JP3966097B2 - 車両用路面標高推定装置 - Google Patents

車両用路面標高推定装置 Download PDF

Info

Publication number
JP3966097B2
JP3966097B2 JP2002191803A JP2002191803A JP3966097B2 JP 3966097 B2 JP3966097 B2 JP 3966097B2 JP 2002191803 A JP2002191803 A JP 2002191803A JP 2002191803 A JP2002191803 A JP 2002191803A JP 3966097 B2 JP3966097 B2 JP 3966097B2
Authority
JP
Japan
Prior art keywords
elevation
road surface
road
value
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002191803A
Other languages
English (en)
Other versions
JP2004037141A (ja
Inventor
欣高 出口
武俊 川邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002191803A priority Critical patent/JP3966097B2/ja
Publication of JP2004037141A publication Critical patent/JP2004037141A/ja
Application granted granted Critical
Publication of JP3966097B2 publication Critical patent/JP3966097B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Navigation (AREA)
  • Traffic Control Systems (AREA)
  • Instructional Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、緯度経度と関連付けられた地表標高データ群から、車両走行経路の路面標高を高精度に推定できる車両用路面標高推定装置に関する。
【0002】
【従来の技術】
現在市販されているナビゲーション装置は、地図データに勾配に関する情報が含まれていないため、地表標高データ群から走行経路の路面標高を推定したうえで、推定した路面標高データから勾配を推定検出することになる。地表標高データ群から走行経路の路面標高を推定する装置としては、特開2000−123292号公報がある。そこには、道路上の複数点列の地表標高値を地形図の等高線データから求めた上で、それら複数点列の標高値に対して高い空間周波数成分を除去するフィルタ処理を施す方法が示されている。フィルタ処理にあたっては、道路の種別(高速道路国道、市街路など)や道路環境に応じて遮断周波数を切り替えることで、道路周辺環境に適した除去性能を実現している。
【0003】
【発明が解決しようとする課題】
しかしながら、この従来の路面標高推定装置では、車両の走行経路にトンネルがあったり、山岳路のように標高差があるヘアピン力ーブがある場合には、精度良く路面標高を推定するのが難しいという問題がある。
【0004】
このような問題点を鑑み、本発明の目的は、車両の走行経路に係わりなく、走行経路の標高を精度よく推定する車両用路面標高推定装置を提供することである。
【0005】
【課題を解決するための手段】
本発明は、道路上の複数の地点の緯度経度を記憶した道路情報記憶手段と、地図上の複数の地点の地表標高情報を記憶した地表標高記憶手段と、前記道路上の複数の地点の路面標高値を、近傍にある地図上の複数の地点の地表標高データを用いて演算する補間標高値演算手段と、前記道路情報または前記標高値情報から、前記演算した複数地点の標高値の確からしさを演算する確からしさ演算手段と、前記補間標高値を入力とするとともに、前記標高値の確からしさが低い値は出力値に及ぼす影響が小さくなるようにフィルタ処理を施して道路路面標高値を推定するフィルタ処理手段とからなる。
【0006】
【発明の効果】
本発明では、地表標高データに基づいて路面の標高を推定する際に、道路上の点の地表標高値を地表標高データから演算する手段の他に、その値の確からしさを演算する手段を有し、より確からしいデータを重視したフィルタ処理を行なうことにより路面の標高を推定するようにしたため、実路面標高に近い値として路面標高を推定できる。また、例えば、トンネルの出入り口では一般的に地表標高の変化が激しいことから、地表標高データの補間によって演算する値の確からしさが低いとし、推定値の逸脱許容度が大きい点の重み付けを逸脱許容度が小さい点よりも小さくフィルタ処理を行なうことができる。結果として、実路面標高に近い値として路面標高を推定できるようになり、道路標高あるいは道路勾配を用いた車両制御システムを備えた車両に対して、運転性を改善することができるようになった。
【0007】
【発明の実施の形態】
本発明の路面標高推定装置が適用されるハイブリッド車両の実施形態の構成を図1に示す。図1において、太い実線は機械力の伝達経路を示し、太い破線は電力線を示す。また、細い実線は制御線を示し、二重線は油圧経路を示す。
【0008】
このハイブリッド車両のパワートレインは、モータ1、エンジン2、クラッチ3、モータ4、無段変速機5、減速装置6、差動装置7から構成され、これらは同一軸上に配置される。モ−タ1とモータ2との間にエンジン2が配置され、さらにエンジン2とモータ4との間にはクラッチ3が介装される。従って、クラッチ3を介してモータ1の出力軸、エンジン2の出力軸、モータ4の出力軸が連結される。
【0009】
クラッチ3締結時はエンジン2とモータ4が車両の推進源となり、クラッチ3解放時はモータ4のみが車両の推進源となる。モータ4は無段変速機5、減速装置6及び差動装置7を介して駆動輪8に動力を伝達する。無段変速機5には油圧装置9から圧油が供給される。油圧装置9の図示しないオイルポンプはモータ10により駆動される。
【0010】
モータ1、4、10は三相同期電動機または三相誘導電動機などの交流機であり、モータ1は主としてエンジン始動と発電に用いられ、モータ4は主として車両の推進と制動に用いられる。また、モータ10は油圧装置9のオイルポンプ駆動用である。なお、モータ1、4、10には交流機に限らず直流電動機を用いることもできる。また、クラッチ3締結時に、モータ1を車両の推進と制動に用いることもでき、モータ4を発電に用いることもできる。
【0011】
クラッチ3は伝達トルクを調節する機能を有し、例えばパウダークラッチを用いることができる。なお、このクラッチ3に乾式単板クラッチや湿式多板クラッチを用いることもできる。無段変速機5は変速比を無段階に調節することができ、ベルト式やトロイダル式などの無段変速機である。モータ1、4、10はそれぞれ、インバータ11、12、13により駆動される。インバータ11〜13は共通のDCリンク14を介してメインバッテリ15に接続されており、メインバッテリ15の直流充電電力を交流電力に変換してモータ1、4、10へ供給するとともに、モータ1、4の交流発電電力を直流電力に変換してメインバッテリ15を充電する。なお、インバータ11〜13は互いにDCリンク14を介して接続されているので、回生運転中のモータにより発電された電力をメインバッテリ15を介さずに直接、力行運転中のモータヘ供給することができる。メインバッテリ15には、リチウム・イオン電池、ニッケル・水素電池、鉛電池などの各種電池や、電機二重層キャパシターいわゆるパワーキャパシタを用いることができる。
【0012】
路面標高推定装置は、図2に示すように車両コントローラ16、ナビゲーションシステム32、各種センサ22から27等から構成される。
【0013】
車両コントローラ16はマイクロコンピュータとメモリなどの周辺部品から構成され、モータ1、4、10の回転速度や出力トルク、エンジン2の回転速度や出力トルク、クラッチ3の締結と解放、無段変速機5の変速比など制御する。
【0014】
車両コントローラ16には、図2に示すように、キースイッチ20、ブレーキスイッチ21、アクセルセンサ22、車速センサ23、バッテリ温度センサ24、バッテリSOC検出装置25、エンジン回転センサ26、スロットルセンサ27などが接続される。
【0015】
キースイッチ20は車両のキーがON位置またはSTART位置に設定されるとオン(閉路)する。ブレーキスイッチ21はブレーキペダルの踏み込み状態を検出し、アクセルセンサ22はアクセルペダルの踏み込み量(以下、アクセル開度と呼ぶ)を検出する。車速センサ23は車両の走行速度を検出し、バッテリ温度センサ24はメインバッテリ15の温度を検出する。また、バッテリSOC検出装置25はメインバッテリ15の充電状態(SOC:State of charge)を検出し、エンジン回転センサ26はエンジン2の回転速度を検出する。さらに、スロットルセンサ27はエンジン2のスロットルバルブ開度を検出する。
【0016】
さらに車両コントローラ16には、エンジン2の燃料噴射装置30、点火装置31、スロットルバルブ制御装置32、ナビゲーションシステム33などが接続される。コントローラ16は燃料噴射装置30を制御してエンジン2への燃料の供給と停止および燃料噴射量を調節するとともに、点火装置31を制御してエンジン2の点火を行い、スロットルバルブ調整装置32を制御してエンジン2の出力トルクを調節する。
【0017】
更に車両コントローラ16は、ナビゲーションシステム33内で推定された誘導経路の標高推定データをナビゲーションシステム33から受信し、その標高推定データを基にモータ1、4、10の回転速度や出力トルク、エンジン2の回転速度や出力トルク、クラッチ3の締結と解放、無段変速機5の変速比など制御する。
【0018】
図2に示すようにナビゲーションシステム33は、現在地および走行方向を検出するGPS51、道路種別、車線数、道路曲率半径、標高あるいは道路勾配、交差点・トンネル・橋・高架・踏切・料金所などの有無、制限速度などの規制情報、市街路、山岳路などの地域情報、日本地図の地表標高メッシュデータなどを記憶したDVD−ROM形態の地図データベース53を備える。
【0019】
ここで、日本地図に地表標高メッシュデータは、例えば国土地理院より提供されるメッシュ標高データとする。メッシュ標高データは、全国の地図を一辺50m程度の小さな正方形の領域に細かく区分した上で、各領域の中心の標高をそれぞれ記憶されたものである。本データは、DVD−ROMに保存できる情報の容量にあわせて一辺の大きさを変更したものでも良い。例えば、メッシュ格子データをひとつおきに間引きすることにより、一辺100m程度のデータとしても良い。こうすることで情報の格納に必要なメモリ容量を1/4にできる。
【0020】
ナビゲーションシステム33は、ドライバがタッチパネル54で設定する目的地までの経路を探索するとともにその経路に沿って乗員を誘導する誘導装置55を有する。誘導装置55は、経路を誘導していない場合には、車両の位置と進行方向の情報およびメモリに記憶している過去の走行経路から、車両の目的地および走行経路を予測する。たとえば、車両が通勤経路や日常良く走行する経路を走行していることを検出し、過去の走行時の情報から通勤先やスーパーなどの目的地を特定して走行経路を予測する。
【0021】
またナビゲーションシステム33は、目的地の変更、誘導経路の逸脱、あるいは渋滞状況の変化があったかどうかを経路上の特徴地点毎あるいは一定時間毎あるいは一定走行距離毎に確認する。そして、いずれかがあったときは、目的地までの経路を再探索し、目的地まで乗員を誘導する。
【0022】
更にナビゲーションシステム33は、地図データベース53のデータおよび誘導装置55にて演算された誘導経路の道路情報に基づいて、路面標高推定部56にて目的地までの誘導経路の路面標高を推定し、車両コントローラ16にそれらの推定値を送信する。
【0023】
以下、本発明のポイントである、路面標高推定部56の実施形態について説明する。まずは、路面標高推定部56への2つの入力データについて説明する。1つ目の入力データはデータベース53の標高メッシュデータである。一辺50mの四角形の標高数値データ(hgt、surface)が、緯度(axis、lat)と経度(axis、lng)に関連付けられており、メートル単位で保存されている。
【0024】
2つ目の入力データは、誘導経路の道路情報である。誘導経路の道路情報は、誘導経路上の特徴点(例えば交差点・トンネル出入り口・橋の両端・急カーブ部位におけるカーブ形状等を表示するための点)n個の点列データとして、誘導装置55にて演算される。各点には、それぞれ緯度情報lat[k]、経度情報lng[k]、次の点までの道のりの情報way[k]が数値として関連付けられ、トンネルの出入り口か否かtunnel1[k]、トンネル内か否かtunnel2[k]、信号の有無signal1[k]、橋の端点か否かbridge1[k]、橋の途中か否かbridge2[k]、高架の上か否かhroad1[k]などの情報がビット情報として関連付けられて演算される。ここで、nは、現在地から目的地までの特徴点の数であり、kは、1からnまでの整数である。
【0025】
路面標高推定部56でこの2つのデータに基づいて行う制御内容について図3を用いて説明する。
【0026】
まず、ステップ1で、n個の特徴点pnt[k]の標高値hgt、step1[k]をメッシュ標高データ(hgt、surface)の表引きで演算する。ステップ1は表引き演算であり、標高値hgt、step1[k]は特徴点を含む一辺50mの四角形の頂点データを基にした線形補間により演算する。例えば、図4(a)の特徴点Bの標高値hgt、step1[i]は点B1、B2、B3、B4の標高データの線形補間により演算する。ここで、補間方法としてはスプライン補間など別の方法を用いても良い。図4(b)に図4(a)のデータから演算した特徴点の標高値例を記号xで示す。
【0027】
ステップ2で、n個の特徴点pnt[k]について、それぞれ近傍のメッシュ標高データの格子点をm個選定する。これらの格子点はpnts[k][p]とおく(p=1、2、...m)。これらの格子点は、確からしさを演算するために使用する。ここで、近傍のメッシュ標高データの格子点pnts[k][p]として、ステップ1の補間演算に使用した格子点を選定する。例えば、図4(a)の点Bについては、B1、B2、B3、B4の4点をpnts[i][1]、pnts[i][2]、pnts[i][3]、pnts[i][4]として選定する(このときm=4)。
【0028】
続くステップ3で、選定した格子点pnts[k][p]に対する標高データhgt、pnts[k][p]をそれぞれメッシュ標高データ(hgt、surface)の表引きにより演算する。例えば、図4(a)の点Bについての演算値は、hgt、pnts[i][1]=33、hgt、pnts[i][2]=33、hgt、pnts[i][3]=35、hgt、pnts[i][4]=36である。したがって、点Bについての標高値の幅は下限値33から上限値36となる。
【0029】
ステップ4で、n個の特徴点pnt[k]のそれぞれについて、標高データhgt、pnts[k][p]のばらつき、および、n個の特徴点pnt[k]のビット情報に基づいて、確からしさを演算する。ここで確からしさとは、特徴点pnt[k]の実際の標高値と標高データhgt、pnts[k][p]から演算される標高値との差の大きさを示し、特徴点pnt[k]の標高値を演算する標高データhgt、pnts[k][p]のばらつき具合で特徴点pnt[k]の確からしさを示す。
【0030】
具体的には、図4(a)の点Bの場合には、33から35の幅を確からしさとして演算する。図4(b)に図4(a)のデータを基に演算した点Aから点Gの確からしさの例を標高値の幅として示してある。ここで、幅の値を各特徴点のビット情報に応じて補正する。例えば、点Dはトンネル内であり、地表標高値との相関が極めて低いため、幅の下限値を強制的に充分小さい値(例えば下限補正値−20m)としてもよいし、トンネルの出入口の点C、Eに基づいて設定してもよい。橋・高架などは通常地表より高いところに位置することから、ビット情報を基に幅の上限値を高めに補正(例えば上限補正値+10m)するなどしてもよい。したがって、トンネル内あるいは高架上あるいは橋の上の地点における補間標高値の確からしさが低いものとして演算することで、特徴点に関しては、その特徴に応じた適切な確からしさの設定が可能となる。
【0031】
ステップ5で、n個の特徴点pnt[k]の標高値hgt、step1[k]とその確からしさから、目的地までの誘導経路の路面標高を演算する。それにあたり、特徴点の中から確からしさの高い(標高値幅が小さい)点を選ぶ。ここでは選ぶ基準として、確からしさを示す標高値幅が5m以下であるという判断基準を用い、点A、B、F、Gを選び出す。他の選定基準としては、他にも確からしさを示す標高値幅が小さい方から50%に入るものを選ぶという基準などがある。このような基準で選び出された特徴点を折れ線で結ぶ。ここで特徴点間の距離は、前述したようにway[k]として既知であるので、横軸を目標地点までの道のりにとれば、図4(b)に示すLINE1のように線を結ぶことができる。
【0032】
次に、特徴点の中でLINE1が確からしさの範囲を通らないものの中で最も現在地に近いものを抽出する。この例の場合、点Cが該当する。この点については、LINE1が確からしさの幅の下限値を下回っている場合には、その特徴点の下限値を通るように折れ線を補正し(点Bの標高値hgt、step1[i]と点Cの下限値を結ぶ)上限値を上回っている場合には、その特徴点の上限値を通るように折れ線を補正する(補正したものが図中のLINE2)。この手順を補正された折れ線が全て標高幅の範囲に入るまで繰り返す。
【0033】
図4の場合、もう一度点Eについて補正すれば、繰り返し終了である。繰り返し補正した直線の結果を図4(c)にLINE3で示す。このような制御によって、精度良く路面標高を推定できる。
【0034】
したがって、地表標高データに基づいて路面の標高を推定する際に、道路上の点の地表標高値を地表標高データから演算する他に、その値の確からしさを演算し、より確からしいデータを重視したフィルタ処理を行なうことにより路面の標高を推定するようにした。例えば、トンネル内においては地表標高と路面標高の相関が極めて低いとし、つまり確からしさを極めて低く演算し、フィルタ処理の際に無視するという操作ができ、結果として、実路面標高に近い値として路面標高を推定できる。また、例えば、トンネルの出入り口では一般的に地表標高の変化が激しいことから、地表標高データの補間によって演算する値の確からしさが低いとし(例えば±20mの誤差があるとし)、推定値の逸脱許容度が大きい点の重み付けを逸脱許容度が小さい点よりも小さくフィルタ処理を行なうことができる。結果として、実路面標高に近い値として路面標高を推定できるようになり、道路標高あるいは道路勾配を用いた車両制御システムを備えた車両に対して、運転性を改善することができる。
【0035】
また、地表標高データの補間計算値の確からしさを、近接するメッシュ格子点の標高値のばらつき具合に応じて演算するものとし、ばらつきが大きいほど確からしさが低いように演算するものとした。これによって、補間計算値の確からしさを注目地点近傍の標高変化具合に応じて適切に設定できる。
【0036】
本路面標高推定部56の演算には、類似した他の様々な演算方法が考えられ、それらを用いてもよい。例えば、ステップ4で確からしさを演算する際に、地表標高データを用いる方法を示したが、より簡単には、特徴点のビット情報のみを用いる方法もある。トンネルの出入り口では一般的に地表標高の変化が激しいことから、確からしさを示す標高幅を一律標高値hgt、step1[k]±20mとするなどの方法である。またトンネル中である特徴点については、確からしさを示す標高幅を一律無限幅に設定し、結果的にその点を無視して路面標高を推定する方法などもある。
【0037】
また第2の実施形態としてステップ2の近傍のメッシュ標高データの格子点pnts[k][p]を選定する別の方法を図6に示す。
【0038】
図6に示すようにメッシュの領域を四角形から三角形で構成し、点B近傍の格子点として、点Bを含む三角形R1の頂点(B1、B2、B3)を選定するものである。また道路の向きを考慮し、道路に沿った複数の三角形の格子点を選定するようにしてもよい。図6の第2の実施形態では、例えば三角形R1、R2、R3の3つを考慮し、格子点B1〜B5を選定したが、道路に沿って選定する格子点を広く取るためにR1〜R5の5つの三角形領域まで考慮し、それらの格子点B1〜B7を選定してもよい。また、選定した格子点の中からさらに格子点を選び出しても良く、例えばB1〜B7の標高データのうち最大値と最小値を除いた5つの点を最終選定の格子点とし、それらを基に確からしさを求めるようにしても良い。
【0039】
3つの三角形領域を考慮して確からしさを求めた上で、ステップ5を実施した結果例を図5に示す。
【0040】
この場合には、地表標高データの補間計算値の確からしさを、道路の向きに沿った道路上の地点に近接するメッシュ格子点の標高値のばらつき具合に応じて演算し、ばらつきが大きいほど確からしさが低いように演算するものとした。これによって、補間計算値の確からしさを注目地点近傍の標高変化具合、および、道路の向きに沿った標高変化具合に応じて適切に設定でき、精度良く路面標高を推定できる。
【0041】
第3の実施形態として、確からしさを示す標高値幅を演算する別の方法を図7に示す。これは標高値幅を演算するとき、複数道路の情報を用いる実施形態であり、より確からしく(標高値幅を小さく)演算することができる。
【0042】
図7に示すようにA〜B〜Cの誘導経路の向きに沿って確からしさを求める場合に、三角形R1’、R2’、R3’の格子点の値の幅は、33〜40である。これに対し、点Bにて交差する別の道路について図6のR1、R2、R3のように三角形領域とし、その格子点を取り、標高値の幅を求めると33〜35である。この大きいほうの下限値と小さいほうの上限値をとって確からしさを示す標高幅とすれば、33〜35となり、誘導経路に沿って求めた確からしさよりも幅を小さくすることができる(必ずしも小さくなるとは限らないが大きくなることは無い)。このようにして確からしさの標高幅を小さくすることでより精度良く路面標高を推定することができるようになる。
【0043】
したがって、道路の交差地点における地表標高データの補間計算値の確からしさを、交差する複数道路の向きに沿った道路上の地点に近接するメッシュ格子点の標高値のばらつき具合に応じて演算し、特に複数道路の標高値ばらつきの内、最もばらつきが小さい道路のばらつき具合に基づいて確からしさを演算するようにしたので、より確からしい標高値を用いて路面標高を推定でき、路面標高の推定精度を上げることができる。
【0044】
また第4の実施形態は、ステップ4にて、近傍の格子点の最大標高差の逆数(λ(k)とする)などで確からしさを表し、ステップ5にて、補間演算した標高値hgt、step1[k]に対して、その確からしさで重み付けをした上で経路路面標高関数を最小二乗近似した方法である。この場合、誘導経路の道のりを変数xとし、経路路面標高関数y(x)を次式とおいた上で、
【0045】
【数1】
Figure 0003966097
【0046】
係数a0、a1、a2、...、anを次の評価関数Jが最小となるように推定し、
【0047】
【数2】
Figure 0003966097
【0048】
ここで、x1、x2、x3、...、xnは各特徴点における出発点からの道のり(λ(k)≧0のとき)
誘導経路の標高を道のりの関数として記述することになる。本方法は一般的なものであるので詳細な記述は省略する。
【0049】
続いて、前述のように算出した経路上の路面標高推定値を用いて経路の道路状況に適合した車両制御を実現する方法について説明する。
【0050】
例えば特開平8−322107公報に示されたハイブリッド電気自動車のモータ制御装置に本発明の経路上の路面標高推定値を用いて経路の道路状況に適合した車両制御を実現するがことが可能である。この公報では、ナビゲーション装置よりこれから進む走行経路の勾配を検出し、上り坂がある場合は、バッテリの充電量が下限値を下回らないようモータ走行を制限し、下り坂がある場合には上限値を超えないようにモータ走行の比率を多くして、バッテリの充放電パターンを走行路の勾配状況に対応させ、充放電を効率的に行なう方法が開示されている。これらの演算は、車両コントローラ16内で実現することになるが、詳細な実現形態については、特開平8−322107公報や特開2001−298805公報などに開示されているので、説明を省略する。
【0051】
ハイブリッド電気自動車を用いて車両制御を説明したが、このほか、例えばエンジン自動車のパワートレーンの制御において、下り坂を検出した場合は予めシフトアップを禁止してエンジンブレーキの量を増加させる準備をし、上り坂を検出した場合は電制スロットルのゲインを上げて走行に必要なトルクの増加に備えるよう制御特性を決定することもできる。この場合車両の運転性が向上する。他にも自動配光ランプや自動ブレーキシステムや前車追従のための制駆動力等の制御に本発明を適用してもよい。制御の演算は、車両コントローラ16内で実現する。これらの実施形態に関しては、従来使用している路面標高データあるいは/および勾配データを、発明の方法で演算したもの路面標高データあるいは/および勾配データと置き換えることで実現できるので、説明は省略する。
【0052】
したがって本実施形態では、推定される標高値あるいは/およびそれらから演算する勾配値に応じて、走行路状態に適合する車両の制御特性を決定するものとした。誘導経路の標高情報あるいは/および勾配の検出精度が高いため、これをもとに決定される車両の制御特性は、走行路状況に適合する車両走行特性をもたらす。例えば勾配が下り坂の場合は、ハイブリッド電気自動車の制御において、回生発電による充電に備え、バッテリが過充電とならないよう予めモータ走行の比例を多くし、上り坂の場合には、上り坂を走行するに必要な力行エネルギーからバッテリが過放電とならないようモータ走行の比例を減らしてバッテリの消費を抑えるように制御特性を決定することができる。
【0053】
また、エンジン自動車のパワートレーンの制御においては、勾配が下り坂の場合には、予めシフトアップを禁止してエンジンブレーキ量を増加させる準備をし、上り坂の場合には電制スロットルのゲインを上げて走行に必要なトルクの増加に備えるように車両の制御特性を決定することもできる。誘導経路の標高情報あるいは/および勾配の検出精度が高いため、これらの制御により、実走行路状況に適合する車両特性を実現できる。
【0054】
また、本発明を用いて、目的地までの燃料消費量を精度良く予測し、それを運転者に情報提供するものがある。この機能はナビゲーションシステム33にて実現することが出来る。
【0055】
まず、本発明の基づき算出した路面標高データを用いて、目的地までの誘導経路上に3次元誘導経路データを作成する。そして、市街地道路か、郊外の道路か、又は高速道路かにより燃料消費係数(平均的な条件に対する燃料消費量の比)を設定し、更に平坦路か、上り勾配か、又は下り勾配かにより燃料消費係数を補正する。それら燃料消費率と区間毎の燃料消費係数及び区間毎の走行距離とにより、目的地に到達するまでに必要な燃料の量を計算する。本方法の詳細な実現形態については説明を省略するが、特開平10−197272公報に開示されている形態で実現できる。
【0056】
したがって、推定された路面標高値あるいは推定された路面標高から演算される勾配推定値に応じて車両の未来情報を予測し運転者に提供することができる。目的地までの燃費は、例えば目的地までの経路の標高変化に依存するものである。目的地の標高が現在地より高い場合には、車両をより高い位置に運ぶためのポテンシャルエネルギーが必要なので目的地の標高が現在値と同じ場合に比べて、燃料消費量が多くなる傾向にある。このような情報を提供する場合にも、本発明を用いれば精度良く路面標高や勾配を推定できるので、より正確な情報を運転者にできるという効果がある。
【0057】
これまで地表標高情報および道路情報を保有する地図データベース53を車両に搭載する実施形態を示したが、本発明は必ずしもそのような形態に限定されるものではない。
【0058】
例えば、地表標高情報および道路情報からあらかじめ全ての道路に関しで前述の路面推定処理を実施しておき、その結果を地図データベース53に保有する形態もある。本形態を取れば、メッシュ標高データを地図データベース53に保有する必要は無く、路面推定処理した結果のみを道路上の特徴点に関連付けて標高データとして保有するようにしておけば良い。この形態をとると、データベース53の使用メモリを減らすことができる。また、車両コントローラ16では路面推定処理のための演算が不要となるのでより低価格のマイクロコンピュータで実現可能となるメリットがある。
【0059】
また、地表標高情報および道路情報からあらかじめ全ての道路に関して記述の路面推定処理を実施しておき、その結果をサービスプロバイダ(車両と無線通信を行なえる基地局)に保持しておく形態もある。この場合には、地表標高情報および道路情報を車両に保持しなくてもよい。ただしこの場合、車両はサービスプロバイダと通信機能を有する必要がある。乗員が設定した目的地情報および現在地情報は通信機能を利用してサービスプロバイダに送信し、サービスプロバイダ側で経路誘導探索およびその経路上の標高を演算し、それらのデータを車両が受信する。これによって車両側で誘導経路の路面標高を推定することができる。本形態によると、地図データベース53が保有する情報量は少なくてよく、使用メモリを減らすことができる。また、ナビゲーションシステム33では路面推定処理のための演算が不要となるので、より低価格のマイクロコンピュータで実現可能となるメリットがある。
【0060】
本発明は、上記した実施形態に限定されるものではなく、本発明の技術的思想の範囲内でさまざまな変更がなしうることは明白である。
【図面の簡単な説明】
【図1】本発明の路面推定装置を搭載した車両の一実施形態の構成を示す図である。
【図2】路面推定装置の構成を示す図である。
【図3】路面標高推定部56で行う制御内容について説明する図である。
【図4】本発明による路面標高推定方法を説明する図である。
【図5】本発明による路面標高推定方法を説明する別の図である。
【図6】確からしさを求める方法を説明する図である。
【図7】確からしさを求める方法を説明する別の図である。
【符号の説明】
1、4、10 モータ
2 エンジン
3 クラッチ
5 無段変速機
6 減速機
16 コントローラ

Claims (8)

  1. 道路上の複数の地点の緯度経度を記憶した道路情報記憶手段と、
    地図上の複数の地点の地表標高情報を記憶した地表標高記憶手段と、
    前記道路上の複数の地点の路面標高値を、近傍にある地図上の複数の地点の地表標高データを用いて演算する補間標高値演算手段と、
    前記道路情報または前記標高値情報から、前記演算した複数地点の標高値の確からしさを演算する確からしさ演算手段と、
    前記補間標高値を入力とするとともに、前記標高値の確からしさが低い値は出力値に及ぼす影響が小さくなるようにフィルタ処理を施して道路路面標高値を推定するフィルタ処理手段と、
    からなる車両用路面標高推定装置。
  2. 前記確からしさ演算手段は、前記道路上の複数地点に近接する前記地図上の複数地点の標高値のばらつき具合に応じて確からしさを演算し、確からしさは前記ばらつきが大きいほど低く演算されることを特徴とする請求項1に記載の車両用路面標高推定装置。
  3. 前記確からしさ演算手段は、前記道路上の複数地点を含む道路の向きに沿って近接する前記地図上の複数地点の標高値のばらつき具合に応じて確からしさを演算し、確からしさは前記ばらつきが大きいほど低く演算されることを特徴とする請求項2に記載の車両用路面標高推定装置。
  4. 前記確からしさ演算手段は、複数の道路が交差する地点においては、それぞれの道路に沿って近接する前記地図上の複数地点の標高値のばらつき具合をそれぞれ演算し、演算されたばらつき具合を所定条件に基づき選択し、選択されたばらつき具合に応じて確からしさを演算することを特徴とする請求項3に記載の車両用路面標高推定装置。
  5. 前記ばらつき具合を選択するための所定条件は、前記複数の道路ごとにばらつき具合を演算し、ばらつき具合が最も小さい道路のばらつき具合を選択することを特徴とする請求項4に記載の車両用路面標高推定装置。
  6. 前記道路情報記憶手段は、道路形状(トンネル、高架、橋)に関する情報も有するとともに、確からしさ演算手段は、トンネル内あるいは高架上あるいは橋の上の地点における補間標高値の確からしさが低いものとして演算する手段であることを特徴とする請求項1から4のいずれか一つに記載の車両用路面標高推定装置。
  7. 車両の制御特性を決定する制御特性決定手段を備え、
    この制御特性決定手段は、推定された路面標高値あるいは推定された路面標高から演算される勾配推定値に応じて走行状態に適合する車両の制御特性を決定する手段である、ことを特徴とする請求項1から6のいずれか一つに記載の車両用路面標高推定装置。
  8. 推定された路面標高値あるいは推定された路面標高から演算される勾配推定値に応じて車両の未来情報を予測し運転者に提供する未来情報提供手段を備えることを特徴とする請求項1から7のいずれか一つに記載の車両用路面標高推定装置。
JP2002191803A 2002-07-01 2002-07-01 車両用路面標高推定装置 Expired - Fee Related JP3966097B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002191803A JP3966097B2 (ja) 2002-07-01 2002-07-01 車両用路面標高推定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002191803A JP3966097B2 (ja) 2002-07-01 2002-07-01 車両用路面標高推定装置

Publications (2)

Publication Number Publication Date
JP2004037141A JP2004037141A (ja) 2004-02-05
JP3966097B2 true JP3966097B2 (ja) 2007-08-29

Family

ID=31701262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002191803A Expired - Fee Related JP3966097B2 (ja) 2002-07-01 2002-07-01 車両用路面標高推定装置

Country Status (1)

Country Link
JP (1) JP3966097B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8332151B2 (en) 2008-03-27 2012-12-11 Toyota Jidosha Kabushiki Kaisha Gradient information calculating system, vehicle running control system, navigation system, and gradient information calculating method
WO2017026936A1 (en) 2015-08-11 2017-02-16 Scania Cv Ab Methods and control units for building a database and for predicting a route of a vehicle

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4563708B2 (ja) * 2004-03-29 2010-10-13 クラリオン株式会社 ナビゲーション装置、方法及びプログラム
JP2006184008A (ja) * 2004-12-24 2006-07-13 Fujitsu Ten Ltd 車載情報提供装置
JP5155820B2 (ja) 2008-10-30 2013-03-06 トヨタ自動車株式会社 道路情報取得装置
DE102010042065B4 (de) * 2010-10-06 2022-12-08 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ausgeben einer Empfehlung eines Ausrollen-Lassens des Fahrzeugs für ein Fahrerassistenzsystem des Fahrzeugs
CN102667407B (zh) * 2010-10-28 2015-03-18 丰田博图导航信息技术有限公司 隧道出入口标高确定装置及其方法
JP2012149995A (ja) * 2011-01-19 2012-08-09 Nec System Technologies Ltd ルート検索装置、ルート検索方法およびルート検索プログラム
WO2012101915A1 (ja) * 2011-01-27 2012-08-02 株式会社トヨタマップマスター トンネル出入口特定装置及びその方法、並びにトンネル出入口を特定するためのコンピュータプログラム及びコンピュータプログラムを記録した記録媒体
JP5810621B2 (ja) * 2011-05-16 2015-11-11 株式会社デンソー 道路勾配データ作成装置、記憶媒体、並びに、車両のエネルギー消費量予測装置
JP2013033153A (ja) * 2011-08-02 2013-02-14 Toyota Mapmaster:Kk 標高データの適正誤差幅特定装置及びその方法、並びに適正誤差幅を特定するためのコンピュータプログラム及びコンピュータプログラムを記録した記録媒体
JP5773206B2 (ja) * 2011-12-13 2015-09-02 アイシン・エィ・ダブリュ株式会社 標高信頼度判定システム、データ整備システム、走行支援システム、走行支援プログラム及び方法、データ整備プログラム及び方法、並びに標高信頼度判定プログラム及び方法
JP6772796B2 (ja) * 2016-12-01 2020-10-21 トヨタ自動車株式会社 電動車両
JP7238305B2 (ja) * 2017-10-05 2023-03-14 富士フイルムビジネスイノベーション株式会社 パーティクルフィルタを使用した位置特定のために、事前分布としてグラフベースのマップ情報を利用するシステム及び方法、コンピュータ実施方法、プログラム、及びシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8332151B2 (en) 2008-03-27 2012-12-11 Toyota Jidosha Kabushiki Kaisha Gradient information calculating system, vehicle running control system, navigation system, and gradient information calculating method
WO2017026936A1 (en) 2015-08-11 2017-02-16 Scania Cv Ab Methods and control units for building a database and for predicting a route of a vehicle

Also Published As

Publication number Publication date
JP2004037141A (ja) 2004-02-05

Similar Documents

Publication Publication Date Title
US10690506B2 (en) Method of determining an area reachable by a vehicle using a dynamic model and a line graph
US6687581B2 (en) Control device and control method for hybrid vehicle
JP3966097B2 (ja) 車両用路面標高推定装置
US5832396A (en) Hybrid vehicle including means for maintaining residual charge capacity based on destination information
JP4816780B2 (ja) 車載充放電制御装置およびそれに含まれる部分制御装置
US8942919B2 (en) BEV routing system and method
JP3928300B2 (ja) ハイブリッド車両の制御装置
EP2435270B1 (en) Battery charging control device and battery charging control method for electric vehicle
EP2181884B1 (en) Traveling guidance system, traveling guidance method, and computer program
JP4692646B2 (ja) 動力発生源制御装置
JP4910612B2 (ja) ハイブリッド車両とその制御方法
JP3624839B2 (ja) ハイブリッド車両の制御装置
JP3610879B2 (ja) ハイブリッド車両
JP4325132B2 (ja) ハイブリッド車両の制御装置
JP3612828B2 (ja) ハイブリッド車両
US10946752B2 (en) Hybrid vehicle
JP2009274610A (ja) ハイブリッド車の制御装置
JP6012795B2 (ja) ハイブリッド車両用エネルギーマネジメント装置
JP2020505262A (ja) ハイブリッド動力車の燃料および電力消費を管理する管理設定値を計算する方法
JP7010039B2 (ja) ハイブリッド自動車
JP2003070102A (ja) ハイブリッド車両の制御装置
CN112776616A (zh) 用于电池电动车辆的基于路线的优化的系统和方法
JP2009220788A (ja) ハイブリッド車両
JP4802715B2 (ja) 温度上昇予測装置およびこれを備える経路案内システム並びにこれを搭載する車両、温度上昇予測方法、経路案内方法、熱負荷予測装置
JP3912362B2 (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees