JP3962940B2 - Resin composition for flexible circuit overcoat - Google Patents

Resin composition for flexible circuit overcoat Download PDF

Info

Publication number
JP3962940B2
JP3962940B2 JP28897599A JP28897599A JP3962940B2 JP 3962940 B2 JP3962940 B2 JP 3962940B2 JP 28897599 A JP28897599 A JP 28897599A JP 28897599 A JP28897599 A JP 28897599A JP 3962940 B2 JP3962940 B2 JP 3962940B2
Authority
JP
Japan
Prior art keywords
polyol
molecular weight
per molecule
average molecular
groups per
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28897599A
Other languages
Japanese (ja)
Other versions
JP2000186248A (en
Inventor
宏 織壁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP28897599A priority Critical patent/JP3962940B2/en
Publication of JP2000186248A publication Critical patent/JP2000186248A/en
Application granted granted Critical
Publication of JP3962940B2 publication Critical patent/JP3962940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、柔軟性及び硬化時の低収縮性の点で優れ、特に高温に長時間放置した場合でも塗膜の硬質化、反り量の増加などの変質が起こりにくいフレキシブル回路オーバーコート用樹脂組成物、さらにはその組成物を主成分とするオーバーコート剤を塗布したフィルムキャリア及びそのフィルムキャリアを用いたキャリアデバイスに関する。
【0002】
【従来の技術】
従来、フレキシブル配線回路基板の表面保護膜は、カバーレイフィルムと呼ばれるポリイミドフィルムをパターンに合わせた金型をつくり打ち抜いたのち、接着剤を用いて張り付ける方法や、可とう性を持たせた紫外線硬化型樹脂、または熱硬化型樹脂を主成分とするオーバーコート剤をスクリーン印刷法により塗布し硬化させる方法により形成してきた。しかし、カバーレイフィルム法は作業性の点で好ましくなく、オーバーコート剤を用いた方法では硬化時の反りや、柔軟性という点で未だ不十分であり、要求性能を十分に満足するようなフレキシブル配線回路基板の表面保護膜形成方法は見出されていない。
【0003】
一方、近年、液晶駆動用ICのパッケージとし高密度化や薄型化に適したフィルムキャリアを用いたTAB方式がますます用いられるようになってきている。フィルムキャリアの基本構成は主に、ポリイミドなどの耐熱性絶縁フィルム基材と、エポキシ系樹脂を主成分とする接着剤を介して接着された銅箔などの導体から成り立っており、この銅箔をエッチングして配線パターンを形成している。また、フィルムキャリアデバイスは、このテープキャリアにICを接続し、封止樹脂で封止して製造されるのであるが、IC接続前に工程中のパターンショートや腐食、マイグレーション、ホイスカーの発生などによる信頼性の低下を防ぐために、このフィルムキャリアにもオーバーコート剤により表面保護膜を形成することが一般的である。フィルムキャリアに用いられるオーバーコート剤としては、エポキシ系のものやポリイミド系のものが使用されているが、前者は硬化時の反りや塗膜の柔軟性、後者はIC封止樹脂との密着性や作業特性などの点で満足するものがなく、複数のオーバーコート剤を併用して補いあっているのが現状である(特開平6−283575号公報)。
【0004】
一方、本発明者らは、上記問題点を解決するため鋭意検討した結果、特願平9−219610号公報、および特願平9−219611号公報において、数平均分子量が1,000〜8,000で1分子当たり2〜10個の水酸基を持つポリオール、または、数平均分子量が200〜600で1分子当たり2〜10個の水酸基を持つポリオールと、数平均分子量が13,000〜30,000で、1分子当たり2〜10個の水酸基を持つポリオールと、ポリブロックイソシアネートを所定の比で混合することにより、柔軟性、硬化時の低収縮性、密着性、電気絶縁性、耐薬品性、耐熱性などの諸特性を十分に満足できる性能を有する樹脂組成物が得られることを見いだしており、中でもポリブタジエン骨格を有するポリオールあるいはポリブロックイソシアネートを用いることが柔軟性や硬化時の低収縮性の点でより有効であることを見出している。
【0005】
しかし、ポリブタジエン骨格を有する樹脂を用いる場合、酸化を受けやすいため、例えば高温環境下に長時間放置されると塗膜の硬質化、反り量の増加などの変質が起こりやすい。特にフレキシブル基板などのプリント回路基板などは製造工程において数回あるいは長時間、150℃以上の環境を経由することとなるため、そのオーバーコート剤として使用する場合、塗膜の硬質化や反り量の増加などのトラブル発生が懸念される。
【0006】
【発明が解決しようとする課題】
本発明は、高温に長時間放置した場合でも塗膜の硬質化、反り量の増加などの変質が起こりにくいオーバーコート剤を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために検討した結果、ポリブタジエン骨格中の2重結合部に水素添加した樹脂を使用することにより塗膜の硬質化や反り量の増加などのトラブル発生を防止することをみいだし、このような知見に基づいて本発明を完成した。
【0008】
すなわち、本発明は、(a)(A)数平均分子量が1,000〜8,000で、1分子当たり2〜10個の水酸基を有する水添ポリブタジエンポリオール、および(Xa)数平均分子量が1,000〜8,000で、1分子当たり2〜10個のブロックイソシアネート基を有する水添ポリブタジエンポリブロックイソシアネートを含み、ポリブロックイソシアネートの量が、ポリオールの総水酸基当量数に対し、0.8〜3.5倍当量数となるフレキシブル回路オーバーコート用樹脂組成物、(b)(A)数平均分子量が1,000〜8,000で、1分子当たり2〜10個の水酸基を有する水添ポリブタジエンポリオール、(Xa)数平均分子量が1,000〜8,000で、1分子当たり2〜10個のブロックイソシアネート基を有する水添ポリブタジエンポリブロックイソシアネート、および(B)数平均分子量が13,000〜30,000で、1分子当たり2〜10個の水酸基を有する水添ポリブタジエンポリオールを含み、このうち2種のポリオールの重量比が固形分において(A):(B)=40:60〜90:10の範囲とし、ポリブロックイソシアネートの量が、ポリオールの総水酸基当量数に対し、0.8〜3.5倍当量数となるフレキシブル回路オーバーコート用樹脂組成物、あるいは、(c)(C)数平均分子量が200〜600で、1分子当たり2〜10個の水酸基を有するポリオール、(Xa)数平均分子量が1,000〜8,000で、1分子当たり2〜10個のブロックイソシアネート基を有する水添ポリブタジエンポリブロックイソシアネート、および(B)数平均分子量が13,000〜30,000で、1分子当たり2〜10個の水酸基を有する水添ポリブタジエンポリオールを含み、このうち2種のポリオールの重量比が固形分において(C):(B)=20:80〜50:50の範囲とし、ポリブロックイソシアネートの量が、ポリオールの総水酸基当量数に対し、0.8〜3.5倍当量数となるフレキシブル回路オーバーコート用樹脂組成物、ならびに、これらのいずれかの樹脂組成物に、ゴム状微粒子または/及びポリアミド微粒子を添加してなるフレキシブル回路オーバーコート用樹脂組成物、配線パターン面側に以上のいずれかに示す樹脂組成物を主成分とするオーバーコート剤を塗布したことを特徴とするフィルムキャリア、およびそのようなフィルムキャリアを用いたフィルムキャリアデバイスに関する。
【0009】
【発明の実施の形態】
数平均分子量が1,000〜8,000で、1分子当たり2〜10個の水酸基を有する水添ポリブタジエンポリオール(A)は、耐熱性や耐薬品性などのような高い架橋密度で得られる特性と、可とう性、低収縮性などのような低い架橋密度で得られる特性の両方をバランス良く付与させるのに重要である。分子量がこの範囲よりも小さくなる場合や、1分子当たりの水酸基の数がこの範囲よりも大きくなる場合は、硬化時の架橋密度が高くなるため、より固い硬化物となり、硬化塗膜の柔軟性や硬化時の低収縮性に関して十分な物性は得られない。一方、分子量がこの範囲よりも大きくなる場合や、1分子当たりの水酸基の数がこの範囲よりも小さくなる場合は、硬化時の架橋密度が低くなるため、より柔軟な硬化物となる反面、硬化塗膜の耐熱性や耐薬品性が著しく低下する。
【0010】
数平均分子量が1,000〜8,000で、1分子当たり2〜10個のブロックイソシアネート基を有する水添ポリブタジエンポリブロックイソシアネート(Xa)も同様に、耐熱性や耐薬品性などのような高い架橋密度で得られる特性と、可とう性、低収縮性などのような低い架橋密度で得られる特性の両方をバランス良く付与させるのに重要である。分子量がこの範囲よりも小さくなる場合や、1分子当たりの水酸基の数がこの範囲よりも大きくなる場合は、硬化時の架橋密度が高くなるため、より固い硬化物となり、硬化塗膜の柔軟性や硬化時の低収縮性に関して十分な物性は得られない。一方、分子量がこの範囲よりも大きくなる場合や、1分子当たりのブロックイソシアネート基の数がこの範囲よりも小さくなる場合は、硬化時の架橋密度が低くなるため、より柔軟な硬化物となる反面、硬化塗膜の耐熱性や耐薬品性が著しく低下する。
【0011】
数平均分子量が13,000〜30,000で、1分子当たり2〜10個の水酸基を有する水添ポリブタジエンポリオール(B)は、より架橋密度を低下させ、可とう性向上や硬化時の低収縮性などの特性を大きくするのに重要である。
【0012】
数平均分子量が200〜600で、1分子当たり2〜10個の水酸基を有するポリオール(C)は架橋密度を高め、耐熱性や耐薬品性を向上させる役割を果たす。
【0013】
ポリオール(A)とブロックイソシアネート(Xa)を硬化させる場合、耐薬品性および耐熱性と、可とう性および硬化時の低収縮性とのバランスが比較的良好であるが、より塗膜の可とう性や硬化時の反りを小さくするためには、ポリオール(B)を添加し、架橋密度を低下させる。この場合、特性全体のバランスより、2種のポリオールの重量比が固形分において(A):(B)=40:60〜90:10の範囲とすることが必要で、この比よりもポリオール(B)の割合が多くなると、架橋密度が下がりすぎるため塗膜の耐熱性、耐薬品性などの特性が著しく低下する。
【0014】
一方、ポリオール(C)をブロックイソシアネート(Xa)で硬化させる場合、塗膜の可とう性や硬化時の反りについて不十分であり、ポリオール(B)との組み合わせが必要になる。この場合、特性全体のバランスより、2種のポリオールの重量比が固形分において(C):(B)=20:80〜50:50の範囲で混合して用いるのが好ましく、この範囲よりもポリオール(C)が少ない場合は、架橋密度が下がりすぎるため、塗膜の耐熱性、耐薬品性などの特性が著しく低下し、ポリオール(C)が多い場合は、架橋密度が上がりすぎるため、塗膜の柔軟性や硬化時の低収縮性が低下する。
【0015】
ポリオール(A)、(B)及びポリブロックイソシアネート(Xa)について、ブタジエン骨格中の2重結合を水添しているのは、高温において2重結合の反応により塗膜の硬質化、反り量の増加などが起こるのを防ぐためである。
【0016】
水添ポリブタジエンポリオール(A)としては、数平均分子量が1,000〜8,000で、水酸基の数が1分子当たり2〜10個持ち、ブタジエン骨格中の2重結合を水素付加させたものであればどのようなものでも良く、例えば、「GI−1000」、「GI−3000」(いずれも日本曹達(株)社製)などの既存製品、あるいは、「G1000」、「GQ1000」(いずれも日本曹達(株)社製)、「R−45EPI」(出光石油化学(株)社製)などのポリブタジエンポリオールを水添したものなどが含まれる。
【0017】
水添ポリブタジエンポリブロックイソシアネート(Xa)としては、数平均分子量が1,000〜8,000で、ブロックイソシアネート基の数が1分子当たり2〜10個持ち、ブタジエン骨格中の2重結合を水素付加させたものであればどのようなものでも良く、例えば、「TP1002」(日本曹達(株)社製)や「HTP−9」(出光石油化学(株)社製)などのポリブタジエンポリイソシアネートをブロック剤でブロックし更に水添したもの、あるいは「GI−1000」、「GI−3000」(いずれも日本曹達(株)社製)などの水酸基末端水添ポリブタジエンに水酸基当量数に対し2倍当量数のジイソシアネートを反応させて末端イソシアネートとし、更にブロック剤でブロックしたものなどが含まれる。ブロック剤としては、イソシアネート基と反応しうる活性水素を1分子中に1個だけ有する化合物で、イソシアネート基と反応した後も170℃以下の温度で再び解離するものが好ましく、ε−カプロラクタム、マロン酸ジエチル、アセト酢酸エチル、アセトオキシム、メチルエチルケトオキシム、フェノール、クレゾールなどが挙げることができる。
【0018】
水添ポリブタジエンポリオール(B)としては、数平均分子量が13,000〜30,000で水酸基の数が1分子当たり2〜10個持ち、ブタジエン骨格中の2重結合を水素付加させたものであればどのようなものでも良く、例えば、「GI−1000」、「GI−3000」(いずれも日本曹達(株)社製)などのような分子量が1,000から3,000程度の水添ポリブタジエンポリオールを、ジイソシアネートと反応させて分子量が13,000から30,000程度になるよう高分子量化したもの、あるいは、「G1000」(日本曹達(株)社製)、「R−45EPI」(出光石油化学(株)社製)などのポリブタジエンポリオールをジイソシアネートと反応させて分子量が13,000から30,000程度になるよう高分子量化したのち、水添したものなどが含まれる。
【0019】
ポリオール(C)としては数平均分子量が200〜600で、水酸基の数が1分子当たり2〜10個持つものであるならば、樹脂の構造はどのようなものでも良く、例えば、EO変成ペンタエリスリトール「PE555」(東邦化学(株)社製)、EO変成トリメチロールプロパン「TP880」(東邦化学(株)社製)、ポリカプロラクトントリオール「プラクセル303」、「同305」(いずれもダイセル化学工業(株)社製)、などを挙げることができる。
【0020】
また、本発明は、以上の必須要素の他に必要に応じて、ポリオールとイソシアネートの硬化促進剤や、充填剤、添加剤、チキソ剤、溶剤等を添加しても差し支えない。特に、耐折り曲げ性をより向上させるためにはゴム微粒子を添加することが好ましく、また、下地の銅回路や、ポリイミド、ポリエステルフィルムなどのベース基材、接着剤層との密着性をより向上させるためにはポリアミド微粒子を添加することが好ましい。
【0021】
ゴム微粒子としては、アクリロニトリルブタジエンゴム、ブタジエンゴム、アクリルゴムなどのゴム弾性を示す樹脂に化学的架橋処理を行施し、有機溶剤に不溶かつ不融とした樹脂の微粒子体であるものならばどのようなものでも良く、例えば、「XER−91」(日本合成ゴム(株)社製)、「スタフィロイドAC3355」、「AC3832」、「IM101」(以上、武田薬品工業(株)社製)、「パラロイドEXL2655」、「同EXL2602」(以上、呉羽化学工業(株)社製)などが挙げられる。
【0022】
ポリアミド微粒子としては、ナイロンのような脂肪族ポリアミドやケブラーのような芳香族ポリアミド、さらには、ポリアミドイミドなど、アミド結合を有する樹脂の50ミクロン以下の微粒子であればどのようなものでも良く、例えば、「VESTOSINT 2070」(ダイセルヒュルス(株)社製)や、「SP500」(東レ(株)社製)なども挙げることができる。
【0023】
【実施例】
以下、本発明に用いられるポリオールとブロックイソシアネートの製造例及び、本発明の実施例を比較例とともに以下に挙げ、本発明をより具体的に説明する。
【0024】
<樹脂Eの製造>
反応容器にエチルジグリコールアセテート(ダイセル化学工業(株)社製)165g、トリメチロールプロパン(OH当量=44.72g/eq.)33g、及びトルエン−2,4−ジイソシアネート(NCO当量=87.08g/eq.)132gを仕込み、徐々に80℃まで昇温し以後2時間その温度で反応を続けた。2時間後のイソシアネート基含量は10%(NCO当量=420g/eq.)であった。続いてこれに、エチルジグリコールアセテート79.8g、「GI−1000」(OH末端水添ポリブタジエン、Mn=約1,500、OH当量=801g/eq.、そして固形分=100w%:日本曹達(株)社製)139gを80℃に保持しつつ1時間かけて滴下し、以後80℃で4時間付加反応を行った。この生成物のイソシアネート基含量は4.7%(NCO当量=894g/eq.)であった。更に80℃に保持しながら、メチルエチルケトオキシム(分子量87.12)63.2gを2時間かけて滴下し、更に1時間反応を続けた。FT−IR(フーリェ変換赤外分光法)より2,250cm−1のNCOピークの消失が確認されたところで降温し、樹脂Eを得た。樹脂Eの性状:Mn=約1,600、ブロックNCO当量(溶剤含)=1,013g/eq.、そして固形分=60w%。
【0025】
<樹脂Fの製造>
反応容器に「GI−1000」(OH末端水添ポリブタジエン、Mn=約1,500、OH当量=801g/eq.、そして固形分=100w%:日本曹達(株)社製)1,000g、イプゾール150(出光石油化学(株)社製)591gおよびジブチル錫ジラウレート0.1gを投入混合し均一に溶解させた。均一になったところで70℃に昇温し、更に撹拌しながら、トルエン−2,4−ジイソシアネート(NCO当量=87.08g/eq.)97.8gを2時間かけて滴下し、更に1時間保持、FT−IRより2,250cm−1のNCOピークの消失が確認されたところで降温し、樹脂Fを得た。樹脂Fの性状:Mn=約17,000、OH当量(溶剤含)=13,521g/eq.、そして固形分=65w%。
【0026】
<樹脂Gの製造>
反応容器に「TP1OO2」(NCO末端ポリブタジエン、Mn=約1,500、OH当量=1,050g/eq.、そして固形分=50w%:日本曹達(株)社製)1,000gおよびジブチル錫ジラウレート0.1gを仕込み80℃に昇温した後、メチルエチルケトオキシム(分子量87.12)99.6gを2時間かけて滴下し、更に1時間反応を続けた。FT−IRより2,250cm−1のNCOピークの消失が確認されたところで降温し、樹脂Gを得た。樹脂Gの性状:Mn=約1,500、ブロックNCO当量(溶剤含)=1,154.5g/eq.、そして固形分=54.5w%。
【0027】
<樹脂Hの製造>
反応容器に「G−1000」(OH末端ポリブタジエン、Mn=約1,600、OH当量=800g/eq.、そして固形分=100w%:日本曹達(株)社製)1,000g、「イプゾール150」(出光石油化学(株)社製)591gおよびジブチル錫ラウレート0.1gを投入混合し均一に溶解させた。均一になったところで70℃に昇温し、更に撹拌しながら、トルエン−2,4−ジイソシアネート(NCO当量=87.08g/eq.)97.8gを2時間かけて滴下し、更に1時間保持、FT−IRより2,250cm−1のNCOピークの消失が確認されたところで降温し、樹脂Hを得た。樹脂Hの性状:Mn=約17,000、OH当量(溶剤含)=13,523g/eq.、そして固形分=65w%。
【0028】
後記実施例及び比較例に用いた各成分を以下に示す。
<水添ポリブタジエンポリオール(A)>
・「GI−1000」(Mn=約1,500、OH当量=801g/eq.、そして固形分=100w%:日本曹達(株)社製)
<水添ポリブタジエンポリブロックイソシアネート(Xa)>
・樹脂E(Mn=約1,600、ブロックNCO当量(溶剤含)=1,013g/eq.、そして固形分=60w%)
<水添ポリブタジエンポリオール(B)>
・樹脂F(Mn=約17,000、OH当量(溶剤含)=13,521g/eq.、そして固形分=65w%)
<ポリオール(C)>
・「PE555」(EO変成ペンタエリスリトール、Mn=約550、OH当量=138g/eq.、そして固形分=100w%:東邦化学(株)社製)
<ポリオール(A’):(A)相当の未水添ポリブタジエンポリオール>
・「G−1000」(Mn=約1,600、OH当量=800g/eq.、そして固形分=100w%:日本曹達(株)社製)
<ポリオール(Xa’):(Xa)相当の未水添ポリブタジエンポリブロックイソシアネート>
・樹脂G(Mn=約1,500、ブロックNCO当量(溶剤含)=1,154.5g/eq.、そして固形分=54.5w%)
<ポリオール(B’):(B)相当の未水添ポリブタジエンポリオール>
・樹脂H(Mn=約17,000、OH当量(溶剤含)=13,523g/eq.、そして固形分65w%)
<ポリアミド微粒子>
・「VENTSINT 2070」(ダイセルヒュルス(株)社製)
<ゴム微粒子>
・「EXR-91」(日本合成ゴム(株)社製)
【0029】
<硬化性樹脂組成物の調製>
実施例1〜5
前記のポリオール(A)、(B)および(C)、並びに、ポリブロックイソシアネート(Xa)、ゴム微粒子、およびポリアミド微粒子を適宜配合し、更にその他の成分として、硬化促進剤としてジブチル錫ラウレート、ダレ防止剤として「アエロジル200」(日本アエロジル(株)社製)、そして粘度調整溶剤としてカルビトールアセテートを配合ごとに適量加えて混合し、3本ロールを用いて混練りして、試料A1〜5を調製した。各実施例の組成物の内容及び結果を後記第1表に併せ記載した。
【0030】
比較例1〜7
ポリオール(A’)、(B’)及び(C)、並びに、ポリブロックイソシアネート(Xa’)、ゴム微粒子およびポリアミド微粒子を適宜配合し、更にその他の成分として、硬化促進剤としてジブチル錫ラウレート、ダレ防止剤として「アエロジル200」(日本アエロジル(株)社製)、そして粘度調整溶剤としてカルビトールアセテートを配合ごとに適量加えて混合し、3本ロールを用いて混練りして、実施例と同様に比較試料B1〜5を調製した。また、現行のフィルムキャリアに一般に用いられるオーバーコート剤の一例として、「CCR−232GF」(アサヒ化学研究所製、エポキシ系)を比較例B6に、そして「FS−100L」(宇部興産社製、ポリイミド系)を比較例B7に挙げた。各比較例の組成物の内容及び結果を後記第2表に併せ記載した。
【0031】
<試験片の作製>
前記により調製した試料A1〜5、及び比較試料B1〜7について、任意の基材に硬化時で約25μm厚になるよう塗布し、150℃×60分の条件で硬化を行い、試験サンプルを作製した。
【0032】
<塗膜特性の測定>
前記により作製した塗膜について、下記の特性を測定した。
【0033】
▲1▼硬化収縮による反り量:35mm×60mm×75μmのポリイミドフィルム上に25mm×35mm×25μmで塗布し、硬化後の反り量を測定。また、試験片をさらに150℃で7時間熱処理したときの反り量を測定。
【0034】
▲2▼耐折曲性:75μmのポリイミドフィルム上に塗布し硬化させた試験片を、180度に折り曲げ、爪でしごいたときのクラックの有無や白化などを観察。
→×:クラック発生、△:白化、そして○:異常なし。
【0035】
▲3▼半田耐熱性:塗膜にフラックスJS−64MS−Sを塗布し、それを260℃のハンダ浴に10秒間浸漬。
→ ○:異常なし、そして×:膨れ発生。
【0036】
▲4▼電気絶縁性:導体幅0.318mmのくし型電極に塗布し、煮沸1時間後の電気抵抗を測定。
【0037】
▲5▼耐薬品性:イソプロパノールをしみ込ませたウエスで、塗膜をラビング。
→○:異常なし、そして×:塗膜劣化。
【0038】
▲6▼密着性(銅/ポリイミド):JIS D0202に準じる。基材として、銅、ポリイミド上で行った。
→×:0/100〜50/100、△:51/100〜99/100、そして
○:100/100。
【0039】
▲7▼密着性(IC封止樹脂):銅をエッチングして、接着剤層がむき出しになったTABテープに樹脂組成物を約25μm厚に塗布し硬化させる。この塗膜上にIC封止樹脂を約200μm厚に塗布し硬化させ試験片を作成。手で試験片を折り曲げ、封止樹脂の剥がれ具合を観察する。
IC封止樹脂A:「XS8103」(ナミックス(株)社製)
IC封止樹脂B:「XS8107」(ナミックス(株)社製)
→×:組成物塗膜/封止樹脂間界面剥離、
△:組成物塗膜及び封止樹脂の凝集破壊と界面剥離が共存し、
割合として凝集破壊<界面剥離、
○:組成物塗膜及び封止樹脂の凝集破壊と界面剥離が共存し、
割合として凝集破壊>界面剥離、
◎:組成物塗膜と封止樹脂の各々で凝集破壊。
【0040】
作成した途膜の上記項目について測定した途膜特性の試験結果を下記第1表及び下記第2表に示した。これより、本発明の硬化性樹脂組成物の塗膜は、高温に長時間放置した後でも、従来の組成物と比べ反り量の増加が特に小さく、柔軟性や、耐薬品性、耐熱性、電気絶縁性、耐折り曲げ性、および密着性にも優れ、各特性が良くバランスしている。
【0041】
【表1】

Figure 0003962940
【0042】
【表2】
Figure 0003962940
【0043】
【発明の効果】
本発明の樹脂組成物は従来の組成物と比べ、高温に長時間放置した後でも反り量の増加が特に小さく、かつ柔軟性、耐薬品性、耐熱性、および電気絶縁性に優れた熱硬化性の樹脂組成物であり、フレキシブル回路のオーバーコート剤として適しており、また、フィルムキャリアのオーバーコート剤としても十分に期待できる。[0001]
BACKGROUND OF THE INVENTION
The present invention is excellent in terms of flexibility and low shrinkage at the time of curing, and in particular, a resin composition for a flexible circuit overcoat that hardly undergoes alteration such as hardening of a coating film and an increase in the amount of warp even when left at a high temperature for a long time. Further, the present invention relates to a film carrier coated with an overcoat agent composed mainly of the composition, and a carrier device using the film carrier.
[0002]
[Prior art]
Conventionally, the surface protection film of flexible printed circuit boards has been made by punching a die that matches a pattern with a polyimide film called a coverlay film, and then pasting it with an adhesive, or by applying ultraviolet light with flexibility. It has been formed by a method in which an overcoat agent mainly composed of a curable resin or a thermosetting resin is applied and cured by a screen printing method. However, the coverlay film method is not preferable in terms of workability, and the method using an overcoat agent is still insufficient in terms of warping during curing and flexibility, and is flexible enough to satisfy the required performance. A method for forming a surface protective film on a printed circuit board has not been found.
[0003]
On the other hand, in recent years, a TAB method using a film carrier suitable for high density and thinning as a package for a liquid crystal driving IC has been increasingly used. The basic structure of a film carrier mainly consists of a heat-resistant insulating film substrate such as polyimide and a conductor such as copper foil bonded via an adhesive mainly composed of epoxy resin. The wiring pattern is formed by etching. In addition, the film carrier device is manufactured by connecting an IC to this tape carrier and sealing with a sealing resin. However, due to the occurrence of pattern short circuit, corrosion, migration, whisker, etc. before the IC connection. In order to prevent a decrease in reliability, a surface protective film is generally formed on this film carrier with an overcoat agent. As the overcoat agent used for the film carrier, an epoxy type or a polyimide type is used. The former is a warp during curing and the flexibility of the coating film, and the latter is an adhesive property with an IC sealing resin. However, there is nothing that is satisfactory in terms of operating characteristics and work characteristics, and the present situation is that a plurality of overcoat agents are used together to make up (JP-A-6-283575).
[0004]
On the other hand, as a result of diligent studies to solve the above problems, the inventors of the present invention disclosed in Japanese Patent Application No. 9-219610 and Japanese Patent Application No. 9-219611 that the number average molecular weight was 1,000 to 8, And a polyol having 2 to 10 hydroxyl groups per molecule, or a polyol having a number average molecular weight of 200 to 600 and 2 to 10 hydroxyl groups per molecule, and a number average molecular weight of 13,000 to 30,000. By mixing a polyol having 2 to 10 hydroxyl groups per molecule and a polyblock isocyanate in a predetermined ratio, flexibility, low shrinkage at the time of curing, adhesion, electrical insulation, chemical resistance, It has been found that a resin composition having performance sufficiently satisfying various characteristics such as heat resistance can be obtained. Among them, a polyol or polybromide having a polybutadiene skeleton is obtained. Be used click isocyanates are found to be more effective in terms of low shrinkage upon flexibility and cure.
[0005]
However, when a resin having a polybutadiene skeleton is used, it is susceptible to oxidation. For example, when the resin is left in a high temperature environment for a long time, deterioration such as hardening of the coating film and increase in the amount of warpage is likely to occur. In particular, a printed circuit board such as a flexible circuit board passes through an environment of 150 ° C. or more for several times or for a long time in the manufacturing process. There are concerns about the occurrence of problems such as an increase.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide an overcoat agent that hardly undergoes alteration such as hardening of a coating film and an increase in the amount of warp even when left at a high temperature for a long time.
[0007]
[Means for Solving the Problems]
As a result of studies to solve the above problems, it has been found that the use of a hydrogenated resin at the double bond portion in the polybutadiene skeleton prevents the occurrence of troubles such as hardening of the coating film and an increase in the amount of warpage. Based on these findings, the present invention has been completed.
[0008]
That is, the present invention provides: (a) (A) a number average molecular weight of 1,000 to 8,000, a hydrogenated polybutadiene polyol having 2 to 10 hydroxyl groups per molecule, and (Xa) a number average molecular weight of 1 8,000 to 8,000, containing hydrogenated polybutadiene polyblocked isocyanate having 2 to 10 blocked isocyanate groups per molecule, and the amount of polyblocked isocyanate is 0.8 to the total number of hydroxyl equivalents of polyol. Resin composition for flexible circuit overcoat having 3.5 times equivalent number, (b) (A) Hydrogenated polybutadiene having a number average molecular weight of 1,000 to 8,000 and 2 to 10 hydroxyl groups per molecule Polyol, (Xa) water having a number average molecular weight of 1,000 to 8,000 and having 2 to 10 blocked isocyanate groups per molecule Polybutadiene polyblock isocyanate, and (B) a hydrogenated polybutadiene polyol having a number average molecular weight of 13,000 to 30,000 and having 2 to 10 hydroxyl groups per molecule, and the weight ratio of the two types of polyols is The solid content is in the range of (A) :( B) = 40: 60 to 90:10, and the amount of polyblock isocyanate is 0.8 to 3.5 times the number of equivalents of the total number of hydroxyl groups of the polyol. A resin composition for flexible circuit overcoat, or (c) (C) a number average molecular weight of 200 to 600, a polyol having 2 to 10 hydroxyl groups per molecule, and (Xa) a number average molecular weight of 1,000 to 8,000, hydrogenated polybutadiene polyblock isocyanate having 2 to 10 blocked isocyanate groups per molecule; And (B) a hydrogenated polybutadiene polyol having a number average molecular weight of 13,000 to 30,000 and having 2 to 10 hydroxyl groups per molecule, and the weight ratio of these two polyols is (C ) :( B) = 20: 80 to 50:50, and the amount of the polyblocked isocyanate is 0.8 to 3.5 times the number of equivalents of the total hydroxyl group of the polyol. Resin composition , and resin composition for flexible circuit overcoat obtained by adding rubber-like fine particles and / or polyamide fine particles to any one of these resin compositions , and the resin shown above on the wiring pattern surface side A film carrier characterized by applying an overcoat agent mainly composed of the composition, and such a film carrier was used. The present invention relates to a film carrier device .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
A hydrogenated polybutadiene polyol (A) having a number average molecular weight of 1,000 to 8,000 and having 2 to 10 hydroxyl groups per molecule is obtained with a high crosslinking density such as heat resistance and chemical resistance. In addition, it is important to provide both the properties obtained at a low crosslink density such as flexibility and low shrinkage in a balanced manner. When the molecular weight is smaller than this range, or when the number of hydroxyl groups per molecule is larger than this range, the crosslink density at the time of curing increases, resulting in a harder cured product and the flexibility of the cured coating film. In addition, sufficient physical properties cannot be obtained with respect to low shrinkage during curing. On the other hand, when the molecular weight is larger than this range, or when the number of hydroxyl groups per molecule is smaller than this range, the crosslinking density at the time of curing is lowered, so that a more flexible cured product is obtained, but curing is performed. The heat resistance and chemical resistance of the coating film are significantly reduced.
[0010]
A hydrogenated polybutadiene polyblock isocyanate (Xa) having a number average molecular weight of 1,000 to 8,000 and having 2 to 10 blocked isocyanate groups per molecule is similarly high in heat resistance and chemical resistance. It is important to provide both properties obtained with a crosslinking density and properties obtained with a low crosslinking density such as flexibility and low shrinkage in a balanced manner. When the molecular weight is smaller than this range, or when the number of hydroxyl groups per molecule is larger than this range, the crosslink density at the time of curing increases, resulting in a harder cured product and the flexibility of the cured coating film. In addition, sufficient physical properties cannot be obtained with respect to low shrinkage during curing. On the other hand, when the molecular weight is larger than this range, or when the number of blocked isocyanate groups per molecule is smaller than this range, the crosslinking density at the time of curing is lowered, so that a more flexible cured product is obtained. In addition, the heat resistance and chemical resistance of the cured coating film are significantly reduced.
[0011]
A hydrogenated polybutadiene polyol (B) having a number average molecular weight of 13,000 to 30,000 and having 2 to 10 hydroxyl groups per molecule further reduces the crosslink density, improves flexibility and reduces shrinkage during curing. It is important to increase characteristics such as sex.
[0012]
The polyol (C) having a number average molecular weight of 200 to 600 and having 2 to 10 hydroxyl groups per molecule plays a role of increasing the crosslinking density and improving heat resistance and chemical resistance.
[0013]
When the polyol (A) and the blocked isocyanate (Xa) are cured, the balance between chemical resistance and heat resistance, flexibility and low shrinkage during curing is relatively good, but the coating film is more flexible. In order to reduce the property and warpage during curing, the polyol (B) is added to lower the crosslinking density. In this case, the weight ratio of the two polyols needs to be in the range of (A) :( B) = 40: 60 to 90:10 in the solid content from the balance of the entire characteristics, and the polyol ( When the proportion of B) increases, the crosslink density decreases too much, so that the properties such as heat resistance and chemical resistance of the coating film are remarkably deteriorated.
[0014]
On the other hand, when the polyol (C) is cured with the blocked isocyanate (Xa), the flexibility of the coating film and the warp upon curing are insufficient, and a combination with the polyol (B) is required. In this case, it is preferable that the weight ratio of the two polyols is mixed in the range of (C) :( B) = 20: 80 to 50:50 in the solid content from the balance of the entire characteristics, and is more than this range. When the polyol (C) is small, the crosslinking density is too low, so the properties such as heat resistance and chemical resistance of the coating film are remarkably lowered. When the polyol (C) is large, the crosslinking density is too high, The flexibility of the film and the low shrinkage during curing are reduced.
[0015]
Regarding the polyols (A), (B) and the polyblock isocyanate (Xa), the double bonds in the butadiene skeleton are hydrogenated because of the double bond reaction at a high temperature due to the hardening of the coating film and the amount of warpage. This is to prevent an increase or the like from occurring.
[0016]
The hydrogenated polybutadiene polyol (A) has a number average molecular weight of 1,000 to 8,000, a number of hydroxyl groups of 2 to 10 per molecule, and hydrogenated double bonds in the butadiene skeleton. Any existing product such as “GI-1000” and “GI-3000” (both manufactured by Nippon Soda Co., Ltd.) or “G1000” and “GQ1000” (both Nippon Soda Co., Ltd.), “R-45EPI” (Idemitsu Petrochemical Co., Ltd.) and other hydrogenated polybutadiene polyols are included.
[0017]
Hydrogenated polybutadiene polyblock isocyanate (Xa) has a number average molecular weight of 1,000 to 8,000, 2 to 10 blocked isocyanate groups per molecule, and hydrogenates double bonds in the butadiene skeleton. As long as it is made, any polybutadiene polyisocyanate such as “TP1002” (manufactured by Nippon Soda Co., Ltd.) or “HTP-9” (manufactured by Idemitsu Petrochemical Co., Ltd.) is blocked. Blocked with an agent and further hydrogenated, or hydroxyl group-terminated hydrogenated polybutadiene such as “GI-1000” and “GI-3000” (both manufactured by Nippon Soda Co., Ltd.) And a diisocyanate reacted to form a terminal isocyanate and further blocked with a blocking agent. The blocking agent is preferably a compound having only one active hydrogen capable of reacting with an isocyanate group in one molecule and dissociating again at a temperature of 170 ° C. or less after reacting with the isocyanate group. Ε-caprolactam, malon Examples include diethyl acid, ethyl acetoacetate, acetoxime, methyl ethyl ketoxime, phenol, cresol and the like.
[0018]
The hydrogenated polybutadiene polyol (B) has a number average molecular weight of 13,000 to 30,000, 2 to 10 hydroxyl groups per molecule, and hydrogenated double bonds in the butadiene skeleton. Any hydrogenated polybutadiene having a molecular weight of about 1,000 to 3,000 such as “GI-1000” and “GI-3000” (both manufactured by Nippon Soda Co., Ltd.) can be used. A polyol obtained by reacting with a diisocyanate to increase the molecular weight to about 13,000 to 30,000, or “G1000” (manufactured by Nippon Soda Co., Ltd.), “R-45EPI” (Idemitsu Oil) (Made by Chemical Co., Ltd.) and other polybutadiene polyols are reacted with diisocyanate to increase the molecular weight to about 13,000 to 30,000. After quantification, etc. those hydrogenated.
[0019]
The polyol (C) may have any resin structure as long as the number average molecular weight is 200 to 600 and the number of hydroxyl groups is 2 to 10 per molecule. For example, EO-modified pentaerythritol “PE555” (manufactured by Toho Chemical Co., Ltd.), EO-modified trimethylolpropane “TP880” (manufactured by Toho Chemical Co., Ltd.), polycaprolactone triol “Placcel 303”, “305” (both are Daicel Chemical Industries ( Etc.).
[0020]
In addition to the above essential elements, the present invention may add a polyol and isocyanate curing accelerator, a filler, an additive, a thixotropic agent, a solvent, and the like as necessary. In particular, in order to further improve the bending resistance, it is preferable to add rubber fine particles, and to further improve the adhesion to the base copper circuit, the base substrate such as polyimide and polyester film, and the adhesive layer. Therefore, it is preferable to add polyamide fine particles.
[0021]
As the rubber fine particles, what is a fine particle of a resin that is chemically insoluble and infusible in an organic solvent by subjecting a resin exhibiting rubber elasticity such as acrylonitrile butadiene rubber, butadiene rubber, acrylic rubber, etc. For example, “XER-91” (manufactured by Nippon Synthetic Rubber Co., Ltd.), “STAPHYLOID AC3355”, “AC3832”, “IM101” (manufactured by Takeda Pharmaceutical Co., Ltd.), “ Paraloid EXL2655 "," Same EXL2602 "(manufactured by Kureha Chemical Industry Co., Ltd.) and the like.
[0022]
The polyamide fine particles may be any fine particles of resin having an amide bond, such as an aliphatic polyamide such as nylon, an aromatic polyamide such as Kevlar, and a polyamideimide, and the like, for example, “VESTOSINT 2070” (manufactured by Daicel Huls Co., Ltd.), “SP500” (manufactured by Toray Industries, Inc.), and the like.
[0023]
【Example】
Hereinafter, the manufacture example of the polyol and block isocyanate used for this invention, and the Example of this invention are given below with a comparative example, and this invention is demonstrated more concretely below.
[0024]
<Manufacture of resin E>
In a reaction vessel, 165 g of ethyl diglycol acetate (manufactured by Daicel Chemical Industries, Ltd.), 33 g of trimethylolpropane (OH equivalent = 44.72 g / eq.), And toluene-2,4-diisocyanate (NCO equivalent = 87.08 g) / Eq.) 132 g was charged, the temperature was gradually raised to 80 ° C., and the reaction was continued at that temperature for 2 hours. The isocyanate group content after 2 hours was 10% (NCO equivalent = 420 g / eq.). Subsequently, 79.8 g of ethyl diglycol acetate, “GI-1000” (OH-terminated hydrogenated polybutadiene, Mn = about 1,500, OH equivalent = 801 g / eq., And solid content = 100 w%: Nippon Soda ( 139 g) (manufactured by Kogyo Co., Ltd.) was added dropwise over 1 hour while maintaining at 80 ° C., followed by addition reaction at 80 ° C. for 4 hours. The isocyanate group content of this product was 4.7% (NCO equivalent = 894 g / eq.). Further, while maintaining at 80 ° C., 63.2 g of methyl ethyl ketoxime (molecular weight 87.12) was added dropwise over 2 hours, and the reaction was further continued for 1 hour. When the disappearance of the NCO peak at 2,250 cm −1 was confirmed by FT-IR (Fourier transform infrared spectroscopy), the temperature was lowered to obtain Resin E. Properties of Resin E: Mn = about 1,600, block NCO equivalent (including solvent) = 11,013 g / eq. , And solid content = 60 w%.
[0025]
<Manufacture of resin F>
“GI-1000” (OH-terminated hydrogenated polybutadiene, Mn = about 1,500, OH equivalent = 801 g / eq., And solid content = 100 w%: Nippon Soda Co., Ltd.) 1,000 g, Ipsol 1501 (manufactured by Idemitsu Petrochemical Co., Ltd.) and 0.1 g of dibutyltin dilaurate were added and mixed to dissolve uniformly. When the temperature became uniform, the temperature was raised to 70 ° C., and 97.8 g of toluene-2,4-diisocyanate (NCO equivalent = 87.08 g / eq.) Was added dropwise over 2 hours while stirring, and held for another 1 hour. When the disappearance of the NCO peak at 2,250 cm −1 was confirmed from FT-IR, the temperature was lowered to obtain Resin F. Properties of Resin F: Mn = about 17,000, OH equivalent (including solvent) = 13,521 g / eq. , And solid content = 65 w%.
[0026]
<Manufacture of resin G>
In a reaction vessel, “TP1OO2” (NCO-terminated polybutadiene, Mn = about 1,500, OH equivalent = 1,050 g / eq., And solid content = 50 w%: Nippon Soda Co., Ltd.) 1,000 g and dibutyltin dilaurate After 0.1 g was charged and the temperature was raised to 80 ° C., 99.6 g of methyl ethyl ketoxime (molecular weight 87.12) was added dropwise over 2 hours, and the reaction was further continued for 1 hour. When the disappearance of the NCO peak at 2,250 cm −1 was confirmed from FT-IR, the temperature was lowered to obtain Resin G. Properties of Resin G: Mn = about 1,500, block NCO equivalent (including solvent) = 1,154.5 g / eq. , And solid content = 54.5 w%.
[0027]
<Manufacture of resin H>
“G-1000” (OH-terminated polybutadiene, Mn = about 1,600, OH equivalent = 800 g / eq., And solid content = 100 w%: Nippon Soda Co., Ltd.) 1,000 g, “Ipsol 150 591 g (produced by Idemitsu Petrochemical Co., Ltd.) and 0.1 g of dibutyltin laurate were added and mixed to dissolve uniformly. When the temperature became uniform, the temperature was raised to 70 ° C., and 97.8 g of toluene-2,4-diisocyanate (NCO equivalent = 87.08 g / eq.) Was added dropwise over 2 hours while stirring, and held for another 1 hour. When the disappearance of the NCO peak at 2,250 cm −1 was confirmed from FT-IR, the temperature was lowered to obtain Resin H. Properties of Resin H: Mn = about 17,000, OH equivalent (including solvent) = 13,523 g / eq. , And solid content = 65 w%.
[0028]
Each component used for the postscript Example and the comparative example is shown below.
<Hydrogenated polybutadiene polyol (A)>
"GI-1000" (Mn = about 1,500, OH equivalent = 801 g / eq., And solid content = 100 w%: manufactured by Nippon Soda Co., Ltd.)
<Hydrogenated polybutadiene polyblock isocyanate (Xa)>
Resin E (Mn = about 1,600, block NCO equivalent (including solvent) = 11,013 g / eq., Solid content = 60 w%)
<Hydrogenated polybutadiene polyol (B)>
Resin F (Mn = about 17,000, OH equivalent (including solvent) = 13,521 g / eq., And solid content = 65 w%)
<Polyol (C)>
"PE555" (EO-modified pentaerythritol, Mn = about 550, OH equivalent = 138 g / eq., And solid content = 100 w%: manufactured by Toho Chemical Co., Ltd.)
<Polyol (A ′): Unhydrogenated polybutadiene polyol equivalent to (A)>
"G-1000" (Mn = about 1,600, OH equivalent = 800 g / eq., And solid content = 100 w%: manufactured by Nippon Soda Co., Ltd.)
<Polyol (Xa '): Unhydrogenated polybutadiene polyblocked isocyanate equivalent to (Xa)>
Resin G (Mn = about 1,500, block NCO equivalent (including solvent) = 1,154.5 g / eq., And solid content = 54.5 w%)
<Polyol (B ′): Unhydrogenated polybutadiene polyol equivalent to (B)>
Resin H (Mn = about 17,000, OH equivalent (including solvent) = 13,523 g / eq., Solid content 65 w%)
<Polyamide fine particles>
・ "VENTSINT 2070" (Daicel Huls Co., Ltd.)
<Rubber fine particles>
・ "EXR-91" (manufactured by Nippon Synthetic Rubber Co., Ltd.)
[0029]
<Preparation of curable resin composition>
Examples 1-5
The polyols (A), (B) and (C), and the polyblock isocyanate (Xa), rubber fine particles and polyamide fine particles are appropriately blended, and as other components, dibutyltin laurate, “Aerosil 200” (manufactured by Nippon Aerosil Co., Ltd.) as an inhibitor and carbitol acetate as a viscosity adjusting solvent are added in an appropriate amount for each formulation, mixed, kneaded using three rolls, and samples A1-5 Was prepared. The contents and results of the compositions of each example are listed in Table 1 below.
[0030]
Comparative Examples 1-7
Polyols (A ′), (B ′) and (C), and polyblock isocyanate (Xa ′), rubber fine particles and polyamide fine particles are appropriately blended, and as other components, dibutyltin laurate, “Aerosil 200” (manufactured by Nippon Aerosil Co., Ltd.) as an inhibitor and carbitol acetate as a viscosity adjusting solvent are added in an appropriate amount for each formulation, mixed, kneaded using three rolls, and similar to the examples. Comparative samples B1 to 5 were prepared. Moreover, as an example of the overcoat agent generally used for the current film carrier, “CCR-232GF” (manufactured by Asahi Chemical Research Laboratory, epoxy type) is used as Comparative Example B6, and “FS-100L” (manufactured by Ube Industries, Ltd., Polyimide) was listed in Comparative Example B7. The contents and results of the compositions of each comparative example are listed in Table 2 below.
[0031]
<Preparation of test piece>
About sample A1-5 prepared by the above and comparative sample B1-7, it apply | coats to arbitrary base materials so that it may become thickness of about 25 micrometers at the time of hardening, and it hardens | cures on the conditions for 150 degreeC x 60 minutes, and produces a test sample did.
[0032]
<Measurement of coating film properties>
About the coating film produced by the above, the following characteristic was measured.
[0033]
(1) Warpage amount due to curing shrinkage: It was applied on a polyimide film of 35 mm × 60 mm × 75 μm at 25 mm × 35 mm × 25 μm, and the warpage amount after curing was measured. Moreover, the amount of warpage when the test piece was further heat-treated at 150 ° C. for 7 hours was measured.
[0034]
(2) Bending resistance: A test piece coated and cured on a 75 μm polyimide film was bent at 180 degrees and observed for cracking or whitening when rubbed with a nail.
→ ×: Crack generation, Δ: Whitening, and ○: No abnormality.
[0035]
(3) Solder heat resistance: Flux JS-64MS-S was applied to the coating film and immersed in a solder bath at 260 ° C. for 10 seconds.
→ ○: No abnormality, and ×: Swelling occurred.
[0036]
(4) Electrical insulation: It was applied to a comb-shaped electrode having a conductor width of 0.318 mm, and the electrical resistance after boiling for 1 hour was measured.
[0037]
(5) Chemical resistance: The coating film is rubbed with a cloth soaked with isopropanol.
→ ○: No abnormality, and ×: Coating film deterioration.
[0038]
(6) Adhesion (copper / polyimide): Conforms to JIS D0202. It performed on copper and a polyimide as a base material.
→ ×: 0/100 to 50/100, Δ: 51/100 to 99/100, and ○: 100/100.
[0039]
(7) Adhesion (IC sealing resin): Copper is etched, and the resin composition is applied to a TAB tape having an exposed adhesive layer to a thickness of about 25 μm and cured. An IC sealing resin is applied on this coating film to a thickness of about 200 μm and cured to create a test piece. The test piece is bent by hand and the sealing resin is peeled off.
IC sealing resin A: “XS8103” (manufactured by NAMICS CORPORATION)
IC sealing resin B: “XS8107” (manufactured by NAMICS CORPORATION)
→ ×: Interfacial peeling between composition coating film / sealing resin,
(Triangle | delta): Cohesive failure and interface peeling of a composition coating film and sealing resin coexist,
Cohesive failure as a ratio <interface peeling,
○: cohesive failure and interfacial peeling of the composition coating film and the sealing resin coexist,
Cohesive failure as a ratio> interface peeling,
A: Cohesive failure in each of the composition coating film and the sealing resin.
[0040]
Test results of the characteristics of the membrane measured for the above-mentioned items of the prepared membrane are shown in Table 1 and Table 2 below. From this, the coating film of the curable resin composition of the present invention has a particularly small increase in warpage compared to conventional compositions even after being left at a high temperature for a long time, flexibility, chemical resistance, heat resistance, Excellent electrical insulation, bending resistance, and adhesion, and each property is well balanced.
[0041]
[Table 1]
Figure 0003962940
[0042]
[Table 2]
Figure 0003962940
[0043]
【The invention's effect】
Compared to conventional compositions, the resin composition of the present invention has a particularly small increase in warpage even after standing at a high temperature for a long time, and has excellent flexibility, chemical resistance, heat resistance, and electrical insulation. The resin composition is suitable as an overcoat agent for a flexible circuit, and can be sufficiently expected as an overcoat agent for a film carrier.

Claims (6)

下記成分(A)および(Xa)を含み、ポリブロックイソシアネートの量が、ポリオールの総水酸基当量数に対し、0.8〜3.5倍当量数となるフレキシブル回路オーバーコート用樹脂組成物。
(A)数平均分子量が1,000〜8,000で、1分子当たり2〜10個の水酸基を有する水添ポリブタジエンポリオール、
(Xa)数平均分子量が1,000〜8,000で、1分子当たり2〜10個のブロックイソシアネート基を有する水添ポリブタジエンポリブロックイソシアネート。
A resin composition for a flexible circuit overcoat, comprising the following components (A) and (Xa), wherein the amount of polyblock isocyanate is 0.8 to 3.5 times the number of equivalents of the total hydroxyl group equivalent of the polyol.
(A) a hydrogenated polybutadiene polyol having a number average molecular weight of 1,000 to 8,000 and having 2 to 10 hydroxyl groups per molecule,
(Xa) Hydrogenated polybutadiene polyblock isocyanate having a number average molecular weight of 1,000 to 8,000 and having 2 to 10 blocked isocyanate groups per molecule.
下記(A)、(Xa)および(B)の3成分を含み、このうち2種のポリオールの重量比が固形分において(A):(B)=40:60〜90:10の範囲とし、ポリブロックイソシアネートの量が、ポリオールの総水酸基当量数に対し、0.8〜3.5倍当量数となるフレキシブル回路オーバーコート用樹脂組成物。
(A)数平均分子量が1,000〜8,000で、1分子当たり2〜10個の水酸基を有する水添ポリブタジエンポリオール、
(Xa)数平均分子量が1,000〜8,000で、1分子当たり2〜10個のブロックイソシアネート基を有する水添ポリブタジエンポリブロックイソシアネート、
(B)数平均分子量が13,000〜30,000で、1分子当たり2〜10個の水酸基を有する水添ポリブタジエンポリオール。
The following three components (A), (Xa) and (B) are included, and among these, the weight ratio of the two polyols is in the range of (A) :( B) = 40: 60 to 90:10 in the solid content, A resin composition for a flexible circuit overcoat in which the amount of polyblock isocyanate is 0.8 to 3.5 times the number of equivalents of the total hydroxyl group equivalent of the polyol.
(A) a hydrogenated polybutadiene polyol having a number average molecular weight of 1,000 to 8,000 and having 2 to 10 hydroxyl groups per molecule,
(Xa) hydrogenated polybutadiene polyblocked isocyanate having a number average molecular weight of 1,000 to 8,000 and having 2 to 10 blocked isocyanate groups per molecule;
(B) Hydrogenated polybutadiene polyol having a number average molecular weight of 13,000 to 30,000 and having 2 to 10 hydroxyl groups per molecule.
下記(C)、(Xa)および(B)の3成分を含み、このうち2種のポリオールの重量比が固形分において(C):(B)=20:80〜50:50の範囲とし、ポリブロックイソシアネートの量が、ポリオールの総水酸基当量数に対し、0.8〜3.5倍当量数となるフレキシブル回路オーバーコート用樹脂組成物。
(C)数平均分子量が200〜600で、1分子当たり2〜10個の水酸基を有するポリオール、
(Xa)数平均分子量が1,000〜8,000で、1分子当たり2〜10個のブロックイソシアネート基を有する水添ポリブタジエンポリブロックイソシアネート、
(B)数平均分子量が13,000〜30,000で、1分子当たり2〜10個の水酸基を有する水添ポリブタジエンポリオール。
The following three components (C), (Xa) and (B) are included, and the weight ratio of two kinds of polyols in the solid content is in the range of (C) :( B) = 20: 80 to 50:50, A resin composition for a flexible circuit overcoat in which the amount of polyblock isocyanate is 0.8 to 3.5 times the number of equivalents of the total hydroxyl group equivalent of the polyol.
(C) a polyol having a number average molecular weight of 200 to 600 and 2 to 10 hydroxyl groups per molecule;
(Xa) hydrogenated polybutadiene polyblocked isocyanate having a number average molecular weight of 1,000 to 8,000 and having 2 to 10 blocked isocyanate groups per molecule;
(B) Hydrogenated polybutadiene polyol having a number average molecular weight of 13,000 to 30,000 and having 2 to 10 hydroxyl groups per molecule.
請求項1〜のいずれかに記載の樹脂組成物に、ゴム状微粒子または/及びポリアミド微粒子を添加してなるフレキシブル回路オーバーコート用樹脂組成物。The resin composition for flexible circuit overcoats which adds rubber-like microparticles | fine-particles and / or polyamide microparticles | fine-particles to the resin composition in any one of Claims 1-3 . 配線パターン面側に請求項1〜のいずれかに示す樹脂組成物を主成分とするオーバーコート剤を塗布したことを特徴とするフィルムキャリア。A film carrier, wherein an overcoat agent mainly comprising the resin composition according to any one of claims 1 to 4 is applied to the wiring pattern surface side. 請求項に記載のフィルムキャリアを用いたフィルムキャリアデバイス。A film carrier device using the film carrier according to claim 5 .
JP28897599A 1998-10-15 1999-10-12 Resin composition for flexible circuit overcoat Expired - Fee Related JP3962940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28897599A JP3962940B2 (en) 1998-10-15 1999-10-12 Resin composition for flexible circuit overcoat

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29319898 1998-10-15
JP10-293198 1998-10-15
JP28897599A JP3962940B2 (en) 1998-10-15 1999-10-12 Resin composition for flexible circuit overcoat

Publications (2)

Publication Number Publication Date
JP2000186248A JP2000186248A (en) 2000-07-04
JP3962940B2 true JP3962940B2 (en) 2007-08-22

Family

ID=26557406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28897599A Expired - Fee Related JP3962940B2 (en) 1998-10-15 1999-10-12 Resin composition for flexible circuit overcoat

Country Status (1)

Country Link
JP (1) JP3962940B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639506B2 (en) * 2001-03-30 2011-02-23 横浜ゴム株式会社 Thermosetting one-component urethane composition
JP2006137943A (en) * 2004-10-15 2006-06-01 Ajinomoto Co Inc Resin composition
TWI453253B (en) * 2007-10-18 2014-09-21 Ajinomoto Kk Resin composition
JP7129783B2 (en) * 2018-01-30 2022-09-02 Dicグラフィックス株式会社 overprint varnish
KR20210040401A (en) * 2018-08-03 2021-04-13 신에쓰 가가꾸 고교 가부시끼가이샤 Room temperature curable polybutadiene resin composition, manufacturing method thereof, and mounting circuit board

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523296B2 (en) * 1975-02-20 1980-06-21
JPS617319A (en) * 1984-06-20 1986-01-14 Asahi Chem Ind Co Ltd Polyurethane resin composition for electrical insulation
JPS61261375A (en) * 1985-05-15 1986-11-19 Toshiba Chem Corp Electrically conductive paste
JPS6389573A (en) * 1986-10-01 1988-04-20 Hitachi Chem Co Ltd Moistureproof insulating paint
JPH04114023A (en) * 1990-09-01 1992-04-15 Osaka Kasei Kk Two-pack type polyurethane resin composition for electrical insulation
JPH05275487A (en) * 1991-11-22 1993-10-22 Sumitomo 3M Ltd Electronic parts surface protecting material, electronic parts equipped with the same, and electric connection method of electronic parts using said material
JPH0770501A (en) * 1993-09-02 1995-03-14 Chisso Corp Ink composition and circuit coating film made by using it
JPH08165454A (en) * 1994-12-13 1996-06-25 Hitachi Chem Co Ltd Heat-resistant moistureproof insulation coating and production of insulated electronic part
US5955559A (en) * 1996-09-17 1999-09-21 Shell Oil Company Cast polyurethane elastomers containing low polarity amine curing agents
JPH10120753A (en) * 1996-10-17 1998-05-12 Hitachi Chem Co Ltd Molding material for sealing and electronic part
JPH1171551A (en) * 1997-08-29 1999-03-16 Ajinomoto Co Inc Resin composition for flexible circuit overcoating
JPH1161037A (en) * 1997-08-14 1999-03-05 Ajinomoto Co Inc Resin composition for flexible circuit overcoat
JP3844025B2 (en) * 1997-08-14 2006-11-08 味の素株式会社 Resin composition for overcoat

Also Published As

Publication number Publication date
JP2000186248A (en) 2000-07-04

Similar Documents

Publication Publication Date Title
JP4016226B2 (en) Modified polyimide resin and thermosetting resin composition containing the same
US6762249B1 (en) Wiring-connecting material and process for producing circuit board with the same
US20060083928A1 (en) Resin composition
KR100545459B1 (en) Curable resin compositions for flexible circuit overcoating and thin-film cures thereof
KR20110134946A (en) Insulation-coated electroconductive particles
US6514433B1 (en) Connecting material
JP4296588B2 (en) Thermosetting resin composition and flexible circuit overcoat agent using the same
JP3962940B2 (en) Resin composition for flexible circuit overcoat
JP3844025B2 (en) Resin composition for overcoat
EP1657725A1 (en) Insulation-coated electroconductive particles
KR100542418B1 (en) A curable resin composition for the overcoat of a flexible circuit
JP2007146188A (en) Method for producing modified polyimide resin
JPH1171551A (en) Resin composition for flexible circuit overcoating
JPH1161037A (en) Resin composition for flexible circuit overcoat
JPH06268357A (en) Manufacture of mounting circuit board to which treatment for moisture-proof and insulation is applied

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees