させ、これら換算水分値の最小二乗法による回帰式(y=px+q)を求め、この回帰式の縦軸(y)との交点(切片)を求めて平均水分値として採用するものとする(図10)。
【0031】
例えば図11(イ)の場合の条件は、
籾水分値11.0%、外気温度25℃、相対湿度85%であるが、
200粒測定の平均水分値:11.3%
となるのに対し、
回帰式による平均水分値(縦軸との交点(y切片)):11.1%
となって、誤差が減少する。なお因みに、
300粒測定の平均水分値:11.4%
100粒測定の平均水分値:11.2%
のように、測定粒数が少ないほど実水分値(11.0%)に近くなるが、上記回帰式による平均水分値は、100粒制限の平均水分値よりも誤差が小さくなって精度の向上がみられる。
【0032】
同様に図11(ロ)の場合は、
条件:籾水分値15.0%、外気温度25℃、相対湿度40%
300粒測定の平均水分値:14.4%
100粒測定の平均水分値:14.5%
100粒測定の平均水分値:14.7%
回帰式による平均水分値(縦軸との交点(y切片)):14.9%
となって、100粒測定に制限するよりも誤差が減少していることが判る。
【0033】
なお、上記図11(イ)又は(ロ)について、測定中に異常に勾配が大きい場合には周囲環境からの吸湿があったことを、異常に勾配が小さい(負)場合には周囲環境に放湿があったことを表示でき、これらの状況を判定することにより、測定環境の改善を促すことより、信頼性の向上につながる。
【0034】
次に図12に基づく別の実施例について説明する。72は前記の電極ロール46a,46b近傍の湿度を検出する湿度検出手段、73は該ロール近傍温度を測定する温度測定手段で、この湿度検出結果は前記制御部39に送信され、制御部39は次のような制御を行う。即ち、図12のフローチャートに示すように、水分計20の周囲温度、湿度を検出し、湿度が適正範囲にあるか否か判断し、適正範囲でなければ測定粒数を削減し、湿度不適正、及び測定粒数変更の旨を表示する。一方適正範囲のときは、ステップ113に至り、水分測定を開始する。そしてあらかじめ設定してある測定粒数N(例えば、100粒、200粒、300粒など)に達すると、平均水分値を表示出力する。上記の測定粒数変更の条件は、例えば、図13に示す如きであり、縦軸に制限測定粒数を取り、横軸に相対湿度をとって、外気温度の相違によって場合分けして制限測定粒数を判定しうる構成である。例えば外気温度10℃(同図(イ))で相対湿度が50%を切ると制限測定粒数は300粒から200粒に減少させる。約45%を下回ると100粒に制限される。事例で示せば、籾水分値11.0%、外気温度25℃、相対湿度85%の条件下での測定において、
300粒測定 平均水分値 11.4%
200粒測定 平均水分値 11.3%
100粒測定 平均水分値 11.2%
となり、もって100粒測定に制限することで誤差の解消が図れる。
【0035】
次いで、図14は測定中断に至るよう構成するもので、ステップ203で湿度が適正範囲に入らないときは、湿度不適正表示と共に「測定不可」の旨を表示すると共に、モータ38に停止出力して測定中断とするものである。なお、図13の例では、外気温度10℃の条件下で湿度40%未満を呈すると上記のように対象粒数「0」、すなわち測定中断の処置を取るよう構成する。
【0036】
実験値で示せば、籾水分値15.0%、外気温度25℃、相対湿度40%の条件の下での測定において、
300粒測定 平均水分値 14.4%
200粒測定 平均水分値 14.5%
100粒測定 平均水分値 14.7%
となる場合であって、精度を誤差0.2%以上では、「測定を中断」するとの基準設定に基づくものである。
【0037】
図15は測定水分値M(%)と、籾の平衡水分値Me(%)との関係に基づいて測定粒数の制限を行わせようとするものである。測定によって求められる平均水分値M(%)と当該湿度による籾の平衡水分値Me(%)との差△M(%)を算出し、あらかじめ制御部39には該△Mと制限測定粒数との関係(例えば図16)を記憶しておき、制限測定粒数を決定すると共に粒数変更設定及び表示を行う(S315)。
【0038】
上記の実施例では、測定粒数の管理を行う構成としたが、測定時間と中断(待機)時間との関係を一定に保つときは、中断時間を長短に管理する構成でもよい。上記の直接的に粒数を管理する場合と同様の効果が得られる。
上例の作用について説明する。基本画面を呼び出しスイッチ14をONすると、ホッパに投入された乾燥すべき穀物は昇降機5を経て貯留部2に張り込まれる。張込完了すると、停止スイッチ16をONして各部を一旦停止する。次には乾燥作業に移行するためスイッチ15をONし、画面を穀物種類・乾燥モード設定画面に切り替え、前段で穀物種類設定スイッチ14を押して当該張込穀物の種類を大豆に設定し、かつ乾燥モードを選択設定する。尚別途に設ける設定画面により同じ要領で水分設定機能スイッチをもって希望の乾燥仕上げ水分値を設定する。
【0039】
こうすることにより、昇降機5上下移送螺旋、繰出バルブ等は運転を開始し、かつバーナ6も駆動状態におかれて熱風乾燥を開始するものである。ここで、熱風温度は選択された穀物種類毎に予め乾燥速度が決められており、当該乾燥速度にそって熱風温度が決定されることとなり、乾燥室3の穀物流路を流下するうち熱風が作用して乾燥し、集穀室4から昇降機5を経て貯留室2に戻され調質作用を受ける。このような循環を所定水分に達するまで繰返し行う。
【0040】
上記の乾燥運転中、所定時間間隔で水分測定が行われる。即ち所定時間間隔で一粒水分計のモータ38に駆動指令信号が出力される。昇降機5内バケット31で掻き上げられる穀粒の一部は溢出流下し、その一部が穀粒取り込み部32を経て穀粒送り螺旋33と穀粒送り板58との間で受けられ、一粒毎に穀粒送り螺旋33終端側、つまり水分計本体内へ導入される。この穀粒送り螺旋3の終端部から穀粒落下路60を流下しながら通過して、水分測定手段46の電極ロール46a,46bの間に案内される。電極ロール46a,46bはモータ38の回転によって互いに逆回転しており、回転センサ71の検知ごとに所定短時間停止すべくなしその後再び回転を繰り返すようになっている。この電極ロール46a,46b間に穀物を取り込みつつ加圧扁平しながらその電気抵抗値が検出され電圧換算値が制御部39に送られる。
【0041】
制御部39では、測定した電気抵抗値に見合う換算電圧信号が入力される。所定粒数が平均化され穀粒の平均水分値として表示部13画面に表示出力する。
図17は、水分計の温度補正の改良に係り、水分測定と同時に水分計20の周囲温度や湿度が検出され、測定粒数の設定がなされる。制御部39には、直接制御部19を介して検出ロール46a,46bの軸支部温度を検出する温度検出手段75、水分計周囲の温度を検出する手段76、及び穀物温度を検出する手段77からの各検出値を入力すべく設け、制御部39はこの三者から演算した値で温度補正する構成とする。即ち、水分値Mを、
水分値M=a×Er+b+α(Th−T0)
で算出するものとする。ここで、Erは水分電圧、bは定数、αは温度補正係数(通常−0.1%/℃)、Thは補正温度、T0は基準温度(通常20℃)である。
【0042】
Th=k1×Tg+(1−k1)Trt
Trt=k2×Tr+(1−k2)×Ta
ここで、k1、k2は定数、Tgは穀物温度、Trtは電極温度、Trは電極軸支持体温度、Taは水分計周囲温度である。電極の圧砕条件すなわち電極回転速度、電極間隙等の条件、穀物比熱(穀物種類、穀物水分領域)、穀物温度と電極温度の大小によって定数k1のとる値が異なる。穀物乾燥機に用いる場合には穀物温度が電極温度より20℃程度増大する場合もあり、また籾摺り機や貯蔵施設においては電極温度が穀物温度より10℃程度増大することもあり、そのとる値はk1=0.2〜0.8が適当である。
【0043】
また、定数k2に関しては、水分計を設置する条件によってこの値が異なることとなる。即ち、本件実施例のように穀物乾燥機の昇降機に配置する場合は、Taを乾燥機の制御用外気温度検出手段を用いるが、昇降機の内部が熱風室に連通する場合、排風室に連通する場合など乾燥機の型式により水分計放熱条件が異なる。k2=0.3〜0.7が適当と考えられる。
【0044】
従って、Th=k1×Tg+(1−k1)Trt
=k1×Tg+(1−k1)(k2×Tr+(1−k2)×Ta)
=k1×Tg+(1−k1)k2×Tr+(1−k1)(1−k2)×Ta
=k3×Tg+k4×Tr+k5×Ta
k3+k4+k5=1
上記のように、水分計補正温度を、検出ロール46a,46bの軸支部温度を検出する温度検出手段75、水分計周囲の温度を検出する手段76、及び穀物温度を検出する手段77の三者から演算するよう構成することにより、前記水分計構成のようにコンパクト設計を図った場合にモータ39駆動によって発生熱が伝導し測定回数の増加と共に電極回転軸を介して電極は温度上昇してしまい、従来のように電極温度を測定するのみでは的確な温度を把握できないため、温度補正精度が悪くなってしまう欠点がある。
【0045】
そこで、上記のように構成すると、電極支持体(軸支持部)温度と水分計周囲温度の中間に存在する真の電極温度を簡便にとらえることができるようになり、正確な温度補正が可能となった。
また、前記の重み定数k3,k4,k5は図18のように穀物乾燥機の機種、型式等によって設定することとしている。乾燥機の機種、型式等によって昇降機に設置した水分計の放熱条件が異なるが、加えて遠赤外線乾燥方式、除湿乾燥方式等で穀物条件が異なるから、各温度に係る演算定数が異なる設定をすることで同一水分計で多機種に共用が可能となる。
【0046】
なお上記の実施例では、検出ロール46a,46bの軸支部温度を検出する温度検出手段75、水分計周囲の温度を検出する手段76、及び穀物温度を検出する手段77の三者をもって温度補正精度を向上するものとしたが、制御部39は温度検出手段75と穀物温度を検出する手段77との検出結果を入力し、これらの差に応じて補正温度を演算するもよい。すなわち、上記の式、
Th=k3×Tg+k4×Tr+k5×Ta
k3+k4+k5=1
において、
Trt>Tgのとき、k1=0.50〜0.80
Trt≦Tgのとき、k1=0.20〜0.50
の範囲で採用することにより、安定した温度補正を行い得る。なお、電極と穀物の間の熱移動はその方向により異なり、電極温度に比較して高い場合、電極間に把持した瞬間の穀物温度は電極から穀物への熱移動により穀温上昇が発生するが、その程度は緩やかで大きい温度上昇は生じない。反対に穀物温度が電極温度に比較して高い場合、電極間に把持した瞬間の穀物温度は、穀物から電極への熱移動により穀温低下が発生しその程度は急激で相当の温度降下を生じる。これらは互いの比熱の違いによるもので、その瞬時の穀物温度を推定するのに、両者の温度にかかる重みを変更することで簡易に安定した温度補正を行うことができる。
【0047】
簡便に行う構成としては、制御部39は、検出ロール46a,46bの軸支部温度を検出する温度検出手段75、水分計周囲の温度を検出する手段76からの両者の検出値を入力しておき、両検出値の中間値を温度補正に用いる構成とする方法がある。
【0048】
図19は外気湿度検出の構成に関する。従来外気湿度情報を乾燥制御に用いる場合(例えば特公平7−56428号公報)、湿度検出手段を機外に設置すると防塵カバー等の対応が必要となってカバー内部の換気性を確保するため換気ファンを追加せざるを得なくなったり、一方乾燥機の制御盤を収容する制御ボックス内に湿度検出手段を設ける場合には周辺の機器の発熱により適切な湿度検出ができず、実験的に補正を施すが、乾燥機の設置条件、使用環境条件等により温度補償を余儀なくされる。そこで乾燥機の前記制御盤12を収容するカバー部材としての制御ボックス80内に設置した湿度検出手段(湿度センサ)81の近傍温度を検出する温度検出手段(近傍温度センサ)82を併設し、制御ボックス80内の湿度情報を検出し、乾燥機外の外気温度検出手段(外気温度センサ)83から得られる外気温度情報に相当する湿度に換算することによって、適切な湿度を測定させ、乾燥制御の高精度を確保するものである。84はフィルタスクリーン、85は制御基板である。
【0049】
上記のため、制御ボックス80内に湿度センサ81を設け、その近傍に近傍温度センサ82を併設し、この両者から制御ボックス80内の水蒸気分圧を演算する。その際に外気温度センサ83における飽和水蒸気圧を演算し、水蒸気分圧と飽和水蒸気圧との比から外気相対湿度を演算するものである。
【0050】
具体的には、湿り空気線図に示されるように、環境温度に相当する飽和水蒸気圧を予めデータとして記憶し、制御ボックス80内の温度情報から相当する飽和水蒸気圧を求め、制御ボックス80内の湿度情報(相対湿度)を乗ずることで制御ボックス80内の水蒸気分圧Psb(mmHg)が演算できる。次に制御ボックス80外温度情報から相当する外気飽和水蒸気圧Pssa(mmHg)を求め、上記水蒸気分圧Psbとの比から外気相対湿度Rha(=(Psb/Pssa)×100)が演算される(図20)。もって適切な湿度を測定することができ、乾燥制御の高精度化が達成できる。なお、ここで制御ボックス内の水蒸気量は、フィルタスクリーン84により外部と連通しているため外気の水蒸気量と等値と推定して演算している。このような外気相対湿度の演算は、穀物乾燥機以外の各種乾燥機の湿度制御や栽培ハウス内環境制御にも応用できるものである。
【0051】
上記の制御ボックス80内水蒸気分圧Psbを求め、この水蒸気分圧Psb情報が外気の湿度情報に相当することよりその大小に応じて乾燥温度を変更することで湿度変化に対応した乾燥速度が得られる(図21)。
図22は、乾燥機における湿度制御について、改良したものである。制御ボックス80内の温度上昇によって、湿度検出値に影響があることは上記のとおりである。従って、外気湿度検出手段(外気湿度センサ)90を上記制御ボックス80の外側に配置し、該制御ボックス80内の温度を検出する手段(制御ボックス内温度センサ)91を設け、さらに乾燥機の外気温度を検出する手段(外気温度センサ)92を設ける。そして、各センサの値を読み込み、外気温度センサ92の検出温度と、制御ボックス内温度センサ91の検出温度との差を求め、この差値より外気湿度の検出値を補正する構成とする。例えば、湿度センサからの入力電圧(湿度電圧)から、以下の算出式を用いて演算する。
【0052】
湿度=(γ×(湿度電圧+((外気温度−制御ボックス内温度)×δ)+η
γ,δ,ηは定数で、γ,ηは環境条件によって決まり、δは湿度電圧の大小によって決定される。
上記のように、制御ボックス80内外の温度差を知って検出湿度を補正することで、湿度検出精度を向上し、ひいては湿度による乾燥中の乾燥熱風温度の補正制御の精度が向上するものとなる。
【図面の簡単な説明】
【図1】 穀物乾燥機の正面図である。
【図2】 穀物乾燥機の正断面図である。
【図3】 コントロールボックスの制御盤正面図である。
【図4】 制御ブロック図である。
【図5】 水分計の斜視図である。
【図6】 水分計の正断面図である。
【図7】 水分計の側断面図である。
【図8】 水分計の背面図である。
【図9】 水分計の制御ブロック図である。
【図10】 フローチャートである。
【図11】 (イ)(ロ)は測定水分の実測定値と回帰式を示すグラフである。
【図12】 フローチャートである。
【図13】 (イ)(ロ)(ハ)は相対湿度と制限測定粒数との関係を表わすグラフである。
【図14】 フローチャートである。
【図15】 フローチャートである。
【図16】 平衡水分値と検出水分値との差と制限測定粒数との関係を表わすグラフである。
【図17】 フローチャートである。
【図18】 乾燥機型式による設定定数を示すグラフである。
【図19】 制御ボックス部の概要図である。
【図20】 演算概要を示すフロー図である。
【図21】 演算概要を示すフロー図である。
【図22】 フローチャートである。
【符号の説明】
1…乾燥機枠、2…貯留室、3…乾燥室、4…集穀室、5…昇降機、6…バーナ、7…吸引ファン、8…繰出バルブ、9…下部移送装置、10…上部移送装置、11…拡散盤、12…操作盤、13…表示部、19…(乾燥機)制御部、20…水分計、46a,46b…電極ロール、39…(水分計)制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a grain moisture measuring device for measuring each grain.
[0002]
[Prior art]
Conventionally, a humidity correction method has been proposed in which the influence of the measurement environment humidity is incorporated into an arithmetic expression (for example, JP-A-6-27062). However, in the single grain moisture measuring device, the time to be exposed to the environmental humidity to be measured is different between the first measured grain and the last measured grain. The accuracy is not correct. In particular, in a single-grain moisture meter, since the measurement values of, for example, 100 to 300 grains are averaged in order to ensure measurement accuracy, it takes several minutes for the measurement, so the above tendency is remarkable.
[0003]
[Problems to be solved by the invention]
Depending on the single grain moisture value used for the measurement, the amount of fluctuation may vary depending on the case due to moisture absorption or reverse dehumidification while waiting for measurement, but the influence of this fluctuation will be reduced, and high precision measurement will be attempted. Is.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has taken the following technical means.
That is, the invention according to claim 1 is composed of a pair of electrode rolls, and the grain moisture is converted from the specific electrical value generated between the electrode rolls by crushing the grains while rotating in reverse to each other and converted to the moisture value of the grain. A measuring device for measuring the converted moisture value of a plurality of single grain grains, the horizontal axis corresponding to the measured grain order and the vertical axis corresponding to each converted moisture value, a regression equation of these converted moisture values The grain moisture measuring apparatus is provided with a control means that calculates a point of intersection (intercept) with the vertical axis of the regression equation and adopts it as an average moisture value.
[0005]
In this way, taking grains sequentially and measuring moisture, based on the moisture value, the horizontal axis corresponds to the measured grain order, and the vertical axis corresponds to the detected moisture value, and the regression equation is calculated at the time when the predetermined number of grains is measured. It is possible to obtain the average moisture value by obtaining the intersection with the vertical axis of the regression equation, and the moisture status at the initial stage of measurement can be known.
[ 0006 ]
[ 0007 ]
[ 0008 ]
[ 0009 ]
[ 0010 ]
【The invention's effect】
Therefore, the invention according to claim 1 is to obtain the average moisture value by obtaining the intersection with the vertical axis of the regression equation, and since the moisture status at the initial stage of measurement can be known, It becomes a moisture value, and it becomes a moisture value in the state with little influence of humidity, and can improve a moisture measurement precision.
[ 0011 ]
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. 1 is a machine frame of a grain drying device, which is stacked in the order of a storage chamber 2, a drying chamber 3, and a grain collection chamber 4, and burners in the drying chamber 3 while circulating grains by driving an elevator 5 provided outside. 6 is a publicly known form in which hot air generated by the combustion and the suction fan 7 is bathed and dried.
[0013]
A predetermined amount of grain 8 flows down while rotating forward and reverse by a feeding drum 8. Reference numeral 9 denotes a lower transfer device that communicates with the elevator 5, and 10 denotes an upper transfer device that is connected to the upper side of the elevator 5, and can supply grains to the diffusion plate 11 at the upper part of the storage chamber 2. The burner 6 and the grain circulation mechanism are performed by a computer having a memory for storing a control program necessary for drying control, various data, and the like. That is, the operation panel 12 is provided with a liquid crystal display unit 13, and four push button switches 14 to 17 and an emergency stop switch 18 are arranged slightly apart along the lower edge of the display unit 13. ing. The functions of the switches 14 to 17 are displayed on the display unit 13. In the example shown in the figure, the switches 14 to 17 are configured as operation switches for stretching, drying, discharging, and ventilation in order. This is a configuration that can have different functions.
[0014]
The built-in control unit receives the switch information on the operation panel 12 surface and the detection information from the sensors installed in each part of the dryer machine frame 1 and controls the burner combustion amount, grain circulation system based on the necessary comparison calculation. Start / stop control, display content control of the display unit 13 and the like. The switches on the operation panel 12 can set grain type, set moisture (finishing moisture), amount of penetration, timer increase / decrease, etc., in addition to each setting of tension / dry / discharge / ventilation.
[0015]
FIG. 5 is a control block diagram. In addition to the setting information from the switches, the calculation control unit 19 of the computer built in the control box having the operation panel 12 includes the moisture meter 20 detection information and the throwing unit of the elevator 5. Grain detection information, hot air temperature detection information, and the like of the provided grain flow detector 21 are input. On the other hand, the output information includes a combustion system 22 signal of the burner 6, for example, a fuel supply signal, a flow rate control signal thereof, or a control circuit for a grain circulation system motor 23 such as an up-and-down transfer spiral, an elevator, a feed valve 8, and the like, Signal, display output to each display unit 24, and the like.
[0016]
The elevator 5 is a bucket type, and has a structure in which a large number of buckets 31, 31... Are attached to an endless belt 30, and the outer periphery is covered with a side wall 5 a. Carry to 2. Inside the front side of the side wall 5a of the elevator 5 is installed by inserting the front edge of the grain intake portion 32 of the single-grain moisture meter 20 to the vicinity of the bucket 31 of the endless belt 30 for buckets. Below the bottom discharge port of the take-in portion 32, the start end of the grain feed spiral 33 is looked over.
[0017]
Since the leading edge of the grain take-in portion 32 and the start end of the grain feed spiral 33 are located on the inside of the bucket endless belt 30 on the rising side and the descending belt side, there is no hindrance to the movement of the belt 30 and the bucket 31. . The housing of the single moisture meter 20 includes a frame 34 and a cover 35 that covers the frame 34. The frame 34 includes a bottom plate 36 that divides the elevator 5 along the side surface of the elevator 5, and a partition plate 37 that stands integrally on the bottom plate 36. A motor 38 that is assembled to the frame 34. The control unit 39 and the mechanism unit 40 are partitioned by the partition plate 37.
[0018]
A drive shaft 41 of a motor 38 is passed through the partition plate 37 and fixed horizontally, and a helical gear 42 is fixed to the tip of the drive shaft 41. The second helical gear 43a, the third helical gear 43b, the fourth helical gear 44a, and the fifth helical gear 44b are sequentially arranged in the lower order with the helical gear 42 having the same rotational axis. It is to be engaged. The first electrode roll 46a is fixed to the shaft 45 of the fourth helical gear 44a, and the second electrode roll 46b is fixed to the shaft 47 of the fifth helical gear 44b.
[0019]
In parallel with the partition plate 37, both the intermediate partition 48 made of a transparent resin material and the electrode roll mounting plate 49 are detachably attached to mounting legs 50, 50, which are integrally formed so as to protrude from the partition plate 37. They are fastened together with bolts (not shown). The interval between the partition plate 37 and the intermediate partition 48 is ensured by the presence of the mounting leg portion 50, and the interval between the intermediate partition 48 and the electrode roll mounting plate 49 is a narrow upright portion integrally formed with the mounting plate 49. Secure by 51. Accordingly, the shaft 45 and the shaft 47 are configured such that one end is supported by the partition plate 37 and the other end is supported by the electrode roll mounting plate 49.
[0020]
Further, the rotary shaft 52 of the grain feed spiral 33 is inserted into a predetermined position of the bottom plate 36, and a helical gear 53 is fixed to the rotary shaft 52, and meshes with the helical gear 42 of the drive shaft 41 at a right angle. . FIG. 8 is a rear view of the single-grain moisture meter as seen from the inside of the elevator 5, and the grain taking-in portion 32 protrudes into the elevator 5 from the bottom plate 36, and the opening edge of the upper opening 55 is inclined obliquely downward. The comb-like foreign matter removing body 56 is formed by forming a large area and arranging a plurality of bullets in the opening 55 and fixing the roots thereof.
[0021]
The lower part of the grain intake part 32 narrows the interval in a V-shaped cross section, extends one side to the position just above the grain feed spiral 33, forms a bottom outlet 57 at the lower end on the other side, The tip of the grain feeding spiral 33 is connected. Then, a grain feed plate 58 that is parallel to the grain feed spiral 33 and whose upper edge is rotatably supported on the outside of the grain take-in portion 32 is suspended, and a spring 59 is in contact with the outer periphery of the grain feed spiral 33. Energize.
[0022]
A grain dropping path 60 is provided below the terminal end of the grain feeding spiral 33. A grain jump prevention plate (not shown) is installed in a gap formed between the upper entrance of the grain dropping path 60 and the grain feeding plate 58 to close the gap. In the grain dropping path 60, the pair of electrode rolls 46a and 46b are obliquely formed to form a guide wall toward the approaching parts, and the grain is guided to the gap between the electrode rolls 46a and 46b.
[0023]
One of the electrode rolls 46a has a circular outer periphery, and the other 46b has a circular outer periphery (for example, a hexagonal shape) and a knurled outer peripheral surface.
The grain dropping path 60 is formed by an intermediate partition 48 approaching the left and right of the electrode rolls 46a and 46b and the electrode roll mounting plate 49, and the interval between them is a crushing portion formed by both electrode rolls 46a and 46b. In the vicinity, it is narrowly formed to prevent the intrusion of crushed grains. That is, the inner wall surfaces of the intermediate partition 48 and the electrode roll mounting plate 49 are formed in a slightly bulging shape so that the interval near the crushing portion is narrowed.
[0024]
In addition, the grain feeding spiral 33 forms a shallow concave portion 63 corresponding to one grain of grain between two linear protrusions on the outer periphery of the cylindrical body, except for a certain range at the tip of the grain feeding spiral 33, The outer side of the two linear protrusions is cut into a trapezoidal cross section to form a spiral deep groove 64.
[0025]
65 is a discharge guide part of the crushed grain provided along the lower side of the electrode rolls 46a, 46b disposed in an inclined manner, and this crushed grain is reduced and guided to the elevator space. The discharge guide portion 65 is formed in the same manner as the upright portion 51 formed integrally with the electrode roll mounting plate 48.
[0026]
The control unit 39 constitutes various control circuits on the circuit board 66, and the board 66 is configured with a weak electric circuit up to several volts as a whole. On the other hand, the high power unit represented by the motor transformer 67 is configured to be supported on the bottom plate 36 between the motor 38 and the control unit 39 at a position away from the substrate 66, for example.
[0027]
68 is a harness for connecting the control unit having the operation panel 12 to the control unit 39 of the moisture meter and the motor transformer 67. The harness 69 forms an opening 69 in the bottom plate 36, and the elevator 5 has an opening 69 in the opening 69. A tunnel-shaped through cylinder 70 having a rectangular cross section is provided over the front and rear of the elevator 5.
[0028]
The cover 35 has an inverted dish shape, and is attached so as to be in contact with the upper end surfaces of the partition plate 37, the intermediate partition 48, and the electrode roll mounting plate 49. The motor 38, the control board 66, and the motor transformer 67 are divided into a control unit 39, a transmission mechanism unit 40a that arranges gears up and down, and a detection mechanism unit 40b that includes a pair of electrode rolls 46a and 46b.
[0029]
The function of the control unit 39 will be described. A moisture measurement signal is output from the control unit 39 at predetermined time intervals. For example, every 15 minutes. When the moisture measurement signal is output, the motor 38 is activated to rotate and link each part, and grain intake starts, and an electrical resistance signal for each grain is input as the moisture measurement signal. The control unit 39 converts the electric resistance signals from the measurement electrode rolls 46a and 46b into voltage signals while inputting them, and applies the following conversion formula to calculate the moisture value. That is,
M = a * Er + b + c * (Tr-To)
Here, M is a moisture value, a, b and c are moisture conversion coefficients, Er is a detection voltage signal, Tr is an electrode temperature, and To is a reference temperature.
[0030]
The above measurement for each single grain is performed continuously for 200 grains, for example. In the control unit 39, the result is shown in FIGS. 11 (b) and 11 (b), with the horizontal axis (x) corresponding to the measured grain order (single grain measurement times) and the vertical axis (y) corresponding to each converted moisture value. The regression equation (y = px + q) by the least square method of these converted moisture values is obtained, and the intersection (intercept) with the vertical axis (y) of this regression equation is obtained and adopted as the average moisture value. (FIG. 10).
[0031]
For example, the condition in the case of FIG.
籾 Moisture value 11.0%, outside air temperature 25 ° C, relative humidity 85%,
Average moisture value of 200 grains measured: 11.3%
Whereas
Average moisture value by regression equation (intersection with vertical axis (y-intercept)): 11.1%
Thus, the error is reduced. Incidentally,
Average moisture value of 300 grains measured: 11.4%
Average moisture value of 100 grains measured: 11.2%
As the number of grains measured decreases, the actual moisture value (11.0%) becomes closer, but the average moisture value according to the above regression equation has a smaller error than the average moisture value limited to 100 grains and improves accuracy. Is seen.
[0032]
Similarly, in the case of FIG.
Conditions: 籾 moisture value 15.0%, ambient temperature 25 ° C, relative humidity 40%
Average moisture value of 300 grains measured: 14.4%
100 grains average moisture content: 14.5%
Average moisture value of 100 grains measured: 14.7%
Average moisture value by regression equation (intersection with vertical axis (y-intercept)): 14.9%
Thus, it can be seen that the error is reduced rather than being limited to the measurement of 100 grains.
[0033]
In addition, in FIG. 11 (A) or (B) above, when the gradient is abnormally large during measurement, it indicates that moisture has been absorbed from the surrounding environment, and when the gradient is abnormally small (negative), the ambient environment. It is possible to display that moisture has been released, and by judging these conditions, the improvement of the measurement environment is promoted, leading to improved reliability.
[0034]
Next, another embodiment based on FIG. 12 will be described. Reference numeral 72 denotes a humidity detecting means for detecting the humidity in the vicinity of the electrode rolls 46a and 46b, 73 is a temperature measuring means for measuring the temperature in the vicinity of the roll, and the humidity detection result is transmitted to the control section 39. The following control is performed. That is, as shown in the flowchart of FIG. 12, the ambient temperature and humidity of the moisture meter 20 are detected to determine whether or not the humidity is in an appropriate range. And the change in the number of measured grains is displayed. On the other hand, when it is within the appropriate range, the routine proceeds to step 113, where moisture measurement is started. When the number N of measurement grains set in advance (for example, 100 grains, 200 grains, 300 grains, etc.) is reached, the average moisture value is displayed and output. The conditions for changing the number of measured grains are, for example, as shown in FIG. 13, where the vertical axis is the limited number of measured grains, the horizontal axis is the relative humidity, and the limited measurement is divided according to the difference in the outside air temperature. In this configuration, the number of grains can be determined. For example, if the relative temperature falls below 50% at an outside air temperature of 10 ° C. ((i) in the figure), the number of limited measurement grains is reduced from 300 grains to 200 grains. Below about 45%, it is limited to 100 grains. As an example, in the measurement under the conditions of a moisture value of 11.0%, an outside air temperature of 25 ° C., and a relative humidity of 85%,
300 grains measurement Average moisture value 11.4%
200 grains measured Average moisture value 11.3%
100 grains measurement Average moisture value 11.2%
Therefore, the error can be eliminated by limiting the measurement to 100 grains.
[0035]
Next, FIG. 14 is configured so that the measurement is interrupted. When the humidity does not fall within the appropriate range in step 203, “inappropriate humidity” and “not measurable” are displayed, and the motor 38 is stopped and output. The measurement is suspended. In the example of FIG. 13, when the humidity is less than 40% under the condition of the outside air temperature of 10 ° C., the number of target particles is “0”, that is, the measurement is interrupted as described above.
[0036]
If it shows by an experimental value, in the measurement under the conditions of the soot moisture value 15.0%, the outside air temperature 25 ° C., and the relative humidity 40%,
300 grains measurement Average moisture value 14.4%
200 grains measurement Average moisture value 14.5%
100 grains measured Average moisture value 14.7%
This is based on the standard setting of “interruption of measurement” when the accuracy is 0.2% or more.
[0037]
FIG. 15 is intended to limit the number of measured grains based on the relationship between the measured moisture value M (%) and the equilibrium moisture value Me (%) of the koji. The difference ΔM (%) between the average moisture value M (%) obtained by the measurement and the equilibrium moisture value Me (%) of the soot due to the humidity is calculated, and the ΔM and the number of limited measurement grains are previously stored in the control unit 39. (For example, FIG. 16) is stored, and the limit measurement grain number is determined and the grain number change setting and display are performed (S315).
[0038]
In the above-described embodiment, the configuration is such that the number of measured grains is managed. However, when the relationship between the measurement time and the interruption (standby) time is kept constant, a configuration in which the interruption time is managed to be long or short may be used. The same effect as in the case of directly controlling the number of grains can be obtained.
The operation of the above example will be described. When the basic screen is called and the switch 14 is turned ON, the grain to be dried put into the hopper is stuck into the storage unit 2 through the elevator 5. When the insertion is completed, the stop switch 16 is turned on to temporarily stop each part. Next, the switch 15 is turned on to shift to the drying operation, the screen is switched to the grain type / drying mode setting screen, the grain type setting switch 14 is pressed in the preceding stage to set the type of the overhanging grain to soybean, and drying. Select and set the mode. The desired dry finish moisture value is set with the moisture setting function switch in the same manner on a separate setting screen.
[0039]
By doing so, the elevator 5 up / down transfer spiral, the feeding valve and the like start operation, and the burner 6 is also driven to start hot air drying. Here, the hot air temperature is determined in advance for each selected grain type, and the hot air temperature is determined according to the drying speed, and the hot air is flowing down the grain flow path of the drying chamber 3. It acts and dries, and returns to the storage chamber 2 from the cereal collection chamber 4 through the elevator 5 and undergoes a tempering operation. Such circulation is repeated until the predetermined moisture is reached.
[0040]
During the drying operation, moisture measurement is performed at predetermined time intervals. That is, a drive command signal is output to the single moisture meter motor 38 at predetermined time intervals. A part of the grain scraped up by the bucket 31 in the elevator 5 overflows and a part of the grain is received between the grain feeding spiral 33 and the grain feeding plate 58 via the grain taking-in part 32, and one grain. Each time it is introduced into the grain feed spiral 33 end side, that is, into the moisture meter body. It passes through the grain dropping path 60 from the end of the grain feeding spiral 3 and is guided between the electrode rolls 46 a and 46 b of the moisture measuring means 46. The electrode rolls 46a and 46b are rotated in reverse from each other by the rotation of the motor 38. Each time the rotation sensor 71 detects the electrode rolls 46a and 46b, the electrode rolls 46a and 46b must be stopped for a predetermined short time. While picking up the grains between the electrode rolls 46 a and 46 b and pressing and flattening, the electrical resistance value is detected, and the converted voltage value is sent to the control unit 39.
[0041]
In the control unit 39, a converted voltage signal corresponding to the measured electric resistance value is input. The predetermined number of grains is averaged and displayed on the display unit 13 screen as an average moisture value of the grains.
FIG. 17 relates to the improvement of the temperature correction of the moisture meter, and the ambient temperature and humidity of the moisture meter 20 are detected simultaneously with the moisture measurement, and the number of particles to be measured is set. The control unit 39 includes a temperature detection unit 75 that detects the temperature of the shaft support of the detection rolls 46a and 46b, a unit 76 that detects the temperature around the moisture meter, and a unit 77 that detects the grain temperature. The control unit 39 is configured to perform temperature correction with values calculated from these three values. That is, the moisture value M is
Moisture value M = a × Er + b + α (Th−T0)
It shall be calculated by Here, Er is a moisture voltage, b is a constant, α is a temperature correction coefficient (usually −0.1% / ° C.), Th is a correction temperature, and T0 is a reference temperature (usually 20 ° C.).
[0042]
Th = k1 × Tg + (1-k1) Trt
Trt = k2 * Tr + (1-k2) * Ta
Here, k1 and k2 are constants, Tg is the grain temperature, Trt is the electrode temperature, Tr is the electrode shaft support temperature, and Ta is the moisture meter ambient temperature. The value taken by the constant k1 varies depending on electrode crushing conditions, that is, electrode rotation speed, electrode gap conditions, grain specific heat (grain type, grain moisture region), grain temperature, and electrode temperature. When used in a grain dryer, the grain temperature may increase by about 20 ° C. from the electrode temperature, and in a hulling machine or storage facility, the electrode temperature may increase by about 10 ° C. from the grain temperature. k1 = 0.2 to 0.8 is appropriate.
[0043]
Further, regarding the constant k2, this value varies depending on the conditions for installing the moisture meter. That is, when it is arranged in the elevator of the grain dryer as in this embodiment, Ta is used as the outside air temperature detecting means for controlling the dryer, but when the inside of the elevator communicates with the hot air chamber, it communicates with the exhaust chamber. Moisture analyzer heat dissipation conditions vary depending on the dryer type. k2 = 0.3 to 0.7 is considered appropriate.
[0044]
Therefore, Th = k1 * Tg + (1-k1) Trt
= K1 * Tg + (1-k1) (k2 * Tr + (1-k2) * Ta)
= K1 * Tg + (1-k1) k2 * Tr + (1-k1) (1-k2) * Ta
= K3 x Tg + k4 x Tr + k5 x Ta
k3 + k4 + k5 = 1
As described above, the moisture meter correction temperature includes the temperature detection means 75 for detecting the temperature of the shaft support portion of the detection rolls 46a and 46b, the means 76 for detecting the temperature around the moisture meter, and the means 77 for detecting the grain temperature. In the case of a compact design like the moisture meter configuration, the generated heat is conducted by driving the motor 39, and the temperature of the electrode rises via the electrode rotation shaft as the number of measurements increases. However, since the accurate temperature cannot be grasped only by measuring the electrode temperature as in the prior art, there is a drawback that the temperature correction accuracy deteriorates.
[0045]
Therefore, if configured as described above, the true electrode temperature existing between the electrode support (shaft support) temperature and the moisture meter ambient temperature can be easily captured, and accurate temperature correction can be performed. became.
The weight constants k3, k4, and k5 are set according to the type and model of the grain dryer as shown in FIG. Although the heat release conditions of the moisture meter installed in the elevator differ depending on the model and model of the dryer, in addition, since the grain conditions differ depending on the far infrared drying method, dehumidification drying method, etc., the calculation constants related to each temperature are set differently This makes it possible to share the same moisture meter with multiple models.
[0046]
In the above-described embodiment, the temperature correction accuracy includes the temperature detecting means 75 for detecting the temperature of the shaft support portion of the detection rolls 46a and 46b, the means 76 for detecting the temperature around the moisture meter, and the means 77 for detecting the grain temperature. However, the control unit 39 may input detection results of the temperature detection means 75 and the grain temperature detection means 77 and calculate a correction temperature according to the difference between them. That is, the above formula,
Th = k3 × Tg + k4 × Tr + k5 × Ta
k3 + k4 + k5 = 1
In
When Trt> Tg, k1 = 0.50-0.80
When Trt ≦ Tg, k1 = 0.20-0.50
By adopting within this range, stable temperature correction can be performed. Note that the heat transfer between the electrode and the grain differs depending on the direction, and when the temperature is higher than the electrode temperature, the grain temperature at the moment of gripping between the electrodes may increase due to the heat transfer from the electrode to the grain. The degree is moderate and no large temperature rise occurs. On the other hand, when the grain temperature is higher than the electrode temperature, the grain temperature at the moment of gripping between the electrodes causes a drop in grain temperature due to the heat transfer from the grain to the electrode, which is abrupt and causes a considerable temperature drop. . These are due to the difference in specific heat between each other, and in order to estimate the instantaneous grain temperature, it is possible to easily and stably perform temperature correction by changing the weights applied to both temperatures.
[0047]
As a simple configuration, the control unit 39 inputs both detection values from the temperature detecting means 75 for detecting the temperature of the shaft support portion of the detection rolls 46a and 46b and the means 76 for detecting the temperature around the moisture meter. There is a method in which an intermediate value between both detection values is used for temperature correction.
[0048]
FIG. 19 relates to the configuration of the outside air humidity detection. Conventionally, when outside air humidity information is used for drying control (for example, Japanese Examined Patent Publication No. 7-56428), if the humidity detecting means is installed outside the apparatus, it is necessary to deal with a dustproof cover or the like, and ventilation is required to ensure the ventilation inside the cover. When it is necessary to add a fan, or when a humidity detection means is provided in the control box that houses the control panel of the dryer, appropriate humidity detection cannot be performed due to the heat generated by peripheral equipment, and correction is made experimentally. However, temperature compensation is unavoidable depending on the installation conditions of the dryer and the environmental conditions of use. Therefore, a temperature detecting means (neighboring temperature sensor) 82 for detecting the temperature near the humidity detecting means (humidity sensor) 81 installed in the control box 80 serving as a cover member for accommodating the control panel 12 of the dryer is provided and controlled. By detecting the humidity information in the box 80 and converting it to the humidity corresponding to the outside air temperature information obtained from the outside air temperature detecting means (outside air temperature sensor) 83 outside the dryer, an appropriate humidity is measured, and drying control is performed. High accuracy is ensured. 84 is a filter screen and 85 is a control board.
[0049]
For this reason, the humidity sensor 81 is provided in the control box 80, the vicinity temperature sensor 82 is provided in the vicinity thereof, and the water vapor partial pressure in the control box 80 is calculated from both. At that time, the saturated water vapor pressure in the outside air temperature sensor 83 is calculated, and the outside air relative humidity is calculated from the ratio of the water vapor partial pressure and the saturated water vapor pressure.
[0050]
Specifically, as shown in the wet air diagram, the saturated water vapor pressure corresponding to the environmental temperature is stored in advance as data, the corresponding saturated water vapor pressure is obtained from the temperature information in the control box 80, and the control box 80 The partial pressure of water vapor Psb (mmHg) in the control box 80 can be calculated by multiplying the humidity information (relative humidity). Next, the corresponding outside air saturated water vapor pressure Pssa (mmHg) is obtained from the outside temperature information of the control box 80, and the outside air relative humidity Rha (= (Psb / Pssa) × 100) is calculated from the ratio to the water vapor partial pressure Psb ( FIG. 20). Therefore, it is possible to measure an appropriate humidity and to achieve high accuracy in drying control. Here, the amount of water vapor in the control box is calculated by assuming that the amount of water vapor in the control box is equal to the amount of water vapor in the outside air because it communicates with the outside through the filter screen 84. Such calculation of the relative humidity of the outside air can be applied to humidity control of various dryers other than the grain dryer and environment control in the cultivation house.
[0051]
The water vapor partial pressure Psb in the control box 80 is obtained, and since the water vapor partial pressure Psb information corresponds to the humidity information of the outside air, a drying speed corresponding to the humidity change is obtained by changing the drying temperature according to the magnitude. (FIG. 21).
FIG. 22 shows an improvement of humidity control in the dryer. It is as described above that the humidity detection value is affected by the temperature rise in the control box 80. Therefore, the outside air humidity detecting means (outside air humidity sensor) 90 is arranged outside the control box 80, the means for detecting the temperature in the control box 80 (control box internal temperature sensor) 91 is provided, and the outside air of the dryer is further provided. Means (outside temperature sensor) 92 for detecting temperature is provided. And the value of each sensor is read, the difference between the detected temperature of the outside air temperature sensor 92 and the detected temperature of the temperature sensor 91 in the control box is obtained, and the detected value of the outside air humidity is corrected from this difference value. For example, it calculates using the following calculation formulas from the input voltage (humidity voltage) from a humidity sensor.
[0052]
Humidity = (γ x (humidity voltage + ((outside temperature-control box internal temperature) x δ) + η)
γ, δ, η are constants, γ, η are determined by environmental conditions, and δ is determined by the humidity voltage.
As described above, knowing the temperature difference between the inside and outside of the control box 80 and correcting the detected humidity improves the humidity detection accuracy, and in turn improves the accuracy of correction control of the drying hot air temperature during drying due to humidity. .
[Brief description of the drawings]
FIG. 1 is a front view of a grain dryer.
FIG. 2 is a front sectional view of a grain dryer.
FIG. 3 is a front view of the control box of the control box.
FIG. 4 is a control block diagram.
FIG. 5 is a perspective view of a moisture meter.
FIG. 6 is a front sectional view of a moisture meter.
FIG. 7 is a side sectional view of a moisture meter.
FIG. 8 is a rear view of the moisture meter.
FIG. 9 is a control block diagram of the moisture meter.
FIG. 10 is a flowchart.
11A and 11B are graphs showing actual measured values of measured moisture and regression equations.
FIG. 12 is a flowchart.
FIGS. 13A and 13B are graphs showing the relationship between relative humidity and the number of limited measured grains.
FIG. 14 is a flowchart.
FIG. 15 is a flowchart.
FIG. 16 is a graph showing the relationship between the difference between the equilibrium moisture value and the detected moisture value and the number of limited measured grains.
FIG. 17 is a flowchart.
FIG. 18 is a graph showing set constants according to a dryer model.
FIG. 19 is a schematic diagram of a control box unit.
FIG. 20 is a flowchart showing an outline of calculation.
FIG. 21 is a flowchart showing a calculation outline.
FIG. 22 is a flowchart.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Dryer frame, 2 ... Storage chamber, 3 ... Drying chamber, 4 ... Grain collection room, 5 ... Elevator, 6 ... Burner, 7 ... Suction fan, 8 ... Feeding valve, 9 ... Lower transfer device, 10 ... Upper transfer Device: 11 ... Diffusion platen 12 ... Control panel 13 ... Display unit 19 ... (Dryer) control unit 20 ... Moisture meter 46a, 46b ... Electrode roll 39 ... (Moisture meter) control unit

Claims (1)

一対の電極ロールからなり、相互に逆回転しながら穀物を圧砕しその電極ロール間で生じた電気的特定値から当該穀物の水分値に換算する穀物水分測定装置であって、複数の単粒穀物の換算水分値を測定し、横軸には当該測定粒順を対応させると共に縦軸に個々の換算水分値を対応させ、これら換算水分値の回帰式を演算する手段を設け、この回帰式の縦軸との交点(切片)を求めて平均水分値として採用する制御手段を備える穀物水分測定装置。 A grain moisture measuring device comprising a pair of electrode rolls, crushing grains while rotating reversely to each other, and converting the specific electrical value generated between the electrode rolls into a moisture value of the grains, comprising a plurality of single grain grains The conversion water value is measured, the horizontal axis is associated with the order of the grains to be measured, the vertical axis is associated with each converted water value, and a means for calculating a regression equation of these converted water values is provided. A grain moisture measuring device comprising control means for obtaining an intersection (intercept) with the vertical axis and adopting it as an average moisture value .
JP2002190404A 2002-06-28 2002-06-28 Grain moisture measuring device Expired - Fee Related JP3968513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002190404A JP3968513B2 (en) 2002-06-28 2002-06-28 Grain moisture measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002190404A JP3968513B2 (en) 2002-06-28 2002-06-28 Grain moisture measuring device

Publications (2)

Publication Number Publication Date
JP2004037101A JP2004037101A (en) 2004-02-05
JP3968513B2 true JP3968513B2 (en) 2007-08-29

Family

ID=31700332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002190404A Expired - Fee Related JP3968513B2 (en) 2002-06-28 2002-06-28 Grain moisture measuring device

Country Status (1)

Country Link
JP (1) JP3968513B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099351A2 (en) * 2008-02-08 2009-08-13 Anton Aleksandrovich Gorokhov Thermogravimetric hygrometer
JP5873791B2 (en) * 2012-12-14 2016-03-01 京セラドキュメントソリューションズ株式会社 Image forming apparatus
CN113518915A (en) * 2019-03-07 2021-10-19 静冈制机株式会社 Moisture detection device
JP7162806B2 (en) * 2019-03-07 2022-10-31 静岡製機株式会社 Moisture measuring device and moisture measuring method

Also Published As

Publication number Publication date
JP2004037101A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
US9624619B2 (en) Rotatable-drum laundry drier and method of controlling a rotatable-drum laundry drier to dry delicate laundry
CA2507965C (en) Clothes dryer sensor compensation system and method
CN103161057A (en) Clothing dryer and control method thereof
JP3968513B2 (en) Grain moisture measuring device
KR101683122B1 (en) dryer
JP2005077212A (en) Cereal moisture measuring instrument
JP5125224B2 (en) Grain dryer
RU2277212C1 (en) Method of and device for automatic ally checking grain moisture in flow of grain in drier
JP2008298324A5 (en)
JP4241367B2 (en) Grain dryer
JP5176585B2 (en) Grain dryer
JP4301018B2 (en) Grain dryer
JP2009210184A (en) Grain drying machine
JP2005024150A (en) Grain drying apparatus
JP2009198047A (en) Grain dryer
JP2003294664A (en) Grain moisture measurement apparatus
JP3622434B2 (en) Moisture measuring device
JP3988602B2 (en) Grain dryer
KR0149033B1 (en) Controller of clothes dryer
JPH03133500A (en) Clothing dryer
JP2005188878A5 (en)
JP2003344333A (en) Grain moisture measurement apparatus
JP2008138919A (en) Grain drying machine
JP2009127907A (en) Display device of grain drier
JP6784200B2 (en) Grain dryer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees