JP2007146188A - Method for producing modified polyimide resin - Google Patents

Method for producing modified polyimide resin Download PDF

Info

Publication number
JP2007146188A
JP2007146188A JP2007066455A JP2007066455A JP2007146188A JP 2007146188 A JP2007146188 A JP 2007146188A JP 2007066455 A JP2007066455 A JP 2007066455A JP 2007066455 A JP2007066455 A JP 2007066455A JP 2007146188 A JP2007146188 A JP 2007146188A
Authority
JP
Japan
Prior art keywords
equivalent
isocyanate
diisocyanate
polyimide resin
modified polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007066455A
Other languages
Japanese (ja)
Inventor
Hiroshi Orikabe
宏 織壁
Tadahiko Yokota
忠彦 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2007066455A priority Critical patent/JP2007146188A/en
Publication of JP2007146188A publication Critical patent/JP2007146188A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing modified polyimide resin sufficiently satisfying required properties as an overcoat agent for wiring circuits requiring flexibility, such as a flexible wiring circuit substrate and a film carrier. <P>SOLUTION: The method for producing a modified polyimide resin comprises reacting a component [1] comprising an isocyanate-containing product (isocyanate equivalent number: X equivalent), obtained by reacting a bifunctional hydroxy-terminated polybutadiene having 800-5,000 number-average molecular weight with a diisocyanate compound at a ratio of hydroxy:isocyanate=1:1.5-2.5 based on equivalent number, with a component [2] comprising a tetrabasic acid dianhydride (acid anhydride equivalent: Y equivalent) in a condition range in which the equivalent numbers are Y>X≥Y/3, 0<X and 0<Y. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐熱性、柔軟性及び硬化時の低収縮性を付与する上で有用な変性ポリイミド樹脂の製造方法に関する。   The present invention relates to a method for producing a modified polyimide resin useful for imparting heat resistance, flexibility and low shrinkage during curing.

従来、フレキシブル配線回路基板の表面保護膜は、カバーレイフィルムと呼ばれるポリイミドフィルムをパターンに合わせた金型をつくり打ち抜いたのち、接着剤を用いて張り付ける方法や、可とう性を持たせた紫外線硬化型樹脂、または熱硬化型樹脂を主成分とするオーバーコート剤をスクリーン印刷法により塗布し硬化させる方法により形成してきた。しかし、カバーレイフィルム法は作業性の点で好ましくなく、オーバーコート剤を用いた方法では硬化時の反りや、柔軟性という点で未だ不十分であり、要求性能を十分に満足するようなフレキシブル配線回路基板の表面保護膜形成方法は見出されていない。   Conventionally, the surface protection film of flexible printed circuit boards has been made by punching a die that matches a pattern with a polyimide film called a coverlay film, and then pasting it with an adhesive, or by applying ultraviolet light with flexibility. It has been formed by a method in which an overcoat agent mainly composed of a curable resin or a thermosetting resin is applied and cured by a screen printing method. However, the coverlay film method is not preferable in terms of workability, and the method using an overcoat agent is still insufficient in terms of warping during curing and flexibility, and is flexible enough to satisfy the required performance. A method for forming a surface protective film on a printed circuit board has not been found.

一方、近年、液晶駆動用ICのパッケージとし高密度化や薄型化に適したフィルムキャリアを用いたTAB方式がますます用いられるようになってきている。フィルムキャリアの基本構成は主に、ポリイミドなどの耐熱性絶縁フィルム基材と、エポキシ系樹脂を主成分とする接着剤を介して接着された銅箔などの導体から成り立っており、この銅箔をエッチングして配線パターンを形成している。また、フィルムキャリアデバイスは、このテープキャリアにICを接続し、封止樹脂で封止して製造されるのであるが、IC接続前に工程中のパターンショートや腐食、マイグレーション、ホイスカーの発生による信頼性の低下を防ぐために、このフィルムキャリアにもオーバーコート剤により表面保護膜を形成することが一般的である。フィルムキャリアに用いられるオーバーコート剤としては、エポキシ系のものやポリイミド系のものが使用されているが、前者は硬化時の反りや塗膜の柔軟性、後者はIC封止樹脂との密着性や作業特性などの点で満足するものがなく、複数のオーバーコート剤を併用して補いあっているのが現状であった(特許文献1)。
特開平6−283575号公報
On the other hand, in recent years, a TAB method using a film carrier suitable for high density and thinning as a package for a liquid crystal driving IC has been increasingly used. The basic structure of a film carrier mainly consists of a heat-resistant insulating film substrate such as polyimide and a conductor such as copper foil bonded via an adhesive mainly composed of epoxy resin. The wiring pattern is formed by etching. The film carrier device is manufactured by connecting an IC to this tape carrier and sealing it with a sealing resin. However, before the IC connection, the film carrier device is reliable due to pattern short circuit, corrosion, migration, and whisker. In order to prevent the deterioration of the property, it is common to form a surface protective film on this film carrier with an overcoat agent. As the overcoat agent used for the film carrier, an epoxy type or a polyimide type is used. The former is a warp during curing and the flexibility of the coating film, and the latter is an adhesive property with an IC sealing resin. There is nothing that is satisfactory in terms of operating characteristics and work characteristics, and the current situation is that a plurality of overcoat agents are used together to make up (Patent Document 1).
JP-A-6-283575

このようにフレキシブル配線回路基板やフィルムキャリアなど、柔軟性を要する配線回路のオーバーコート剤として、要求特性を十分に満たす変性ポリイミド樹脂の製造方法を開発することにある。   Thus, the object is to develop a method for producing a modified polyimide resin that sufficiently satisfies the required characteristics as an overcoat agent for wiring circuits that require flexibility, such as flexible wiring circuit boards and film carriers.

本発明者らは、上記問題点を解決するため鋭意検討した結果、一般式(4)
(ここで、R1は四塩基酸二無水物の酸無水物基を除いた残基、R2はジイソシアネート化合物のイソシアネート基を除いた残基、R3は水酸基末端ポリブタジエンの水酸基を除いた残基を表す。また、L2、M2はポリブタジエンユニットとポリイミドユニットの構成比を表し、n3は重合度を表す。このとき、L2+M2=1、0<L2<1、0<M2<1、でかつ1≦n3≦1000である。)
で示されるポリブタジエン骨格を有する変性ポリイミド樹脂がフレキシブル配線回路基板やテープキャリアなどに用いるオーバーコート剤の成分として非常に有用であることを見出し、(A)数平均分子量が1000〜8000で1分子当たり2〜10個の水酸基を持つポリブタジエンポリオールと、(B)一般式(4)で示される変性ポリイミド樹脂と、(C)数平均分子量が1000〜8000で1分子当たり2〜10個の水酸基を持つポリブタジエンポリブロックイソシアネートを所定の比で混合することにより、柔軟性、硬化時の低収縮性、密着性、電気絶縁性、耐薬品性、耐熱性などの諸特性を十分に満足できる性能を有する樹脂組成物が得られることを見いだした。
As a result of intensive studies to solve the above problems, the present inventors have found that the general formula (4)
(Where R1 is a residue excluding the acid anhydride group of tetrabasic acid dianhydride, R2 is a residue excluding the isocyanate group of the diisocyanate compound, and R3 is a residue excluding the hydroxyl group of the hydroxyl-terminated polybutadiene. L2 and M2 represent the composition ratio of the polybutadiene unit and the polyimide unit, and n3 represents the degree of polymerization, where L2 + M2 = 1, 0 <L2 <1, 0 <M2 <1, and 1 ≦ n3 ≦. 1000.)
The modified polyimide resin having a polybutadiene skeleton represented by is found to be very useful as a component of an overcoat agent used for a flexible printed circuit board or a tape carrier, and (A) the number average molecular weight is 1000 to 8000 per molecule. A polybutadiene polyol having 2 to 10 hydroxyl groups, (B) a modified polyimide resin represented by the general formula (4), and (C) a number average molecular weight of 1000 to 8000 and 2 to 10 hydroxyl groups per molecule. Resin with performance that can sufficiently satisfy various characteristics such as flexibility, low shrinkage during curing, adhesion, electrical insulation, chemical resistance, heat resistance, etc. by mixing polybutadiene polyblock isocyanate at a predetermined ratio It has been found that a composition can be obtained.

すなわち、本発明は成分
成分[1]数平均分子量800〜5000の2官能性水酸基末端ポリブタジエンと、ジイソシアネート化合物を、当量数にして水酸基:イソシアネート基=1:1.5〜2.5で反応して得られるイソシアネート基含有生成物(イソシアネート当量数:X当量)及び成分[2]四塩基酸二無水物(酸無水物当量数:Y当量)を、当量数がY>X≧Y/3、0<X、0<Yの範囲で反応することを特徴とする、変性ポリイミド樹脂の製造方法に関するもので、特に
That is, in the present invention, the component component [1] is reacted with a bifunctional hydroxyl-terminated polybutadiene having a number average molecular weight of 800 to 5000 and a diisocyanate compound in an equivalent number of hydroxyl group: isocyanate group = 1: 1.5 to 2.5. The isocyanate group-containing product (isocyanate equivalent number: X equivalent) and the component [2] tetrabasic acid dianhydride (acid anhydride equivalent number: Y equivalent) obtained when the equivalent number is Y> X ≧ Y / 3, The present invention relates to a method for producing a modified polyimide resin, characterized by reacting in the range of 0 <X, 0 <Y.

成分[1]数平均分子量800〜5000の2官能性水酸基末端ポリブタジエンと、ジイソシアネート化合物を、当量数にして水酸基:イソシアネート基=1:1.5〜2.5で反応して得られる一般式(3)
(ここで、R2はジイソシアネート化合物のイソシアネート基を除いた残基、R3は水酸基末端ポリブタジエンの水酸基を除いた残基を表す。また、n2は重合度を表す。このとき、0≦n2≦100である。)
で示されるイソシアネート基含有生成物(イソシアネート当量数:X当量)及び
[2]一般式(1)
(R1は四塩基酸二無水物の酸無水物基を除いた残基を表す。)
で示される四塩基酸二無水物(酸無水物当量数:Y当量)を、当量数がY>X≧Y/3、0<X、0<Yの範囲で反応することを特徴とする、一般式(2)
(L1、M1はポリブタジエンユニットとポリイミドユニットの構成比を表し、n1は重合度を表す。このとき、L1+M1=1、0<L1<1、0<M1<1、でかつ1≦n1≦10000である。)
で示される変性ポリイミド樹脂の製造方法、さらに、成分[3]イソシアネート基含有生成物または/およびジイソシアネート化合物(イソシアネート当量数:Z当量)を反応させる変性ポリイミド樹脂の製造方法に関するものである。
Component [1] A general formula (1) obtained by reacting a bifunctional hydroxyl-terminated polybutadiene having a number average molecular weight of 800 to 5000 with a diisocyanate compound in an equivalent number and hydroxyl group: isocyanate group = 1: 1.5 to 2.5. 3)
(Here, R2 is a residue excluding the isocyanate group of the diisocyanate compound, R3 is a residue excluding the hydroxyl group of the hydroxyl-terminated polybutadiene, and n2 represents the degree of polymerization. In this case, 0 ≦ n2 ≦ 100. is there.)
And an isocyanate group-containing product (isocyanate equivalent number: X equivalent) and [2] general formula (1)
(R1 represents a residue obtained by removing the acid anhydride group of tetrabasic acid dianhydride.)
Wherein the tetrabasic acid dianhydride (acid anhydride equivalent number: Y equivalent) is reacted in the range of the equivalent number Y> X ≧ Y / 3, 0 <X, 0 <Y, General formula (2)
(L1 and M1 represent the composition ratio of the polybutadiene unit and the polyimide unit, and n1 represents the degree of polymerization. At this time, L1 + M1 = 1, 0 <L1 <1, 0 <M1 <1, and 1 ≦ n1 ≦ 10000. is there.)
And a method for producing a modified polyimide resin in which component [3] an isocyanate group-containing product or / and a diisocyanate compound (isocyanate equivalent number: Z equivalent) are reacted.

本発明の製造方法で得られる変性ポリイミド樹脂を含むオーバーコート剤は、特に柔軟性、硬化時の反りに優れ、かつ、耐薬品性、耐熱性、電気絶縁性、密着性に優れ、フレキシブル回路のオーバーコート剤として適しており、また、フィルムキャリアのオーバーコート剤としても十分に期待できる。   The overcoat agent containing the modified polyimide resin obtained by the production method of the present invention is particularly excellent in flexibility, warping upon curing, and excellent in chemical resistance, heat resistance, electrical insulation, adhesion, and flexible circuit. It is suitable as an overcoat agent, and can be expected sufficiently as an overcoat agent for a film carrier.

以下、本発明を詳細に説明する。この発明における変性ポリイミド樹脂は、主に
[a]数平均分子量800〜5000の2官能性水酸基末端ポリブタジエン
[b]一般式(1)に示される四塩基酸二無水物
[c]ジイソシアネート化合物
の3成分を反応して得られる一般式(2)に示される変性ポリイミド樹脂を示し、ポリイミドユニットを効率良く樹脂中に組み込ませるためには、以下の方法で合成することが好ましい。すなわち、一般式(2)に示される変性ポリイミド樹脂は、数平均分子量800〜5000の2官能性水酸基末端ポリブタジエンとジイソシアネート化合物を、当量数にして水酸基:イソシアネート基=1:1.5〜2.5で反応させて一般式(3)に示されるイソシアネート基含有生成物(イソシアネート当量数:X当量)を得、さらにこれと一般式(1)で示される四塩基酸二無水物(酸無水物当量数:Y当量)と反応させて得ることができる。場合によっては、上記反応において、一般式(3)で示される化合物と一般式(1)で示される化合物の仕込み量を、Y>X≧Y/3、0<X、0<Yの当量数の範囲で反応させ、一般式(4)で示される変性ポリイミド樹脂を得た後、さらに続いて[3]一般式(3)で示されるイソシアネート基含有生成物または/および[c]記載のジイソシアネート化合物(イソシアネート当量数:Z当量)をこれに反応させて一般式(2)で示される変性ポリイミド樹脂を製造することもできる。なお、一般式(4)に反応させるイソシアネートの当量数についてZ当量と表現しているが、これは、一般式(3)で示されるイソシアネート基含有生成物と[c]記載のジイソシアネート化合物を単独、あるいは併用した場合の総当量数を表している。このように反応条件を留意しないと、酸無水物基と水酸基の反応やイソシアネート同士の反応など種々の副反応が起こったり、イソシアネート基と酸無水物基の反応が優先してしまいポリイミドユニットのみが沈殿してしまう場合があるため、効率良くポリイミドユニットを樹脂骨格中に組み込むことができず、機械特性や耐加水分解性などの点で優れた特性を有する樹脂を得ることはできない可能性がある。
Hereinafter, the present invention will be described in detail. The modified polyimide resin in this invention is mainly composed of [a] tetrafunctional dianhydride [c] diisocyanate compound represented by the general formula (1), bifunctional hydroxyl-terminated polybutadiene [b] having a number average molecular weight of 800 to 5000. In order to show the modified polyimide resin represented by the general formula (2) obtained by reacting the components and efficiently incorporate the polyimide unit into the resin, it is preferably synthesized by the following method. That is, the modified polyimide resin represented by the general formula (2) is a hydroxyl group: isocyanate group = 1: 1.5-2.2 with a bifunctional hydroxyl-terminated polybutadiene having a number average molecular weight of 800-5000 and a diisocyanate compound in an equivalent number. 5 to obtain an isocyanate group-containing product (isocyanate equivalent number: X equivalent) represented by the general formula (3), and this and a tetrabasic acid dianhydride (acid anhydride) represented by the general formula (1) Equivalent number: Y equivalent). In some cases, in the above reaction, the amount of the compound represented by the general formula (3) and the compound represented by the general formula (1) is set to the number of equivalents of Y> X ≧ Y / 3, 0 <X, 0 <Y. To obtain a modified polyimide resin represented by the general formula (4), followed by [3] an isocyanate group-containing product represented by the general formula (3) and / or a diisocyanate described in [c]. A modified polyimide resin represented by the general formula (2) can also be produced by reacting a compound (isocyanate equivalent number: Z equivalent) with this. In addition, although the number of equivalents of the isocyanate to be reacted with the general formula (4) is expressed as Z equivalent, this is a single use of the isocyanate group-containing product represented by the general formula (3) and the diisocyanate compound described in [c]. Or the total number of equivalents when used together. Thus, if the reaction conditions are not taken into account, various side reactions such as the reaction between the acid anhydride group and the hydroxyl group and the reaction between isocyanates occur, or the reaction between the isocyanate group and the acid anhydride group takes precedence and only the polyimide unit is present. Since precipitation may occur, the polyimide unit cannot be efficiently incorporated into the resin skeleton, and it may not be possible to obtain a resin having excellent characteristics such as mechanical characteristics and hydrolysis resistance. .

また一般に高分子は、分子量が大きくなりすぎると樹脂溶液粘度が高くなるため、オーバーコート剤などの樹脂組成物として用いることは困難になってくる。このため、樹脂原料成分比率を適度に崩して、分子量が上がりすぎないようにすることが好ましい。すなわち、[1]一般式(3)に示されるイソシアネート基含有生成物(イソシアネート当量数:X当量)、と[2]一般式(1)で示される四塩基酸二無水物(酸無水物当量数:Y当量)との反応の際の仕込み量を、Y>X≧Y/3の当量数の範囲とするのが好ましい。また、これにさらに[3]一般式(3)に示されるイソシアネート基含有生成物または/および[c]記載のジイソシアネート化合物(イソシアネート当量数:Z当量)を反応させる場合、[1][2][3]の添加量が、Y>(X+Z)≧Y/3、0.2≦(Z/X)≦5の当量数の範囲とすることが好ましい。Y<XやY<(X+Z)の場合はイソシアネート基過剰系で重合を行うため副反応が起こりやすく反応制御が困難であり、X<Y/3、(X+Z)<Y/3の場合は酸無水物が大過剰となるため、性能を発揮するための十分な分子量が得られない。また、0.2>(Z/X)の場合は、屈曲性のあるブタジエン骨格の割合が大きくなるため、柔軟性の高い樹脂が得られる反面、耐熱性の点で不十分であり、(Z/X)>5の場合はポリイミド骨格の割合が大きくなるため溶剤に対する溶解性に乏しくなり、溶液の高粘度化や、イミド成分の沈殿等が生じその扱いが困難となる。   In general, when the molecular weight of the polymer is too large, the viscosity of the resin solution increases, so that it becomes difficult to use the polymer as a resin composition such as an overcoat agent. For this reason, it is preferable that the resin raw material component ratio is appropriately broken so that the molecular weight does not increase too much. That is, [1] an isocyanate group-containing product represented by the general formula (3) (isocyanate equivalent number: X equivalent), and [2] a tetrabasic acid dianhydride (acid anhydride equivalent) represented by the general formula (1). The amount charged in the reaction with (number: Y equivalent) is preferably in the range of the equivalent number of Y> X ≧ Y / 3. In addition, when [3] the isocyanate group-containing product represented by the general formula (3) or / and the diisocyanate compound described in [c] (number of isocyanate equivalents: Z equivalent) is further reacted, [1] [2] The addition amount of [3] is preferably in the range of the number of equivalents of Y> (X + Z) ≧ Y / 3 and 0.2 ≦ (Z / X) ≦ 5. In the case of Y <X or Y <(X + Z), polymerization is performed in an isocyanate group-excess system, so that a side reaction is likely to occur and the reaction control is difficult. In the case of X <Y / 3, (X + Z) <Y / 3, Since the anhydride is excessively large, a sufficient molecular weight for exhibiting performance cannot be obtained. In the case of 0.2> (Z / X), since the ratio of the flexible butadiene skeleton is increased, a highly flexible resin is obtained, but it is insufficient in terms of heat resistance. In the case of / X)> 5, since the ratio of the polyimide skeleton is increased, the solubility in the solvent is poor, and the solution becomes highly viscous and the imide component is precipitated, making it difficult to handle.

本発明における変性ポリイミド樹脂の合成原料[1]である一般式(3)に示されるイソシアネート基含有生成物の合成に用いられる数平均分子量800〜5000の2官能性ポリブタジエンとしては、その分子内の不飽和結合を水添したものも含み、例えば、G−1000、G−3000、GI−1000、GI−3000(以上、日本曹達(株)社製)、R−45EPI(出光石油化学(株)社製)などが挙げられるが、これに限定されるものではない。   The bifunctional polybutadiene having a number average molecular weight of 800 to 5000 used for the synthesis of the isocyanate group-containing product represented by the general formula (3), which is the raw material [1] for synthesizing the modified polyimide resin in the present invention, Examples include hydrogenated unsaturated bonds such as G-1000, G-3000, GI-1000, GI-3000 (above, Nippon Soda Co., Ltd.), R-45EPI (Idemitsu Petrochemical Co., Ltd.) However, it is not limited to this.

本発明における変性ポリイミド樹脂の合成原料[1]である一般式(3)に示されるイソシアネート基含有生成物の合成に用いられるジイソシアネート化合物としては、トルエン−2,4−ジイソシアネート、トルエン−2,6−ジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、イソホロンジイソシアネートなどのジイソシアネート化合物などが挙げられるが、これに限定されるものではない。   Examples of the diisocyanate compound used in the synthesis of the isocyanate group-containing product represented by the general formula (3), which is the raw material [1] for synthesizing the modified polyimide resin in the present invention, include toluene-2,4-diisocyanate and toluene-2,6. -Diisocyanate compounds such as diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, isophorone diisocyanate, and the like, are not limited thereto.

本発明における変性ポリイミド樹脂の合成原料[2]に用いられる一般式(1)に示される四塩基酸二無水物としては、ピロメリット酸二無水物、ベンソフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−シクロヘキセン−1,2−ジカルボン酸無水物、3,3’−4,4’−ジフェニルスルホンテトラカルボン酸二無水物、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−C]フラン−1,3−ジオンなどが挙げられるが、これに限定されるものではない   Examples of the tetrabasic acid dianhydride represented by the general formula (1) used for the raw material [2] for synthesizing the modified polyimide resin in the present invention include pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, and biphenyl. Tetracarboxylic dianhydride, naphthalene tetracarboxylic dianhydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-cyclohexene-1,2-dicarboxylic anhydride, 3,3′-4, 4'-diphenylsulfonetetracarboxylic dianhydride, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-C] Examples include, but are not limited to, furan-1,3-dione.

本発明における変性ポリイミド樹脂の合成原料[3]に用いられる[c]記載のジイソシアネート化合物としては、トルエン−2,4−ジイソシアネート、トルエン−2,6−ジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、イソホロンジイソシアネートなどのジイソシアネートなどが挙げられるが、これに限定されるものではない。   Examples of the diisocyanate compound described in [c] used for the synthetic polyimide resin raw material [3] in the present invention include toluene-2,4-diisocyanate, toluene-2,6-diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, diphenylmethane. Although diisocyanates, such as diisocyanate and isophorone diisocyanate, are mentioned, it is not limited to this.

本発明における変性ポリイミド樹脂は、[a]数平均分子量800〜5000の2官能性水酸基末端ポリブタジエンと、[b]四塩基酸二無水物と、[c]ジイソシアネート化合物の3成分を反応して得ることができるが、好ましくは、先ず、数平均分子量800〜5000の2官能性水酸基末端ポリブタジエンと、ジイソシアネート化合物を、当量数にして水酸基:イソシアネート基=1:1.5〜2.5で仕込み、有機溶媒中で80℃以下の反応温度で1〜8時間反応を行い、次いで、この反応で得られたイソシアネート基含有ポリブタジエン樹脂溶液を室温まで冷却した後に、当量比にしてイソシアネート基よりも過剰の四塩基酸二無水物と、反応触媒、及び、必要に応じて有機溶媒を追加し、120〜150℃で2〜24時間反応を行い、イソシアネート基が全て反応し終わった点を終了とするか、あるいはさらに、この反応物にジイソシアネート化合物を滴下して、120〜150℃で2〜24時間重合反応を行い、イソシアネート基が全て反応し終わった点を終了とすることにより、好適に得ることができる。このとき、酸無水物基の当量数がイソシアネート基の当量数に対して同量超かつ、イソシアネート基の当量数が酸無水物の当量数の3分の1に対して、同量以上であることが好ましい。   The modified polyimide resin in the present invention is obtained by reacting three components of [a] a bifunctional hydroxyl-terminated polybutadiene having a number average molecular weight of 800 to 5000, [b] tetrabasic acid dianhydride, and [c] diisocyanate compound. Preferably, first, a bifunctional hydroxyl-terminated polybutadiene having a number average molecular weight of 800 to 5000 and a diisocyanate compound are charged in an equivalent number of hydroxyl groups: isocyanate groups = 1: 1.5 to 2.5, The reaction is carried out in an organic solvent at a reaction temperature of 80 ° C. or lower for 1 to 8 hours, and then the isocyanate group-containing polybutadiene resin solution obtained by this reaction is cooled to room temperature, and then in an equivalent ratio, it is in excess of the isocyanate groups. Add tetrabasic dianhydride, reaction catalyst, and organic solvent if necessary, and react at 120-150 ° C for 2-24 hours. Either complete the reaction of all isocyanate groups, or add a diisocyanate compound dropwise to the reaction product, and perform a polymerization reaction at 120 to 150 ° C. for 2 to 24 hours. It can be suitably obtained by setting the point that has been completed as the end. At this time, the number of equivalents of acid anhydride groups exceeds the same amount as the number of equivalents of isocyanate groups, and the number of equivalents of isocyanate groups is equal to or more than one third of the number of equivalents of acid anhydride. It is preferable.

上記の反応における有機溶媒としては、例えば、N,N’−ジメチルホルムアミド、N,N’−ジエチルホルムアミド、N,N’−ジメチルアセトアミド、N,N’−ジエチルアセトアミド、ジメチルスルホキシド、ジエチルスルホキシド、N−メチル−2−ピロリドン、テトラメチルウレア、γ−ブチロラクトン、シクロヘキサノン、ジグライム、トリグライム、カルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどの極性溶媒が、単独、あるいは混合として使用できる。また、これらの極性溶媒に芳香族炭化水素類などの非極性溶媒の併用も可能である。   Examples of the organic solvent in the above reaction include N, N′-dimethylformamide, N, N′-diethylformamide, N, N′-dimethylacetamide, N, N′-diethylacetamide, dimethyl sulfoxide, diethyl sulfoxide, N Polar solvents such as methyl-2-pyrrolidone, tetramethylurea, γ-butyrolactone, cyclohexanone, diglyme, triglyme, carbitol acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate can be used alone or as a mixture . Further, these polar solvents can be used in combination with nonpolar solvents such as aromatic hydrocarbons.

上記の反応における反応触媒としては、例えば、テトタメチルブタンジアミン、ベンジルジメチルアミン、トリエタノールアミン、トリエチルアミン、N,N’−ジメチルピペリジン、α−メチルベンジルジメチルアミン、N−メチルモルホリン、トリエチレンジエミンなどの三級アミンや、ジブチル錫ラウレート、ジメチル錫ジクロライド、ナフテン酸コバルト、ナフテン酸亜鉛などの有機金属触媒などが、単独、あるいは、併用して使用できるが、トリエチレンジアミンの使用が最も好ましい。   As a reaction catalyst in the above reaction, for example, tetotamethylbutanediamine, benzyldimethylamine, triethanolamine, triethylamine, N, N′-dimethylpiperidine, α-methylbenzyldimethylamine, N-methylmorpholine, triethylenediemine Tertiary amines such as dibutyltin laurate, dimethyltin dichloride, cobalt naphthenate, zinc naphthenate and the like can be used alone or in combination. Triethylenediamine is most preferred.

また、本発明における変性ポリイミド樹脂含有樹脂組成物は、(A)数平均分子量が1000〜8000で、1分子当たり2〜10個の水酸基を有するポリブタジエンポリオールと、(B)一般式(4)に示される変性ポリイミド樹脂と、(C)数平均分子量が1000〜8000で、1分子当たり2〜10個のブロックイソシアネート基を有するポリブタジエンポリブロックイソシアネートを必須成分としてなるものであり、(A)成分と(B)成分の重量比が固形分として(A):(B)=40:60〜90:10、ポリブロックイソシアネートの量が、(A)成分の水酸基当量数と(B)成分の酸無水物当量数の和に対し、0.8〜3.5倍当量数となるようにすることが好ましい。   Moreover, the modified polyimide resin-containing resin composition in the present invention has (A) a polybutadiene polyol having a number average molecular weight of 1000 to 8000 and 2 to 10 hydroxyl groups per molecule, and (B) the general formula (4). The modified polyimide resin shown, and (C) a polybutadiene polyblock isocyanate having 2 to 10 blocked isocyanate groups per molecule with a number average molecular weight of 1000 to 8000, and (A) component and The weight ratio of component (B) is (A) :( B) = 40: 60 to 90:10 as the solid content, and the amount of polyblock isocyanate is the number of hydroxyl equivalents of component (A) and acid anhydride of component (B). It is preferable that the equivalent number is 0.8 to 3.5 times the sum of the number of equivalents.

上記組成物における数平均分子量が1000〜8000で、1分子当たり2〜10個の水酸基を有するポリブタジエンポリオール(A)は、耐熱性、耐薬品性など剛直性樹脂に見られる特性と、可とう性、低収縮性など柔軟性樹脂に見られる特性の両方を付与させるのに重要である。分子量がこの範囲よりも小さくなる場合や、1分子当たりの水酸基の数がこの範囲よりも大きくなる場合は、硬化時の架橋密度が高くなるため、より固い硬化物となり、硬化塗膜の柔軟性や硬化時の低収縮性に関して十分な物性は得られない。一方、分子量がこの範囲よりも大きくなる場合や、1分子当たりの水酸基の数がこの範囲よりも小さくなる場合は、硬化時の架橋密度が低くなるため、より柔軟な硬化物となる反面、硬化塗膜の耐熱性や耐薬品性が著しく低下する。また、この成分(A)がポリブタジエン骨格であることより、柔軟性や硬化時の低収縮性をより向上させる効果がある。   The polybutadiene polyol (A) having a number average molecular weight of 1000 to 8000 in the above composition and having 2 to 10 hydroxyl groups per molecule has characteristics such as heat resistance and chemical resistance, and flexibility and flexibility. It is important for imparting both of the properties found in flexible resins such as low shrinkage. When the molecular weight is smaller than this range, or when the number of hydroxyl groups per molecule is larger than this range, the crosslink density at the time of curing increases, resulting in a harder cured product and the flexibility of the cured coating film. In addition, sufficient physical properties cannot be obtained with respect to low shrinkage during curing. On the other hand, when the molecular weight is larger than this range, or when the number of hydroxyl groups per molecule is smaller than this range, the crosslinking density at the time of curing is lowered, so that a more flexible cured product is obtained, but curing is performed. The heat resistance and chemical resistance of the coating film are significantly reduced. In addition, since the component (A) is a polybutadiene skeleton, there is an effect of further improving flexibility and low shrinkage during curing.

上記組成物における一般式(4)に示される変性ポリイミド樹脂は、官能基が少なく適度な分子量を持ち、かつ、ブタジエン骨格由来の柔軟性を保有しているため、硬化塗膜に柔軟性や硬化時の低収縮性を付与するのに重要である。また、耐熱性や耐薬品性を付与するイミド骨格も持っているため、柔軟性と耐熱、耐薬品性をある程度両立させる上でも重要である。その他、この樹脂はポリブタジエンユニットを有しているため、(A)数平均分子量が1000〜8000で、1分子当たり2〜10個の水酸基を有するポリブタジエンポリオールや、(C)数平均分子量が1000〜8000で、1分子当たり2〜10個のブロックイソシアネート基を有するポリブタジエンポリブロックイソシアネートと非常に均一に混合するため、(A)成分と(C)成分が作る架橋系にしっかりと取り込まれる特徴を持つ。このため、(A)成分と(C)成分が作る架橋系の優れた特性である耐熱性、耐薬品性、耐湿性などについて、(B)成分の添加は、その物性低下を極力抑えながら柔軟性や硬化時の低収縮性を付与する上でより効果的である。   The modified polyimide resin represented by the general formula (4) in the composition has few functional groups, has an appropriate molecular weight, and possesses flexibility derived from a butadiene skeleton. It is important to give low shrinkage at the time. In addition, since it has an imide skeleton that imparts heat resistance and chemical resistance, it is also important for achieving a certain degree of compatibility between flexibility, heat resistance, and chemical resistance. In addition, since this resin has a polybutadiene unit, (A) the number average molecular weight is 1000 to 8000, polybutadiene polyol having 2 to 10 hydroxyl groups per molecule, and (C) the number average molecular weight is 1000 to 8000. 8000, because it is very homogeneously mixed with polybutadiene polyblocked isocyanate having 2 to 10 blocked isocyanate groups per molecule, it is characterized by being firmly incorporated into the crosslinking system made by component (A) and component (C) . For this reason, with regard to heat resistance, chemical resistance, moisture resistance, etc., which are excellent characteristics of the cross-linking system formed by the component (A) and the component (C), the addition of the component (B) is flexible while minimizing the deterioration of its physical properties. It is more effective in imparting low shrinkage during curing and curing.

上記組成物における数平均分子量が1000〜8000で、1分子当たり2〜10個のブロックイソシアネート基を有するポリブタジエンポリブロックイソシアネート(C)は、耐熱性、耐薬品性など剛直性樹脂に見られる特性と、可とう性、低収縮性など柔軟性樹脂に見られる特性の両方を付与させるのに重要である。分子量がこの範囲よりも小さくなる場合や、1分子当たりの水酸基の数がこの範囲よりも大きくなる場合は、硬化時の架橋密度が高くなるため、より固い硬化物となり、硬化塗膜の柔軟性や硬化時の低収縮性に関して十分な物性は得られない。一方、分子量がこの範囲よりも大きくなる場合や、1分子当たりの水酸基の数がこの範囲よりも小さくなる場合は、硬化時の架橋密度が低くなるため、より柔軟な硬化物となる反面、硬化塗膜の耐熱性や耐薬品性が著しく低下する。また、この成分(A)がポリブタジエン骨格であることより、柔軟性や硬化時の低収縮性をより向上させる効果がある。   The polybutadiene polyblock isocyanate (C) having a number average molecular weight of 1000 to 8000 in the above composition and having 2 to 10 blocked isocyanate groups per molecule has characteristics such as heat resistance and chemical resistance found in rigid resins. It is important for imparting both of the properties found in flexible resins such as flexibility and low shrinkage. When the molecular weight is smaller than this range, or when the number of hydroxyl groups per molecule is larger than this range, the crosslink density at the time of curing increases, resulting in a harder cured product and the flexibility of the cured coating film. In addition, sufficient physical properties cannot be obtained with respect to low shrinkage during curing. On the other hand, when the molecular weight is larger than this range, or when the number of hydroxyl groups per molecule is smaller than this range, the crosslinking density at the time of curing is lowered, so that a more flexible cured product is obtained, but curing is performed. The heat resistance and chemical resistance of the coating film are significantly reduced. In addition, since the component (A) is a polybutadiene skeleton, there is an effect of further improving flexibility and low shrinkage during curing.

ポリブタジエンポリオール(A)だけを単独でポリブタジエンポリイソシアネート(B)で硬化させる場合は、比較的、耐熱性、耐薬品性と柔軟性、硬化時の低収縮性についてバランスの良い硬化物になるものの、完全には柔軟性、硬化時の低収縮性について十分に満足できる特性とは言えないレベルであるため、変性ポリイミド樹脂(B)と組み合わせることが必要である。すなわち、(A):(B)=40:60〜90:10の範囲で混合して用いるのが好ましく、ポリオール(A)がこの範囲よりも少ない場合は、架橋密度が下がりすぎるため、塗膜の耐熱性、耐薬品性などの特性が著しく低下する。また、ポリブタジエンポリブロックイソシアネート(C)の量は、成分(A)の水酸基当量数と成分(B)の酸無水物当量数の和に対し、0.8〜3.5倍当量数となることが好ましく、これよりも多い場合も少ない場合もともに架橋密度が低下しすぎるため、塗膜の耐熱性、耐薬品性などの特性が著しく低下する。   When only the polybutadiene polyol (A) is cured alone with the polybutadiene polyisocyanate (B), the cured product has a relatively good balance of heat resistance, chemical resistance and flexibility, and low shrinkage during curing. It is necessary to combine with the modified polyimide resin (B) because it is a level that cannot be said to be fully satisfactory in terms of flexibility and low shrinkage during curing. That is, (A) :( B) = 40: 60 to 90:10 are preferably mixed and used, and when the polyol (A) is less than this range, the crosslinking density is too low, so the coating film The properties such as heat resistance and chemical resistance are significantly reduced. Moreover, the quantity of polybutadiene polyblock isocyanate (C) shall be 0.8-3.5 times equivalent number with respect to the sum of the hydroxyl equivalent number of a component (A), and the acid anhydride equivalent number of a component (B). The crosslink density is too low in both cases where the amount is higher and lower than this, and the properties such as heat resistance and chemical resistance of the coating film are remarkably reduced.

ポリブタジエンポリオール(A)としては、数平均分子量が1000〜8000で、水酸基の数が1分子当たり2〜10個であり、ブタジエン骨格を持つものであるならばどのようなものでも良く、例えば、G−1000、GI−1000、GQ−1000、(以上、日本曹達(株)社製)、R−45EPI(出光石油化学(株)社製)などが挙げられるが、これに限定されるものではない。   Any polybutadiene polyol (A) may be used as long as it has a number average molecular weight of 1000 to 8000, a number of hydroxyl groups of 2 to 10 per molecule, and a butadiene skeleton. -1000, GI-1000, GQ-1000 (above, manufactured by Nippon Soda Co., Ltd.), R-45EPI (produced by Idemitsu Petrochemical Co., Ltd.), etc., but are not limited thereto. .

ポリブタジエンポリブロックイソシアネート(C)は、イソシアネート基含有ポリブタジエンポリイソシアネートをブロック剤でブロックして得られるものであり、このポリブタジエンポリイソシアネートとしては、例えば、トルエン−2,4−ジイソシアネート、トルエン−2,6−ジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、イソホロンジイソシアネートなどのジイソシアネートや、イソシアネート基の環化3量化反応を利用し上記ジイソシアネートを3官能以上にしたものや、イソシアネート基の一部を種々のポリオールと反応させ3官能以上にしたものと、数平均分子量が600〜7000水酸基含有ポリブタジエンとを反応させたものであり、例えば、TP−1002(日本曹達(株)製)や、HTP−9、HTP−5MLD、ユニマックスP(以上、出光石油化学(株)製)などが挙げられる。またブロック剤としては、イソシアネート基と反応しうる活性水素を1分子中に1個だけ有する化合物で、イソシアネート基と反応した後も170℃以下の温度で再び解離するものが好ましく、ε−カプロラクタム、マロン酸ジエチル、アセト酢酸エチル、アセトオキシム、メチルエチルケトオキシム、フェノール、クレゾールなどが挙げられる。が、これに限定されるものではない   The polybutadiene polyblock isocyanate (C) is obtained by blocking an isocyanate group-containing polybutadiene polyisocyanate with a blocking agent. Examples of the polybutadiene polyisocyanate include toluene-2,4-diisocyanate, toluene-2,6. -Diisocyanates such as diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, isophorone diisocyanate, those obtained by making the diisocyanate trifunctional or more utilizing the cyclization trimerization reaction of the isocyanate group, and various isocyanate groups A polyfunctional butadiene having a number average molecular weight of 600 to 7000, and a polybutadiene having a number average molecular weight of 3 or more. TP-1002 and (manufactured by Nippon Soda Co. (Ltd.)), HTP-9, HTP-5MLD, UNIMAX P (manufactured by Idemitsu Petrochemical Co., Ltd.) and the like. The blocking agent is preferably a compound having only one active hydrogen in one molecule capable of reacting with an isocyanate group and dissociating again at a temperature of 170 ° C. or less after reacting with the isocyanate group, ε-caprolactam, Examples include diethyl malonate, ethyl acetoacetate, acetoxime, methyl ethyl ketoxime, phenol, cresol and the like. However, it is not limited to this

また、本発明は、以上の必須要素の他に必要に応じて、ポリオールとイソシアネートの硬化促進剤や、充填剤、添加剤、チキソ剤、溶剤等を添加しても差し支えない。特に、耐折り曲げ性をより向上させるためにはゴム微粒子を添加することが好ましく、また、下地の銅回路や、ポリイミド、ポリエステルフィルムなどのベース基材、接着剤層との密着性をより向上させるためにはポリアミド微粒子を添加することが好ましい。   In addition to the above essential elements, the present invention may add a polyol and isocyanate curing accelerator, a filler, an additive, a thixotropic agent, a solvent, and the like as necessary. In particular, in order to further improve the bending resistance, it is preferable to add rubber fine particles, and to further improve the adhesion to the base copper circuit, the base substrate such as polyimide and polyester film, and the adhesive layer. Therefore, it is preferable to add polyamide fine particles.

ゴム微粒子としては、アクリロニトリルブタジエンゴム、ブタジエンゴム、アクリルゴムなどのゴム弾性を示す樹脂に化学的架橋処理を行施し、有機溶剤に不溶かつ不融とした樹脂の微粒子体であるものならばどのようなものでも良く、例えば、XER−91(日本合成ゴム(株)社製)、スタフィロイドAC3355、AC3832、IM101(以上、武田薬品工業(株)社製)パラロイドEXL2655、EXL2602(以上、呉羽化学工業(株)社製)などが挙げられるが、これらに限定されるものではない。   As the rubber fine particles, what is a fine particle of a resin that is chemically insoluble and infusible in an organic solvent by subjecting a resin exhibiting rubber elasticity such as acrylonitrile butadiene rubber, butadiene rubber, acrylic rubber, etc. For example, XER-91 (made by Nippon Synthetic Rubber Co., Ltd.), Staphyloid AC3355, AC3832, IM101 (above, Takeda Pharmaceutical Co., Ltd.) Paraloid EXL2655, EXL2602 (above, Kureha Chemical Industry) However, it is not limited to these.

ポリアミド微粒子としては、ナイロンのような脂肪族ポリアミドやケブラーのような芳香族ポリアミド、さらには、ポリアミドイミドなど、アミド結合を有する樹脂の50ミクロン以下の微粒子であればどのようなものでも良く、例えば、VESTOSINT 2070(ダイセルヒュルス(株)社製)や、SP500(東レ(株)社製)などが挙げられるが、これらに限定されるものではない。   The polyamide fine particles may be any fine particles of resin having an amide bond, such as an aliphatic polyamide such as nylon, an aromatic polyamide such as Kevlar, and a polyamideimide, and the like, for example, , VESTOSINT 2070 (manufactured by Daicel Huls Co., Ltd.), SP500 (manufactured by Toray Industries, Inc.) and the like, but are not limited thereto.

以下、本発明における変性ポリイミド樹脂及びポリブロックイソシアネートの製造例及び、本発明の実施例を比較例とともに以下に挙げ、本発明をより具体的に説明する。   Hereinafter, the production examples of the modified polyimide resin and polyblock isocyanate in the present invention and the examples of the present invention will be described below together with comparative examples to explain the present invention more specifically.

<一般式(4)で示される変性ポリイミド樹脂の製造(ワニスE)>
反応容器にG−3000(OH末端ポリブタジエン、Mn=約3000、OH当量=1798g/eq.、固形分100w%:日本曹達(株)社製)50gと、イプゾール150(出光石油化学(株)社製)23.5g、ジブチル錫ラウレート0.007gを混合し均一に溶解させる。均一になったところで50℃に昇温し、更に撹拌しながら、トルエン−2,4−ジイソシアネート(NCO当量=87.08g/eq.)4.8gを添加し2〜4時間反応を行う。次いで、この反応物を室温まで冷却してから、これにベンゾフェノンテトラカルボン酸二無水物(酸無水物当量161.1)8.83gと、トリエチレンジアミン0.07gと、トリグライム74.09gを添加し、攪拌しながら130℃まで昇温、2〜6時間反応を行う。FT−IRより2250cm−1のNCOピークの消失が確認された時点でさらに、トルエン−2,4−ジイソシアネート(NCO当量=87.08g/eq.)1.43gを添加し、再び130℃で2〜6時間攪拌反応を行いながらFT−IRによりNCO消失の確認を行う。NCO消失の確認をもって反応の終点とみなし、これを室温まで降温してから100メッシュの濾布で濾過して一般式(4)でしめされた変性ポリイミド樹脂(ワニスE)(図1)を得た。
樹脂ワニスEの性状:対数粘度=0.31(30℃・NMP溶液)
酸無水物当量(溶剤含)=14708g/eq.
固形分=40w%
*)対数粘度測定に使用したポリマー溶液は、ワニスEをメタノールに注いで樹脂固形分のみを沈殿させ、濾過、乾燥ののち、N−メチル−ピロリドンに0.5g/dLの濃度で溶解させて調製した。
<Production of modified polyimide resin represented by general formula (4) (varnish E)>
In a reaction vessel, 50 g of G-3000 (OH-terminated polybutadiene, Mn = about 3000, OH equivalent = 1798 g / eq., Solid content 100 w%: Nippon Soda Co., Ltd.) and Ipsol 150 (Idemitsu Petrochemical Co., Ltd.) (Made) 23.5 g and dibutyltin laurate 0.007 g are mixed and dissolved uniformly. When the temperature becomes uniform, the temperature is raised to 50 ° C., and while stirring, 4.8 g of toluene-2,4-diisocyanate (NCO equivalent = 87.08 g / eq.) Is added and the reaction is performed for 2 to 4 hours. The reaction was then cooled to room temperature and 8.83 g benzophenone tetracarboxylic dianhydride (acid anhydride equivalent 161.1), 0.07 g triethylenediamine and 74.09 g triglyme were added to it. While stirring, the temperature is raised to 130 ° C. and the reaction is carried out for 2 to 6 hours. When the disappearance of the NCO peak at 2250 cm −1 was confirmed by FT-IR, 1.42 g of toluene-2,4-diisocyanate (NCO equivalent = 87.08 g / eq.) Was further added, and again at 130 ° C., 2 Confirm disappearance of NCO by FT-IR while stirring for ˜6 hours. The confirmation of NCO disappearance is regarded as the end point of the reaction, and this is cooled to room temperature and then filtered through a 100 mesh filter cloth to obtain a modified polyimide resin (varnish E) (FIG. 1) shown by the general formula (4). It was.
Properties of resin varnish E: logarithmic viscosity = 0.31 (30 ° C, NMP solution)
Acid anhydride equivalent (including solvent) = 14708 g / eq.
Solid content = 40w%
*) The polymer solution used for the logarithmic viscosity measurement was prepared by pouring varnish E into methanol to precipitate only the resin solids, filtering and drying, and then dissolving in N-methyl-pyrrolidone at a concentration of 0.5 g / dL. Prepared.

<ブロックイソシアネートの製造(ワニスF)>
反応容器にHTP−9(NCO末端ポリブタジエン、NCO当量=467g/eq.、固形分=100w%:出光石油化学(株)社製)1000gと、エチルジグリコールアセテート(ダイセル化学工業(株)社製)216gと、ジブチル錫ラウレート0.1gを混合し均一に溶解させる。均一になったところで70℃に昇温し、更に撹拌しながら、メチルエチルケトオキシム(分子量87.12)224gを2時間かけて滴下し、更に1時間保持、図1に示したFT−IRより2250cm−1のNCOピークの消失が確認されたところで降温し、ブロックイソシアネート(ワニスF)を得た。
樹脂ワニスGの性状:NCO当量=672.5g/eq.
固形分=85w%
<Production of blocked isocyanate (varnish F)>
In a reaction vessel, 1000 g of HTP-9 (NCO-terminated polybutadiene, NCO equivalent = 467 g / eq., Solid content = 100 w%: manufactured by Idemitsu Petrochemical Co., Ltd.) and ethyl diglycol acetate (manufactured by Daicel Chemical Industries, Ltd.) ) 216 g and dibutyltin laurate 0.1 g are mixed and dissolved uniformly. When the temperature became uniform, the temperature was raised to 70 ° C., 224 g of methyl ethyl ketoxime (molecular weight 87.12) was added dropwise over 2 hours while stirring, and further maintained for 1 hour, 2250 cm− from FT-IR shown in FIG. When disappearance of NCO peak 1 was confirmed, the temperature was lowered to obtain blocked isocyanate (varnish F).
Properties of resin varnish G: NCO equivalent = 672.5 g / eq.
Solid content = 85w%

(塗膜の評価方法)
(1)硬化収縮による反り量:35mm×60mm×75μmのポリイミドフィルム上に25mm×35mm×25μmで塗布し、硬化後の反り量を測定。
(2)耐折り曲げ性試験:マンドレル試験。1〜1/8インチ径の範囲で折り曲げ試験を行う。→表示はクラックの発生しない最小径を示す。
(3)電気絶縁性:導体幅0.318mmのくし型電極に塗布し、煮沸1時間後の電気抵抗を測定。
(4)耐薬品性:アセトンあるいはイソプロパノールをしみ込ませたウエスで、塗膜をラビング。→○:異常なし、×:塗膜劣化
(5)ハンダ耐熱性:塗膜にフラックスJS−64MS−Sを塗布し、それを260℃のハンダ浴に10秒間浸漬。
→ ◎:異常なし、○:わずかに膨れ発生、×:著しく膨れ発生
(6)耐折り曲げ性:JIS C5016に準じて行った。折り曲げ面の半径は0.38mmとし、クラックが入るまでの折り曲げ回数を測定。
→×:10回以下、△:10〜1000回、○:1000〜2000回、◎:2000回以上
(7)密着性(IC封止樹脂):銅をエッチングして、接着剤層がむき出しになったTABテープに樹脂組成物を約25μm厚に塗布し硬化させる。この塗膜上にIC封止樹脂を約200μm厚に塗布し硬化させ試験片を作成。手で試験片を折り曲げ、封止樹脂の剥がれ具合を観察する。
IC封止樹脂A:XS8103(ナミックス(株)社製)
IC封止樹脂B:XS8107(ナミックス(株)社製)
→×:組成物塗膜/封止樹脂間界面剥離
△:組成物塗膜及び封止樹脂の凝集破壊と界面剥離が共存し、
割合として凝集破壊<界面剥離
○:組成物塗膜及び封止樹脂の凝集破壊と界面剥離が共存し、
割合として凝集破壊>界面剥離
◎:組成物塗膜と封止樹脂の各々で凝集破壊
(8)密着性(銅、ポリイミド上):JIS D0202に準じる。
ポリイミド:ユーピレックスS(宇部興産(株)社製)
→×:0/100〜50/100、
△:51/100〜99/100、
○:100/100
(Evaluation method of coating film)
(1) Warpage amount due to curing shrinkage: It was applied on a polyimide film of 35 mm × 60 mm × 75 μm at 25 mm × 35 mm × 25 μm, and the amount of warpage after curing was measured.
(2) Bending resistance test: Mandrel test. The bending test is performed in the range of 1 to 1/8 inch diameter. → The display shows the minimum diameter where cracks do not occur.
(3) Electrical insulation: It is applied to a comb-shaped electrode having a conductor width of 0.318 mm, and the electrical resistance after 1 hour of boiling is measured.
(4) Chemical resistance: The coating film is rubbed with a cloth soaked with acetone or isopropanol. → ○: No abnormality, ×: Coating film deterioration
(5) Solder heat resistance: Flux JS-64MS-S was applied to the coating film and immersed in a solder bath at 260 ° C. for 10 seconds.
→ ◎: No abnormality, ○: Slight swelling, x: Severe swelling
(6) Bending resistance: Performed according to JIS C5016. The radius of the bending surface is 0.38 mm, and the number of bendings until a crack occurs is measured.
→ ×: 10 times or less, Δ: 10 to 1000 times, ○: 1000 to 2000 times, ◎: 2000 times or more
(7) Adhesiveness (IC sealing resin): Copper is etched, and the resin composition is applied to a TAB tape having an exposed adhesive layer to a thickness of about 25 μm and cured. An IC sealing resin is applied on this coating film to a thickness of about 200 μm and cured to create a test piece. The test piece is bent by hand and the sealing resin is peeled off.
IC sealing resin A: XS8103 (manufactured by NAMICS Co., Ltd.)
IC sealing resin B: XS8107 (manufactured by NAMICS Co., Ltd.)
→ ×: Interfacial peeling between composition coating film / sealing resin Δ: Cohesive failure and interfacial peeling between the composition coating film and sealing resin coexist,
Cohesive failure as a ratio <interface peeling ○: cohesive failure and interface peeling of the composition coating film and the sealing resin coexist,
Cohesive failure as a ratio> Interfacial debonding
A: Cohesive failure in each of the composition coating film and the sealing resin
(8) Adhesion (on copper and polyimide): Conforms to JIS D0202.
Polyimide: Upilex S (manufactured by Ube Industries, Ltd.)
→ ×: 0/100 to 50/100,
Δ: 51/100 to 99/100,
○: 100/100

<硬化性樹脂組成物の調製>
A成分:ポリブタジエンポリオール
・GQ−2000(OH末端ポリブタジエン、Mn=約2500、OH当量=1042g/eq.、固形分=45w%:日本曹達(株)社製)
B成分:変性ポリイミド樹脂
・樹脂ワニスE(酸無水物末端樹脂、酸無水物当量(溶剤含)=14708g/eq.、固形分=40w%)
A,B成分以外のポリオール
・LIR−506(OH基含有ポリイソプレン、Mn=約25000、OH当量=4237g/eq.固形分100w%)
C成分:ポリブタジエンポリブロックイソシアネート
・樹脂ワニスF(NCO末端ポリブタジエン、NCO当量=672.5g/eq.、固形分=85w%)
以上のポリオール及び、変性ポリイミド樹脂、ポリブロックイソシアネートを適宜配合し、更にその他成分として、硬化促進剤としてジブチル錫ラウレート、ダレ防止剤としてアエロジル200(日本アエロジル(株)社製)、粘度調整溶剤としてカルビトールアセテートを配合ごとに適量加えて混合し、3本ロールを用いて混練りして、表1に示した試料A1〜3を調製した。この試料A1〜3を任意の基材に乾燥時の膜厚約25μmになるよう塗布し、150℃×60分の条件で硬化を行い、試験サンプルを作製した。測定結果を表2に示す。なお、表中の数値は、原料中の溶剤分を含んだ重量部を表す。
<Preparation of curable resin composition>
Component A: Polybutadiene polyol / GQ-2000 (OH-terminated polybutadiene, Mn = about 2500, OH equivalent = 1042 g / eq., Solid content = 45 w%: manufactured by Nippon Soda Co., Ltd.)
Component B: Modified polyimide resin / resin varnish E (acid anhydride terminal resin, acid anhydride equivalent (including solvent) = 14708 g / eq., Solid content = 40 w%)
Polyols other than A and B components, LIR-506 (OH group-containing polyisoprene, Mn = about 25000, OH equivalent = 4237 g / eq. Solid content 100 w%)
Component C: Polybutadiene polyblock isocyanate / resin varnish F (NCO-terminated polybutadiene, NCO equivalent = 672.5 g / eq., Solid content = 85 w%)
The above polyol, modified polyimide resin, and polyblock isocyanate are appropriately blended, and as other components, dibutyltin laurate as a curing accelerator, Aerosil 200 (manufactured by Nippon Aerosil Co., Ltd.) as an anti-sagging agent, and a viscosity adjusting solvent Carbitol acetate was added in an appropriate amount for each formulation, mixed, and kneaded using three rolls to prepare Samples A1 to A3 shown in Table 1. This sample A1-3 was apply | coated to arbitrary base materials so that it might become a film thickness of about 25 micrometers at the time of drying, and it hardened | cured on the conditions for 150 degreeC x 60 minutes, and produced the test sample. The measurement results are shown in Table 2. In addition, the numerical value in a table | surface represents the weight part containing the solvent content in a raw material.

*)表中の数値は、原料中の溶剤分を含んだ重量部を表す。 *) The numerical values in the table represent parts by weight including the solvent content in the raw material.

(比較例1〜4)
実施例に準拠し、表1に示した配合で各試料B1〜2を調整するとともに、現行のフィルムキャリアに一般に用いられるオーバーコート剤の一例として、CCR−232GF(アサヒ化学研究所製・エポキシ系)を比較例B3に、FS−100L(宇部興産製・ポリイミド系)を比較例4に挙げ、結果を表2に併せ記載した。
(Comparative Examples 1-4)
In accordance with the examples, each sample B1-2 was prepared with the formulation shown in Table 1, and as an example of an overcoat agent generally used in current film carriers, CCR-232GF (Epoxy system manufactured by Asahi Chemical Research Laboratory) ) In Comparative Example B3, FS-100L (manufactured by Ube Industries, polyimide system) in Comparative Example 4, and the results are also shown in Table 2.

本願発明の一般式(4)で示される変性ポリイミド樹脂の赤外線吸収スペクトル(FT−IR)を示す。The infrared absorption spectrum (FT-IR) of the modified polyimide resin represented by the general formula (4) of the present invention is shown.

Claims (5)

成分[1]数平均分子量800〜5000の2官能性水酸基末端ポリブタジエンと、ジイソシアネート化合物を、当量数にして水酸基:イソシアネート基=1:1.5〜2.5で反応して得られるイソシアネート基含有生成物(イソシアネート当量数:X当量)及び成分[2]四塩基酸二無水物(酸無水物当量数:Y当量)を、当量数がY>X≧Y/3、0<X、0<Yの範囲で反応することを特徴とする、変性ポリイミド樹脂の製造方法。 Component [1] Contains an isocyanate group obtained by reacting a bifunctional hydroxyl-terminated polybutadiene having a number average molecular weight of 800 to 5,000 with a diisocyanate compound in an equivalent number of hydroxyl group: isocyanate group = 1: 1.5 to 2.5. When the product (isocyanate equivalent number: X equivalent) and component [2] tetrabasic acid dianhydride (acid anhydride equivalent number: Y equivalent) are used, the equivalent number is Y> X ≧ Y / 3, 0 <X, 0 < A method for producing a modified polyimide resin, characterized by reacting in the range of Y. 成分[1]数平均分子量800〜5000の2官能性水酸基末端ポリブタジエンと、ジイソシアネート化合物を、当量数にして水酸基:イソシアネート基=1:1.5〜2.5で反応して得られる一般式(3)
(ここで、R2はジイソシアネート化合物のイソシアネート基を除いた残基、R3は水酸基末端ポリブタジエンの水酸基を除いた残基を表す。また、n2は重合度を表す。このとき、0≦n2≦100である。)
で示されるイソシアネート基含有生成物(イソシアネート当量数:X当量)及び
[2]一般式(1)
(R1は四塩基酸二無水物の酸無水物基を除いた残基を表す。)
で示される四塩基酸二無水物(酸無水物当量数:Y当量)を、当量数がY>X≧Y/3、0<X、0<Yの範囲で反応することを特徴とする、一般式(2)
(L1、M1はポリブタジエンユニットとポリイミドユニットの構成比を表し、n1は重合度を表す。このとき、L1+M1=1、0<L1<1、0<M1<1、でかつ1≦n1≦10000である。)
で示される変性ポリイミド樹脂の製造方法。
Component [1] A general formula (1) obtained by reacting a bifunctional hydroxyl-terminated polybutadiene having a number average molecular weight of 800 to 5000 with a diisocyanate compound in an equivalent number and hydroxyl group: isocyanate group = 1: 1.5 to 2.5. 3)
(Here, R2 is a residue excluding the isocyanate group of the diisocyanate compound, R3 is a residue excluding the hydroxyl group of the hydroxyl-terminated polybutadiene, and n2 represents the degree of polymerization. In this case, 0 ≦ n2 ≦ 100. is there.)
And an isocyanate group-containing product (isocyanate equivalent number: X equivalent) and [2] general formula (1)
(R1 represents a residue obtained by removing the acid anhydride group of tetrabasic acid dianhydride.)
Wherein the tetrabasic acid dianhydride (acid anhydride equivalent number: Y equivalent) is reacted in the range of the equivalent number Y> X ≧ Y / 3, 0 <X, 0 <Y, General formula (2)
(L1 and M1 represent the composition ratio of the polybutadiene unit and the polyimide unit, and n1 represents the degree of polymerization. At this time, L1 + M1 = 1, 0 <L1 <1, 0 <M1 <1, and 1 ≦ n1 ≦ 10000. is there.)
The manufacturing method of the modified polyimide resin shown by these.
ジイソシアネート化合物が、トルエン−2,4−ジイソシアネート、トルエン−2,6−ジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、イソホロンジイソシアネートからなる群より選択されるジイソシアネート化合物であり、四塩基酸二無水物が、ピロメリット酸二無水物、ベンソフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−シクロヘキセン−1,2−ジカルボン酸無水物、3,3’−4,4’−ジフェニルスルホンテトラカルボン酸二無水物及び1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−C]フラン−1,3−ジオンからなる群より選択される四塩基酸二無水物である、請求項1又は2記載の製造方法。 The diisocyanate compound is a diisocyanate compound selected from the group consisting of toluene-2,4-diisocyanate, toluene-2,6-diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, isophorone diisocyanate, and tetrabasic acid dianhydride The product is pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, biphenyl tetracarboxylic dianhydride, naphthalene tetracarboxylic dianhydride, 5- (2,5-dioxotetrahydrofuryl) -3 -Methyl-cyclohexene-1,2-dicarboxylic anhydride, 3,3'-4,4'-diphenylsulfone tetracarboxylic dianhydride and 1,3,3a, 4,5,9b-hexahydro-5- ( Tetrahydro-2,5-di Kiso-3-furanyl) - naphtho is [1,2-C] tetrabasic acid dianhydride selected from the group consisting of furan-1,3-dione, according to claim 1 or 2 The method according. 請求項1〜3のいずれか1項に記載の方法に従って変性ポリイミド樹脂を得た後、さらに、該変性ポリイミド樹脂に、成分[3]イソシアネート基含有生成物または/およびジイソシアネート化合物(イソシアネート当量数:Z当量)を反応させることを特徴とする、変性ポリイミド樹脂の製造方法。 After obtaining the modified polyimide resin according to the method according to any one of claims 1 to 3, the modified polyimide resin is further mixed with a component [3] isocyanate group-containing product or / and a diisocyanate compound (isocyanate equivalent number: Z equivalent) is reacted, a method for producing a modified polyimide resin. 当量数が、Y>(X+Z)≧Y/3、0.2≦(Z/X)≦5、0<X、0<Y、0≦Zの範囲で反応させる請求項4記載の方法。 The method according to claim 4, wherein the number of equivalents is such that Y> (X + Z) ≥Y / 3, 0.2≤ (Z / X) ≤5, 0 <X, 0 <Y, 0≤Z.
JP2007066455A 2007-03-15 2007-03-15 Method for producing modified polyimide resin Pending JP2007146188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007066455A JP2007146188A (en) 2007-03-15 2007-03-15 Method for producing modified polyimide resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007066455A JP2007146188A (en) 2007-03-15 2007-03-15 Method for producing modified polyimide resin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP00604498A Division JP4016226B2 (en) 1998-01-14 1998-01-14 Modified polyimide resin and thermosetting resin composition containing the same

Publications (1)

Publication Number Publication Date
JP2007146188A true JP2007146188A (en) 2007-06-14

Family

ID=38207950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066455A Pending JP2007146188A (en) 2007-03-15 2007-03-15 Method for producing modified polyimide resin

Country Status (1)

Country Link
JP (1) JP2007146188A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051101A1 (en) 2007-10-15 2009-04-23 Tokuyama Corporation Separation membrane for fuel cell
JP2012133359A (en) * 2010-12-22 2012-07-12 Xerox Corp Polyimide intermediate transfer belt
KR20240036469A (en) 2022-09-13 2024-03-20 디아이씨 가부시끼가이샤 Imide resin, curable resin composition and cured product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216339A (en) * 1993-12-07 1995-08-15 Sanyo Chem Ind Ltd Binder for rubber chip elastomer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216339A (en) * 1993-12-07 1995-08-15 Sanyo Chem Ind Ltd Binder for rubber chip elastomer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051101A1 (en) 2007-10-15 2009-04-23 Tokuyama Corporation Separation membrane for fuel cell
JP2012133359A (en) * 2010-12-22 2012-07-12 Xerox Corp Polyimide intermediate transfer belt
KR20240036469A (en) 2022-09-13 2024-03-20 디아이씨 가부시끼가이샤 Imide resin, curable resin composition and cured product

Similar Documents

Publication Publication Date Title
JP4016226B2 (en) Modified polyimide resin and thermosetting resin composition containing the same
US20060083928A1 (en) Resin composition
KR100984592B1 (en) Thermosetting resin composition, overcoating agent for flexible circuit board and surface protective film
JP2006137943A (en) Resin composition
TWI439483B (en) Thermosetting resin composition
JPWO2011004756A1 (en) Thermosetting composition for protective film of wiring board
KR100545459B1 (en) Curable resin compositions for flexible circuit overcoating and thin-film cures thereof
KR100554864B1 (en) A thermosetting resin composition and flexible-circuit overcoating material, a flim carrier and a film carrier device using the same
JP2007146188A (en) Method for producing modified polyimide resin
JP5720088B2 (en) Modified urethane resin curable composition and cured product thereof
JP3844025B2 (en) Resin composition for overcoat
JP3962940B2 (en) Resin composition for flexible circuit overcoat
JP2007186663A (en) Thermosetting polyimide resin composition and method for producing polyimide resin
JP2011137108A (en) Thermosetting composition for protective film of wiring board
JPH1171551A (en) Resin composition for flexible circuit overcoating
JP4864399B2 (en) Resin composition for overcoat
JP3601553B2 (en) Manufacturing method of modified polyamide epoxy resin
JPH1161037A (en) Resin composition for flexible circuit overcoat
KR100542418B1 (en) A curable resin composition for the overcoat of a flexible circuit
WO2010098485A1 (en) Wiring board
JPH0770501A (en) Ink composition and circuit coating film made by using it
WO2002100139A1 (en) A method of forming flexible insulation protection film of flexible circuit board and flexible circuit board formed with flexible insulation protection film and production method therefor
JPH04331268A (en) Solder resist ink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110316