JP3960504B2 - Method for producing asymmetric carbonate - Google Patents

Method for producing asymmetric carbonate Download PDF

Info

Publication number
JP3960504B2
JP3960504B2 JP15832299A JP15832299A JP3960504B2 JP 3960504 B2 JP3960504 B2 JP 3960504B2 JP 15832299 A JP15832299 A JP 15832299A JP 15832299 A JP15832299 A JP 15832299A JP 3960504 B2 JP3960504 B2 JP 3960504B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
carbonate
group
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15832299A
Other languages
Japanese (ja)
Other versions
JP2000344715A (en
Inventor
勝昭 長谷川
正志 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP15832299A priority Critical patent/JP3960504B2/en
Publication of JP2000344715A publication Critical patent/JP2000344715A/en
Application granted granted Critical
Publication of JP3960504B2 publication Critical patent/JP3960504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、非対称炭酸エステルの製造方法に関し、詳しくは、2種の対称炭酸エステル間の不均化エステル交換反応により非対称炭酸エステルを製造する方法に関する。非対称炭酸エステルは、溶剤や各種有機合成試薬として有用であり、特に、リチウムイオン電池などの非水電解液を使用する電池用やコンデンサ用の溶媒として有用である。
【0002】
【従来の技術】
従来、エステル交換触媒を利用して非対称炭酸エステルを製造する方法の1つとして、2種の対称炭酸エステル間の不均化エステル交換反応が知られている。そして、エステル交換反応を平衡状態とするためにはエステル交換触媒の使用が必須であり、その例としては、アルカリ金属アルコラート触媒(特開平7−10811号公報)、III族希土類元素の酸化物(特開平9−328453号公報)が挙られる。そして、これらのエステル交換触媒は均一系触媒と不均一系触媒に分類される。特に、不均一系触媒は、均一系触媒に比し活性が低いため、多量の触媒や高温を必要とするが、それ自身が反応液に不溶であるため、反応液から触媒を分離するのが容易であり、工業的に好ましい。
【0003】
ところで、工業的規模の製造方法においては、触媒の活性低下を如何に抑制するかが重要である。固定床液相流通式反応の場合は、不均一系触媒が予め大量に反応器中に充填されて使用されるため、触媒の活性低下の抑制は特に重要である。
【0004】
【発明が解決しようとする課題】
本発明の目的は、不均一系触媒を使用した非対称炭酸エステルの製造方法であって、長期間使用しても触媒の活性低下が抑制された上記の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、種々検討を重ねた結果、反応系に特定の物質を存在させることにより、上記の目的を容易に達成し得るとの知見を得て本発明の完成に至った。
【0006】
すなわち、本発明の要旨は、2種の対称炭酸エステル間の不均化エステル交換反応により非対称炭酸エステルを製造するに当たり、不均一系触媒と共に原料中の濃度として100〜10,000重量ppm以上の水の存在下に上記の反応を行うことを特徴とする非対称炭酸エステルの製造方法に存する。
【0007】
【発明の形態の実施】
以下、本発明を詳細に説明する。本発明においては、2種の対称炭酸エステル同士の不均化反応が次記反応式(1)の様に進行し、目的とする非対称炭酸エステルが生成する。
【0008】
【化1】

Figure 0003960504
【0009】
式(1)において、R1とR2は、それぞれ、異なるアルキル基またはシクロアルキル基を表す。アルキル基またはシクロアルキル基の炭素数は、特に制限されないが、通常1〜12、好ましくは1〜6である。直鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチリ基、ドデシル基を挙げることが出来る。分枝状アルキル基としては、例えば、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソアミル基、tert-アミル基、ネオペンチル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基を挙げることが出来る。シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロドデシル基、ノルボルニル基を挙げることが出来る。
【0010】
原料である対称炭酸エステルの例としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネート等が挙げられる。目的物である非対称炭酸エステルの具体例としては、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート、エチルプロピルカーボネート、ブチルメチルカーボネート、ブチルエチルカーボネート、ブチルプロピルカーボネート、シクロヘキシルメチルカーボネート等が挙げられる。なお、原料の種類は目的物により決まり、目的物がEMCの場合は、原料としてDMC及びDECが使用される。
【0011】
出発原料となる2種の対称炭酸エステルのモル比は特に限定されないが、通常は実質的に当モルで使用するのが目的物である非対称炭酸エステルの収量を高める意味で好ましい。しかし、一方の原料を過剰に使用してもよく、この場合、モル比は1:1〜1:20の範囲から選択するが好ましい。
【0012】
反応は窒素などの不活性ガス雰囲気中で行われる。反応温度は、通常0〜300℃、好ましくは50〜200℃の範囲から選択される。また、反応圧力は、通常0〜5MPa、好ましくは0〜1MPaの範囲から選択される。反応形式は、回分式でも流通式でもよいが、流通式は、大量に連続的に原料を処理できると共に触媒を繰り返し長時間使用することが出来るため、工業的に有利である。特に、固定床液相流通式反応が有利である。そして、この際の触媒に対する液時空間速度(LHSV)は、通常0.05〜50/hr、好ましくは0.1〜10/hrの範囲から選択される。
【0013】
また、反応を液相で進行させることにより、原料自体に溶媒の役割を課すことが出来るため、他の溶媒の使用を省略することが出来る。後処理の容易性の観点から、他の溶媒を使用しない方が好ましい。反応液は、常圧蒸留、減圧蒸留、加圧蒸留など公知の蒸留法により、原料である2種の対称炭酸エステルと反応生成物である非対称炭酸エステルに分離される。沸点の順番として、例えば、一方の原料の対称エステル、目的物である非対称炭酸エステル、他方の原料の対称炭酸エステルの順で留出するので、目的物は蒸留の第二番目の留分として所望の純度で得ることが出来る。ここで、原料のうち沸点の高い鎖状炭酸エステルは留出させてもよいし、蒸留釜に残し、反応にリサイクルしてもよい。
【0014】
本発明において、触媒としては、従来公知の不均一系触媒を制限なく使用することが出来る。特開平9−328453号公報に記載された触媒、すなわち、III族希土類元素の酸化物を有効成分とする触媒が推奨される。III族希土類元素の具体例としては、Sc、Y、ランタニド族元素(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)、アクチニド族元素(Ac、Th、Pa、U)等が挙げられる。
【0015】
本発明の最大の特徴は、長時間使用における不均一系触媒の活性低下を抑制するため、不均一系触媒と共に原料中の濃度として100〜1000重量ppmの水の存在下に前記の反応を行う点にある。
【0016】
触媒活性が徐々に低下する態様としては、例えば原料あるいは原料中に含まれる不純物の影響で触媒自身が化学的変化を起こして触媒活性を失う場合、反応で副生する重質物などにより触媒の表面が覆われて触媒活性が有効に働かない場合、磨耗、圧壊などの物理的な変化により触媒自身が損失する場合などが挙げられる。反応系に共存する水の作用は明らかでないが、何れにせよ、水により、不均化反応に必要な適度なエステル交換能が触媒表面上に保持される。
【0017】
反応系に存在させる水の量は、原料中の濃度として100〜10,000重量ppmでなければならない。水の量が上記範囲より少ない場合は触媒の活性低下の抑制効果が十分に発揮されず、水の量が上記範囲より多い場合は、非対称鎖炭酸エステルと水が副反応を起こしアルコールが生成するため、目的とする非対称炭酸エステルの収率が低くなると共に精製工程でのロスが大きくなる。原料中の水の濃度は、好ましくは200〜5,000重量ppmの範囲である。
【0018】
反応系に水を存在させる方法は、特に制限されないが、工業的に有利な固定床液相流通式反応を採用した場合は、通常、原料と共に反応系に添加する方法が採用される。すなわち、原料として、100〜10,000重量ppmの水を含有する2種の対称炭酸エステルが使用される。そして、何れの場合も、反応系への水の添加は、水濃度が平均して上記の範囲内となる様にパルス的に行ってもよい。
【0019】
【実施例】
以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。
【0020】
原料製造例1:
市販の工業グレードのジメチルカーボネート(DMC)とジエチルカーボネート(DEC)をそれぞれ使用し、理論段20段の蒸留塔により還流比5で蒸留し、仕込量に対して10重量%を初留分として除き、次の80重量%の留分を製品として回収した。得られたDMC及びDEC中の水含有量をカールフィッシャー水分計で測定した所、20重量ppm以下であった。このDMCとDECとをモル比1:1に混合し、水分濃度15重量ppmの原料(1)を得た。
【0021】
原料製造例2〜7:
原料(1)に水を添加して水分濃度200重量ppmの原料(2)を調製した。同様にして、水分濃度300重量ppmの原料(3)、500重量ppmの原料(4)、1000重量ppmの原料(5)、2000重量ppmの原料(6)、5000重量ppmの原料(7)を調整した。
【0022】
触媒製造例:
硝酸イットリウム6水和物32.3kg(84.3モル)と硝酸コバルト6水和物24.5kg(84.2モル)を168リットルの純水に溶解し、予め800リットルの攪拌槽に仕込み攪拌溶解させた12重量%重炭酸アンモニウム水溶液550kg中に約4時間かけて滴下し、沈殿物を含むスラリーを得た。このスラリーをフィルタープレスでろ過し、純水で洗浄した後、熱風乾燥機で12時間120℃乾燥し、触媒前駆体24.5kgを得た。
【0023】
次いで、上記の触媒前駆体100重量部に水44重量部を加え、さらに成形助剤としてメチルセルロース5重量部とアビセル10重量部を添加し、加熱混練してスラリー状とした後、真空押出成型法によって直径4mmの円柱状物とした。押出成形性は良好であった。この円柱状物を120℃で一晩乾燥し、続いて600℃の温度で3時間焼成し、直径が約3mmに焼き締まった触媒を得た。触媒には折れたり割れたりの外観上の異常は認められなかった。また、触媒の金属原子比はイットリウム:コバルトが1:1であった。
【0024】
実施例1
内径17mm、長さ800mmのジャケット付き管型反応器に触媒を35.0g充填し、定量ポンプにより原料(2)(水濃度200重量ppm)を通液し、窒素で0.9MPaの背圧をかけながら140℃でLHSV2(100ml/hr)の通液条件で反応させた。50時間後の反応液をガスクロ分析したところ、反応液の組成は、DMC21.7重量%、エチルメチルカーボネート(EMC)49.5重量%、DEC28.5重量%であった。これはEMC収率として49.5%に相当する。このときのEMC生成速度は触媒1g当たり1.41g/hrであった。この後、同じ条件下で反応を継続し、反応経過時間毎のEMCの収率と触媒1g当たりのEMC生成速度を表1に示した。
【0025】
【表1】
Figure 0003960504
【0026】
比較例1
実施例1において、原料(1)(水分濃度15重量ppm)を使用した以外は、実施例1と同一条件で反応を行った。42時間後の反応液をガスクロ分析したところ、反応液の組成は、DMC21.5重量%、エチルメチルカーボネート(EMC)49.7重量%、DEC28.4重量%であった。これはEMC収率として49.7%に相当する。このときのEMC生成速度は触媒1g当たり1.42g/hrであった。この後、同じ条件下で反応を継続し、反応経過時間毎のEMCの収率と触媒1g当たりのEMC生成速度を表2に示した。表2から明らかな様に、EMCの収率および生成速度が反応時間と共に低下していることが分かる。
【0027】
【表2】
Figure 0003960504
【0028】
実施例2
原料(1)から原料(2)に変更して比較例1に継続して反応を行った。原料を変更して50時間後の反応液をガスクロ分析したところ、反応液の組成は、DMC22.1重量%、エチルメチルカーボネート(EMC)48.5重量%、DEC29.1重量%であった。これはEMC収率として48.5%に相当する。このときのEMC生成速度は触媒1g当たり1.39g/hrであった。すなわち、比較例1で低下した触媒性能が回復した。その後、同じ条件下で反応を継続し、反応経過時間毎のEMCの収率と触媒1g当たりのEMC生成速度を表3に示した。
【0029】
【表3】
Figure 0003960504
【0030】
実施例3〜7
実施例1において、原料(3)〜(7)をそれぞれ使用した以外は、実施例1と同一条件で反応を行った。所定の反応経過時間のEMCの収率と触媒1g当たりのEMC生成速度を表4に示した。
【0031】
【表4】
Figure 0003960504
【0032】
【発明の効果】
以上説明した本発明によれば、長期間を使用しても触媒の活性低下が抑制された非対称炭酸エステルの製造方法の製造方法が提供され、本発明の工業的価値は顕著である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an asymmetric carbonate ester, and more particularly to a method for producing an asymmetric carbonate ester by a disproportionation transesterification reaction between two symmetric carbonate esters. The asymmetric carbonic acid ester is useful as a solvent or various organic synthesis reagents, and is particularly useful as a solvent for a battery or a capacitor using a non-aqueous electrolyte such as a lithium ion battery.
[0002]
[Prior art]
Conventionally, a disproportionated transesterification reaction between two symmetric carbonates is known as one of methods for producing an asymmetric carbonate using an ester exchange catalyst. In order to bring the transesterification reaction into an equilibrium state, it is essential to use a transesterification catalyst. Examples thereof include alkali metal alcoholate catalysts (Japanese Patent Laid-Open No. 7-10811), Group III rare earth element oxides ( JP-A-9-328453). These transesterification catalysts are classified into homogeneous catalysts and heterogeneous catalysts. In particular, a heterogeneous catalyst is less active than a homogeneous catalyst, and thus requires a large amount of catalyst and high temperature. However, since the catalyst itself is insoluble in the reaction solution, the catalyst is separated from the reaction solution. It is easy and industrially preferable.
[0003]
By the way, in an industrial scale manufacturing method, it is important how to suppress a decrease in the activity of the catalyst. In the case of a fixed bed liquid phase flow reaction, since a large amount of a heterogeneous catalyst is charged in the reactor in advance and used, suppression of a decrease in the activity of the catalyst is particularly important.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing an asymmetric carbonic acid ester using a heterogeneous catalyst, in which the decrease in the activity of the catalyst is suppressed even when used for a long period of time.
[0005]
[Means for Solving the Problems]
As a result of various studies, the present inventors have obtained the knowledge that the above object can be easily achieved by the presence of a specific substance in the reaction system, and the present invention has been completed.
[0006]
That is, the gist of the present invention is that, in producing an asymmetric carbonate by a disproportionation transesterification reaction between two kinds of symmetrical carbonate, the concentration in the raw material is 100 to 10,000 ppm by weight or more together with the heterogeneous catalyst. The present invention resides in a method for producing an asymmetric carbonic acid ester characterized in that the above reaction is carried out in the presence of water.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. In the present invention, the disproportionation reaction between two kinds of symmetric carbonates proceeds as shown in the following reaction formula (1) to produce the target asymmetric carbonate.
[0008]
[Chemical 1]
Figure 0003960504
[0009]
In the formula (1), R 1 and R 2 each represent a different alkyl group or cycloalkyl group. The carbon number of the alkyl group or cycloalkyl group is not particularly limited, but is usually 1 to 12, preferably 1 to 6. Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and a dodecyl group. Examples of the branched alkyl group include isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isoamyl group, tert-amyl group, neopentyl group, isohexyl group, sec-hexyl group, and tert-hexyl group. I can list them. Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclododecyl group, and a norbornyl group.
[0010]
Examples of the symmetric carbonate ester which is a raw material include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, dibutyl carbonate, dicyclohexyl carbonate and the like. Specific examples of the target asymmetric carbonic acid ester include ethyl methyl carbonate (EMC), methyl propyl carbonate, ethyl propyl carbonate, butyl methyl carbonate, butyl ethyl carbonate, butyl propyl carbonate, cyclohexyl methyl carbonate, and the like. In addition, the kind of raw material is decided by the target object, and when a target object is EMC, DMC and DEC are used as a raw material.
[0011]
The molar ratio of the two types of symmetric carbonates used as starting materials is not particularly limited, but it is usually preferable to use them in substantially equimolar amounts in order to increase the yield of the target asymmetric carbonate. However, one raw material may be used in excess, and in this case, the molar ratio is preferably selected from the range of 1: 1 to 1:20.
[0012]
The reaction is carried out in an inert gas atmosphere such as nitrogen. The reaction temperature is usually selected from the range of 0 to 300 ° C, preferably 50 to 200 ° C. The reaction pressure is usually selected from the range of 0 to 5 MPa, preferably 0 to 1 MPa. The reaction mode may be a batch type or a flow type, but the flow type is industrially advantageous because it can continuously process a large amount of raw materials and can repeatedly use the catalyst for a long time. In particular, a fixed bed liquid phase flow reaction is advantageous. And the liquid hourly space velocity (LHSV) with respect to the catalyst in this case is normally selected from the range of 0.05-50 / hr, preferably 0.1-10 / hr.
[0013]
Moreover, since the role of the solvent can be imposed on the raw material itself by allowing the reaction to proceed in the liquid phase, the use of other solvents can be omitted. From the viewpoint of ease of post-treatment, it is preferable not to use other solvents. The reaction solution is separated into two kinds of symmetric carbonate ester as a raw material and asymmetric carbonate ester as a reaction product by a known distillation method such as atmospheric distillation, vacuum distillation, and pressure distillation. As the order of the boiling points, for example, the symmetrical ester of one raw material, the target asymmetric carbonate ester and the symmetrical carbonate ester of the other raw material are distilled in this order, so the target product is desired as the second fraction of distillation. The purity can be obtained. Here, the chain carbonic acid ester having a high boiling point among the raw materials may be distilled off or may be left in the distillation kettle and recycled to the reaction.
[0014]
In the present invention, a conventionally known heterogeneous catalyst can be used without limitation as the catalyst. A catalyst described in JP-A-9-328453, that is, a catalyst containing an oxide of a group III rare earth element as an active ingredient is recommended. Specific examples of group III rare earth elements include Sc, Y, lanthanide group elements (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), actinides Group elements (Ac, Th, Pa, U) and the like.
[0015]
The greatest feature of the present invention is that the above reaction is carried out in the presence of 100 to 1000 ppm by weight of water as a concentration in the raw material together with the heterogeneous catalyst in order to suppress a decrease in the activity of the heterogeneous catalyst during long-term use. In the point.
[0016]
As an aspect in which the catalytic activity gradually decreases, for example, when the catalyst itself loses its catalytic activity due to the influence of impurities contained in the raw material or the raw material, the surface of the catalyst is caused by a heavy material etc. produced as a by-product in the reaction. When the catalyst is not covered and the catalytic activity does not work effectively, the catalyst itself is lost due to physical changes such as wear and crushing. The action of water coexisting in the reaction system is not clear, but in any case, water retains an appropriate transesterification capacity necessary for the disproportionation reaction on the catalyst surface.
[0017]
The amount of water present in the reaction system must be 100 to 10,000 ppm by weight as the concentration in the raw material. When the amount of water is less than the above range, the effect of suppressing the decrease in the activity of the catalyst is not sufficiently exerted. When the amount of water is more than the above range, an asymmetric chain carbonate and water cause a side reaction to produce alcohol. Therefore, the yield of the target asymmetric carbonic acid ester is lowered and the loss in the purification process is increased. The concentration of water in the raw material is preferably in the range of 200 to 5,000 ppm by weight.
[0018]
The method for allowing water to be present in the reaction system is not particularly limited. However, when a fixed bed liquid phase flow reaction that is industrially advantageous is employed, a method of adding it to the reaction system together with the raw materials is usually employed. That is, as a raw material, two kinds of symmetric carbonates containing 100 to 10,000 ppm by weight of water are used. In either case, the water may be added to the reaction system in a pulsed manner so that the water concentration averages within the above range.
[0019]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded.
[0020]
Raw material production example 1:
Commercially available industrial grade dimethyl carbonate (DMC) and diethyl carbonate (DEC) were used, respectively, and distilled at a reflux ratio of 5 in a 20-stage theoretical distillation column, and 10% by weight with respect to the charged amount was removed as the initial fraction. The next 80% by weight fraction was recovered as product. When the water content in the obtained DMC and DEC was measured with a Karl Fischer moisture meter, it was 20 ppm by weight or less. This DMC and DEC were mixed at a molar ratio of 1: 1 to obtain a raw material (1) having a water concentration of 15 ppm by weight.
[0021]
Raw material production examples 2 to 7:
Water was added to the raw material (1) to prepare a raw material (2) having a water concentration of 200 ppm by weight. Similarly, a raw material (3) having a moisture concentration of 300 ppm by weight, a raw material (500) having a weight of 500 ppm, a raw material (5) having a weight of 1000 ppm, a raw material (6) having a weight of 2000 ppm, and a raw material having a weight of 5000 ppm (7). Adjusted.
[0022]
Catalyst production example:
Yttrium nitrate hexahydrate 32.3 kg (84.3 mol) and cobalt nitrate hexahydrate 24.5 kg (84.2 mol) were dissolved in 168 liters of pure water and charged in an 800 liter stirring tank in advance. The solution was dropped into 550 kg of a dissolved 12 wt% aqueous ammonium bicarbonate solution over about 4 hours to obtain a slurry containing a precipitate. This slurry was filtered with a filter press, washed with pure water, and then dried at 120 ° C. for 12 hours with a hot air dryer to obtain 24.5 kg of a catalyst precursor.
[0023]
Next, 44 parts by weight of water is added to 100 parts by weight of the catalyst precursor, 5 parts by weight of methylcellulose and 10 parts by weight of Avicel are added as a molding aid, and the mixture is heated and kneaded to form a slurry. Thus, a cylindrical product having a diameter of 4 mm was obtained. Extrudability was good. This columnar product was dried at 120 ° C. overnight and then calcined at a temperature of 600 ° C. for 3 hours to obtain a catalyst having a diameter of about 3 mm. There was no abnormality in the appearance of the catalyst such as bending or cracking. Further, the metal atomic ratio of the catalyst was 1: 1 of yttrium: cobalt.
[0024]
Example 1
A jacketed tubular reactor with an inner diameter of 17 mm and a length of 800 mm was filled with 35.0 g of catalyst, and the raw material (2) (water concentration 200 ppm by weight) was passed through a metering pump, and a back pressure of 0.9 MPa was applied with nitrogen. The reaction was conducted at 140 ° C. under a condition of flowing LHSV2 (100 ml / hr). As a result of gas chromatographic analysis of the reaction solution after 50 hours, the composition of the reaction solution was 21.7% by weight of DMC, 49.5% by weight of ethyl methyl carbonate (EMC), and 28.5% by weight of DEC. This corresponds to an EMC yield of 49.5%. The EMC production rate at this time was 1.41 g / hr per gram of catalyst. Thereafter, the reaction was continued under the same conditions. Table 1 shows the yield of EMC and the rate of EMC production per gram of catalyst for each elapsed time of reaction.
[0025]
[Table 1]
Figure 0003960504
[0026]
Comparative Example 1
In Example 1, the reaction was performed under the same conditions as in Example 1 except that the raw material (1) (water concentration 15 ppm by weight) was used. When the reaction mixture after 42 hours was analyzed by gas chromatography, the composition of the reaction mixture was 21.5 wt% DMC, 49.7 wt% ethyl methyl carbonate (EMC), and 28.4 wt% DEC. This corresponds to an EMC yield of 49.7%. The EMC production rate at this time was 1.42 g / hr per gram of catalyst. Thereafter, the reaction was continued under the same conditions. Table 2 shows the yield of EMC and the rate of EMC production per gram of catalyst for each elapsed time of reaction. As is apparent from Table 2, it can be seen that the yield and production rate of EMC decreased with the reaction time.
[0027]
[Table 2]
Figure 0003960504
[0028]
Example 2
The reaction was continued from Comparative Example 1 by changing from the raw material (1) to the raw material (2). When the raw material was changed and a gas chromatographic analysis of the reaction liquid after 50 hours was performed, the composition of the reaction liquid was 22.1 wt% DMC, 48.5 wt% ethyl methyl carbonate (EMC), and 29.1 wt% DEC. This corresponds to an EMC yield of 48.5%. The EMC production rate at this time was 1.39 g / hr per gram of catalyst. That is, the catalyst performance decreased in Comparative Example 1 was recovered. Thereafter, the reaction was continued under the same conditions. Table 3 shows the yield of EMC and the rate of EMC production per gram of catalyst for each elapsed time of reaction.
[0029]
[Table 3]
Figure 0003960504
[0030]
Examples 3-7
In Example 1, the reaction was performed under the same conditions as in Example 1 except that the raw materials (3) to (7) were used. Table 4 shows the yield of EMC and the rate of EMC production per gram of the catalyst for a given elapsed reaction time.
[0031]
[Table 4]
Figure 0003960504
[0032]
【The invention's effect】
According to the present invention described above, a method for producing an asymmetric carbonic acid ester in which a decrease in the activity of the catalyst is suppressed even when used for a long period of time is provided, and the industrial value of the present invention is remarkable.

Claims (2)

2種の対称炭酸エステル間の不均化エステル交換反応により非対称炭酸エステルを製造するに当たり、不均一系触媒と共に原料中の濃度として100〜10,000重量ppmの水の存在下に上記の反応を行うことを特徴とする非対称炭酸エステルの製造方法。In producing an asymmetric carbonate by a disproportionated transesterification reaction between two symmetric carbonates, the above reaction is carried out in the presence of 100 to 10,000 ppm by weight of water as a concentration in the raw material together with a heterogeneous catalyst. A process for producing an asymmetric carbonic acid ester characterized by comprising: 不均化エステル交換反応がジメチルカーボネートとジエチルカーボネートからエチルメチルカーボネートへの反応である請求項1に記載の製造方法。The process according to claim 1, wherein the disproportionation transesterification reaction is a reaction from dimethyl carbonate and diethyl carbonate to ethyl methyl carbonate.
JP15832299A 1999-06-04 1999-06-04 Method for producing asymmetric carbonate Expired - Fee Related JP3960504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15832299A JP3960504B2 (en) 1999-06-04 1999-06-04 Method for producing asymmetric carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15832299A JP3960504B2 (en) 1999-06-04 1999-06-04 Method for producing asymmetric carbonate

Publications (2)

Publication Number Publication Date
JP2000344715A JP2000344715A (en) 2000-12-12
JP3960504B2 true JP3960504B2 (en) 2007-08-15

Family

ID=15669116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15832299A Expired - Fee Related JP3960504B2 (en) 1999-06-04 1999-06-04 Method for producing asymmetric carbonate

Country Status (1)

Country Link
JP (1) JP3960504B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057579A (en) * 2021-12-08 2022-02-18 河北工业大学 Method for preparing asymmetric carbonate by rectifying catalytic reaction of symmetric carbonate

Also Published As

Publication number Publication date
JP2000344715A (en) 2000-12-12

Similar Documents

Publication Publication Date Title
JP3374863B2 (en) Method for producing dialkyl carbonate
EP3950660A1 (en) Method for preparing dimethyl carbonate
US8450518B2 (en) Method for preparing a carbamate, a catalyst applied in the method, a method for preparing the catalyst and use thereof
EP0701998B1 (en) Process for production of tertiary n-alkenyl carboxylic acid amide
JP4508545B2 (en) Dimethyl carbonate synthesis catalyst
KR100441458B1 (en) A process for producing an unsymmetrical chain carbonic ester
JP5478504B2 (en) Method for producing N-methylpyrrolidone
KR101660560B1 (en) - method for producing -hydroxycarboxylic acid ester
JP2000344718A (en) Production of asymmetric carbonic ester
JP3960504B2 (en) Method for producing asymmetric carbonate
US9238638B2 (en) Method for preparing alcohol carbonate using rare earth oxides as catalysts
US5414104A (en) Process for preparing dialkyl carbonates
JP2000281630A (en) Production of asymmetric dialkyl carbonate
JP2003517032A (en) Method for producing both dialkyl carbonate and alkanediol
CN101289376A (en) Process for synthesizing 3,3-dimethyl-2-butanone
KR100522781B1 (en) Process for preparing dimethyl carbonate using K/MgO catalyst
JPS62258335A (en) Production of methyl isobutyl ketone
KR100954046B1 (en) Preparation Method of Catalyst for Production of Acrylic Acid Using Reactive Ball-Milling
CN107552092B (en) Oxygen-bridged tetranuclear amidino aluminum catalyst, and preparation method and application thereof
EP0716070B1 (en) Process for the preparation of aldehydes
JP3800247B2 (en) Method for producing 6-membered ring carbonate
JPH0648993A (en) Production of dialkyl carbonate
KR20090038745A (en) Preparation of catalyst with controlled tellurium contents
JP2000167400A (en) Preparation of carbonylation catalyst and acid ester
JP2004250349A (en) Method for producing alkylene carbonate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070511

R150 Certificate of patent or registration of utility model

Ref document number: 3960504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees